
Path and Trajectory Diversity: Theory and Algorithms

Michael S. Branicky∗ Ross A. Knepper† James J. Kuffner†

∗EECS Department †The Robotics Institute

Case Western Reserve University Carnegie Mellon University

10900 Euclid Avenue, Glennan 517B 5000 Forbes Avenue

Cleveland, OH, 44106, USA Pittsburgh, PA, 15213, USA

mb@case.edu {rak,kuffner}@ri.cmu.edu

Abstract— We present heuristic algorithms for pruning
large sets of candidate paths or trajectories down to smaller
subsets that maintain desirable characteristics in terms of
overall reachability and path length. Consider the example
of a set of candidate paths in an environment that is the
result of a forward search tree built over a set of actions or
behaviors. The tree is precomputed and stored in memory
to be used online to compute collision-free paths from the
root of the tree to a particular goal node. In general, such
a set of paths may be quite large, growing exponentially in
the depth of the search tree. In practice, however, many of
these paths may be close together and could be pruned
without a loss to the overall problem of path-finding.
The best such pruning for a given resulting tree size is
the one that maximizes path diversity, which is quantified
as the probability of the survival of paths, averaged
over all possible obstacle environments. We formalize this
notion and provide formulas for computing it exactly.
We also present experimental results for two approximate
algorithms for path set reduction that are efficient and
yield desirable properties in terms of overall path diversity.
The exact formulas and approximate algorithms generalize
to the computation and maximization of spatio-temporal
diversity for trajectories.

I. INTRODUCTION

Mobile robot applications most often impose time and

resource constraints on their motion planning software.

Real robotic systems replan at a fast rate in order

to incorporate a constant stream of new perception

data. Due to time constraints, most planners operate

by considering a relatively small set of possible ac-

tions and commanding the best choice before the next

execution deadline arrives. Examples of such systems

include ground vehicles (driving on the highway at high

speed or navigating through cluttered, off-road terrain),

unmanned aerial vehicles including rotary and fixed-

wing aircraft. Failure to generate a plan quickly and

with sufficient lookahead risks damage to the vehicle.

This concern is particularly acute in the case of fixed-

wing aircraft, which do not possess the capability to stop

in place if the planner misses its deadline.

(a) (b)

(c) (d)

Fig. 1. Path sets: (a) The full 34,295-path data set; (b) The 1%
subset generated by the Inner-Product algorithm; (c) The 1% subset
generated by the Inclusion-Exclusion algorithm; (d) The 1% subset
generated by random sampling from the full path set.

One popular strategy for improving online planning

time is to precompute a set of candidate actions a priori

(e.g. [1], [2], [3], [4], [5]). The advantage of this is that

no online computation time is wasted in considering

paths that the robot cannot execute. The drawback is

that a path set generated offline may not incorporate

any knowledge of particular obstacle configurations.

Our work discusses the problem of evaluating a path

or set of paths in the context of unknown obstacle

location and density in the world. Two theoretical al-

gorithms for computing an exact probability of collision

are derived. Two approximate algorithms (Inner-Product

and Inclusion-Exclusion) are then presented, which pro-

vide a tractable solution to the problem of selecting a

diverse set of paths. These algorithms cull a large path

set down to a smaller, more manageable size, while

attempting to maximize the robustness of the path set

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1359

(versus other path sets of the same size) with respect to

unknown obstacle configurations; see Fig. 1. The choice

of path set size for a particular application may depend

on constraints such as planner requirements, available

memory, and CPU performance. The reduced path sets

are analyzed with respect to their survivability in the

presence of obstacles.

A. Background

Building and storing discretized representations of

state reachability and configuration space (C-space)

volumes has been a major research thrust in robot

motion planning. Popular sampling-based planning al-

gorithms such as the probabilistic roadmap (PRM) [6]

and Rapidly-exploring Random Trees (RRTs) [7] and

their variants build graphs and trees of connected con-

figurations for path planning in high-dimensional search

spaces with obstacles. Some of the key research issues

include developing good heuristics for placing samples,

connecting pairs of samples, enforcing constraints, and

exploring tradeoffs between what must be computed

at runtime and what can potentially be precomputed

(e.g. [8], [9]).

Leven and Hutchinson [2] precomputed a roadmap

of samples in the configuration space to be stored in

memory and used for efficient planning online. Although

they did not consider the optimal placement of roadmap

nodes, the network of paths they used and how well

the roadmap covers the reachable configuration space

is directly related to our problem of path diversity. In

particular, our definition of path diversity has some of

the same motivations as their notions of “ρ-robustness”

and “edge robustness.” Burns and Brock [10] explore

techniques aimed at optimally placing samples for path

planning using a machine learning framework. In this

case, the focus was on quickly discovering narrow

passages in the configuration space for a given problem

during runtime. Ramamoorthy et al. [11] explore “low-

discrepancy curves” that provide efficient, uniform cov-

erage of configuration spaces (up to a dispersion error).

The idea of trading off memory for runtime per-

formance in the context of path planning has become

popular across a number of different fields. In the

controls literature, storing sets of trim trajectories for

helicopter dynamic models and the notion of composing

them to form obstacle-avoiding paths has been investi-

gated by Frazzoli [1]. Trim trajectories are essentially

predefined maneuvers that are invariant to some state

variables (such as the global translation and rotation).

These invariant maneuvers are useful because they allow

a high level planner to efficiently reason about local

state reachability. For methods and a discussion of

discretization and reachability issues in the context of

continuous control systems, see Bicchi et al. [12]. In the

computer animation literature, Go et al.[3] precompute a

dense table of state-dependent trajectories that are affine

invariant in order to avoid having to forward integrate

the dynamics of simulated spacecraft during runtime.

Lau and Kuffner [4] use precomputed trees of cap-

tured human motion data to efficiently plan animations

for multiple characters interactively. In field robotics,

the idea of maintaining multiple path alternatives for

emergency stops or avoidance maneuvers has a fairly

long history. Sets of steering paths were used for the

robot that won the 2005 DARPA Grand Challenge for

autonomous driving [5]. NASA’s Mars rovers also utilize

sets of steering curves for deciding local maneuvers [13].

Our work is most closely related to the work of

Green and Kelly [14], which formulates the problem

in terms of sampling in the continuous space of paths.

Candidate paths are selected that are most likely to

produce a solution given a probabilistic representation

of all possible environments. Computing the optimal

mutual separation between paths is shown to be related

to the maximum k-facility dispersion problem which is

known to be NP-hard.

II. PATH DIVERSITY

Given a set of paths, we say that a particular subset of

paths (of a fixed size) maximizes path diversity if that

subset is the most robust to the maintenance of feasible

paths regardless of the placement of obstacles. Here,

we measure such robustness by the probability of the

maintenance of paths, averaged over all possible obstacle

environments.1 Therefore, in the case of pruning down a

set of paths to a subset of a certain size, we wish to pick

the subset that minimizes the probability of the failure

(due to blocked paths). Below, we formalize this notion

and provide formulas for computing it.

Let there be a finite set of paths [P =
{p1, p2, . . . , pn}, each of which lives in a space that has

been partitioned into a set of cells C = {c1, c2, . . . , cm}.
In this way, each path may be discretely represented

by the sequence of cells through which it traverses.2

Given this setup, we pose the following two problems:

Problem 1 (Path Diversity Measure): Compute the

probability (uniformly over all possible environments)

that at least one of the paths in P is not blocked,

denoted Ppnb(P) [read this as “path-not-blocked”].

1In this paper, we consider all possible environments to be equally
likely. However, the ideas generalize to arbitrary distributions.

2Actually for path diversity, it is only the set of cells traversed,
and not their sequence that matters. The notion directly generalizes to
trajectories by considering the sequence.

1360

Problem 2 (Maximal Path Diversity Pruning):

Given k < n, find the subset P ′ ⊂ P of size k such

that Ppnb(P
′) is maximized.

Below, we make use of the following notation. |A|
denotes the cardinality of set A. Thus, |P| = n and |C| =
m. 2A denotes the power set of set A. Note that |2C | =
2|C| = 2m. We will also use the predicate notation of

Knuth: [ψ] equals 1 if the predicate ψ is true; 0, if it

is false. We will use Pcnb(A) [read this as “cells-not-

blocked”] as a shorthand for Ppnb({A}). In particular,

Pcnb(pi) is shorthand for Ppnb({pi}), and it means that

none of the cells in pi are blocked.

For ease of notation below, we will use the path name,

pi, to refer both to the path in P and the set of cells in

C that represents that path, where the meaning will be

clear from context. Note that using this representation,

P is a collection of sets of cells.

There are at least two ways to compute Ppnb(P). The

first simply sums over all possible environments (i.e.,

configurations of obstacles), checking which ones still

possess possible paths:

Ppnb(P) =
1

2|C|

∑

C∈2C

[∃pi s.t. C ∩ pi = ∅]. (1)

The complexity of this algorithm is O(mn2m).
The second approach applies the inclusion-exclusion

principle to sums over all possible (unions of) subsets

of paths, with complexity O(mn2n):

Ppnb(P) = Prob(p1 not blocked or p2 not blocked

or . . .pn not blocked)

=
∑

i

Pcnb(pi)−
∑

i 6=j

Pcnb(pi ∪ pj)

+
∑

i 6=j 6=k

Pcnb(pi ∪ pj ∪ pk)− · · ·

+ (−1)n−1Pcnb(p1 ∪ p2 ∪ · · · ∪ pn)

=
∑

A∈2P\∅

(−1)|A|−1Pcnb (∪pi∈Api) ,

(2)

It only remains to show how to compute Pcnb(A), for a

singleton set of cells A. However, this is given by

Pcnb(A) =
2m−|A|

2m
=

1

2|A|
, (3)

which simply counts the fraction of environments that

do not include as obstacles any of the cells in set A.

Using (1), (2) and (3), Problems 1 and 2 can be solved

in a brute-force manner, but only efficiently for small m
and n. The problems we are interested in have m ≈
105 and n ≈ 104. Therefore, we must find sub-optimal

approximation algorithms to solve these problems.

(a)

Goal

2 4

1 3

Start

(b)

Goal

4 8 12 16

3 7 11 15

2 6 10 14

1 5 9 13

Start

Fig. 2. Environments for (a) Example 1 and (b) Example 2.

III. EXAMPLES

Let’s consider a few examples to fix ideas.

Example 1: Consider the 2× 2 grid world of Figure

2(a). Consider two paths connecting the Start to the

Goal: p1 = {1, 2} and p2 = {3, 4}. There are 24 = 16
possible environments, depending on whether cells 1–4

contain an obstacle or not:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Using (1), 7 of these environments (0000, 0001, 0010,

0011, 0100, 1000, 1100) leave at least one of the paths

unblocked. So, Ppnb(P) = 7/16. Using (2), we compute

Ppnb(P) = Pcnb(p1) + Pcnb(p2)− Pcnb(p1 ∪ p2)

=
22

24
+

22

24
−

24

24
=

7

16
.

(4)

Finally, because these paths are independent (i.e., non-

overlapping), we can see this another way: there are

three ways to block p1 and three independent ways to

block p2, for a total of 3 · 3 = 9 ways to block out of

16. Hence, 7 of 16 are not blocked.

Example 2: Consider the 4× 4 grid world of Figure

2(b) and the four paths connecting the Start and Goal:

p1 = {1, 2, 3, 4}, p2 = {5, 6, 7, 8},

p3 = {9, 10, 11, 12}, p4 = {13, 14, 15, 16}.

There are 216 = 65536 possible environments. There-

fore, we will use (2):

Ppnb(P) = 4
212

216
− 6

28

216
+ 4

24

216
−

20

216
=

14911

65536
.

Again, because these paths are independent (i.e., non-

overlapping), we can see this another way: there are 15
ways to block each pi, for a total of 154 = 50625 ways

to block all four. This leaves 65536 − 50625 = 14911
environments which do not block all four paths.

Example 3: Consider the setup of Example 1, but add

the winding path p3 = {1, 3, 4, 2}. It is easy to see that

this path will not change Ppnb(P) using (1), because p3

has a non-zero intersection (hence is blocked) by all 9

environments that blocked the original set.

1361

Example 4: Consider the same setup as in Example

2, but add the winding path

p5 = {1, 5, 9, 13, 14, 10, 6, 2, 3, 7, 11, 15, 16, 12, 8, 4}.

Arguing as in Example 3, Ppnb(P) will not change

using (1). It can also be shown that it will not change

using (2). The reason is that p5 itself (and hence any path

set that contains it) contains all 16 cells. Thus, Pcnb(p5)
and Ppnb for each subset of P that contains it is equal

to 1/216. The result then follows from the fact that

0 = (1− 1)n =

n
∑

i=0

(−1)i

(

n
i

)

. (5)

IV. APPROXIMATION ALGORITHMS

To approximately solve Problem 2, we propose a

greedy algorithm. First, consider mapping each path pi

to an m-digit binary string bi whose jth digit is 1 if cell

cj is in pi and 0, otherwise. Thus, for Example 2 above:

b1 = 1111000000000000, b2 = 0000111100000000,

b3 = 0000000011110000, b4 = 0000000000001111.

Define the weight of binary string, w(b), to be the

number of 1’s in string b. Thus, w(bi) = 4 for each string

above. Finally, define component-wise addition of two

strings s⊕ t. With these, we provide a greedy algorithm

for Problem 2, which has complexity O(mn2):

PATH DIVERSITY INNER-PRODUCT(P)
1 bfirst ← minb∈P w(b)
2 P ′ ← {bfirst}
3 s← bfirst

4 repeat

5 bnext ← minb∈P dotproduct(b, s)
6 P = P − {bnext}
7 P ′ ← P ′ ∪ {bnext}
8 s← s⊕ bnext

9 until |P ′| = k

A different greedy algorithm can be formulated using

an approximation of (2). When adding a new path p to

P , the two most significant terms for the incremental

change in Ppnb(P) are

f(p) = Pcnb(p)−
n
∑

i=1

pcnb(p ∪ pi). (6)

Consistent with the weight of its binary string, we

will define the weight of a path p to be the number of

distinct cells it contains. If w(p) = l and w(pi) = wi,

w(p ∩ pi) = vi, for i = 1, . . . , n, then f(p) reduces to

f(p) =
1

2l
−

n
∑

i=1

1

2wi+l−vi

=
1

2l

(

1−
n
∑

i=1

1

2wi−vi

)

.

The idea then, is to pick the p to add at each step that

maximizes this expression:

PATH DIVERSITY INCLUSION-EXCLUSION(P)
1 pfirst ← minp∈P w(p)
2 P ′ ← {pfirst}
3 s← pfirst

4 repeat

5 pnext ← maxp∈P f(p)
6 P = P − {pnext}
7 P ′ ← P ′ ∪ {pnext}
8 until |P ′| = k

Both algorithms run in time O(mn2). For the latter,

note that an exact implementation of the powers of two

on m bits cannot rely on hardware floating point.

Just as in [14], both of these algorithms exhibit the

useful property that they can be terminated at any

iteration count to return the n best paths from the set.

The key distinction between them is their treatment

of space unoccupied by any path in the subset. When

choosing a path which occupies previously unreachable

cells, the Inner-Product algorithm regards each cell as

free (with the exception of the initial path selection). By

contrast, the Inclusion-Exclusion algorithm is computing

the probability of a collision. Under the assumption that

each cell is occupied with probability 0.5, the penalty

for extending a path by a single cell is that its survival

is half as likely. The contrasting reward that a longer

path can accomplish more is excluded from the analysis,

resulting in the behavior borne out in the results below.

V. EXPERIMENTAL RESULTS

We applied the approximate path diversity algorithms

described above to a large example problem consisting

of 34,295 paths of various lengths. These paths were

generated from motion capture data for use in graphical

human character animation and are the same data used in

[4]. The path set was culled down to a variety of sizes

using each of the greedy algorithms described above.

Since the algorithms require a cellular discretization of

space, the world was divided into a rectangular grid of

85 by 70 cells, for a total of 5950 cells. Because we are

using a square grid and an irregularly-shaped path set,

only 3030 of those cells are traversed by any path. The

run time of each of these algorithms was reasonable even

for a large problem such as this, in which an exhaustive

brute force search would be intractable. The path counts

used in this analysis are shown in Table I, along with

the run times for each algorithm on each size set.

To aid in visualization, Fig. 1 shows the full path set as

well as two example subsets of equal path count repre-

senting these two algorithms. For comparison purposes,

1362

Table I. Path set sample sizes and algorithm run times.
Path % of Total Inner-Product Inclusion-Exclusion

Count Paths Run Time (sec) Run Time (sec)

343 1 2 260
686 2 3 527

1715 5 7 1438
3430 10 13 3898
6859 20 26 14,189

34,295 100 – –

a third path sampling algorithm was introduced, which

randomly samples paths from the full set. An equal-

sized random path set is also shown in Fig. 1. From

this figure, it is clear that the path set resulting from

the Inner-Product algorithm is more compact than the

others, although it contains the same number of paths.

This compactness reflects the tendency of the algorithm

to select the shortest paths first, since they are most

likely to avoid collision with obstacles. This behavior is

appropriate so long as all the curves in the original path

set are legitimate edges for selection. Some applications

may may require that all edges be equal in length, but

we leave this issue as future work.

Since these algorithms were designed to maximize the

probability that at least one path will not be blocked by

any arbitrary obstacle configuration, it is expected that

a larger number of paths in the set would survive such

obstacles as compared with an uninformed selection of

paths. In order to test this speculation, the cells reachable

by the full path set were slowly filled with obstacles

one-by-one in random order. Each time a new obstacle

was found to intersect a path in one of the sets, that

path was removed. At each stage, the fraction of paths

from each set which survive was plotted. The results

of this experiment for a 1% path set, averaged over one

thousand trials, are presented in Fig. 3. Here, the vertical

axis represents normalized surviving paths. Normalized

paths allow one to compare path subset performance

against the full path set; the other path set sizes in Table

I produce qualitatively similar results.

From these plots, it is clear that the Inner-Product path

diversity algorithm consistently outperforms both the

full set and the random subset (which closely tracks the

former, as would be expected with a uniform sampling).

While the Inner-Product algorithm delivered quite good

results, the Inclusion-Exclusion algorithm consistently

underperforms in these tests. This can be attributed to

the fact that (6) – the basis of this algorithm – uses a

two-term approximation of the inclusion-exclusion rule.

This assumption would give the exact answer in a case

where no three paths ever intersect at a single cell.

However, in our large dataset, a significant fraction of

paths passed through a small number of cells, making

(6) an inadequate approximation of Ppnb(P).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

N
o

rm
al

iz
ed

 S
u

rv
iv

in
g

 P
at

h
s

Percent Obstacle Coverage

Full set

Inner-Product 1%

Inclusion-Exclusion 1%

 Random 1%

Fig. 3. Normalized survival rate of path sets produced by each
algorithm at 1% of the original path set with varying obstacle density.
The randomly-sampled subset closely tracks the performance of the
full path set, while the Inner-Product algorithm output performs best.

VI. TRAJECTORY DIVERSITY

Formulas and approximation algorithms for trajectory

(versus path) diversity directly follow as a corollary of

our results in Sections II and IV, by considering the

sequence (versus the set) of cells that are traversed. To be

specific, the same formulas and algorithms as above may

be applied to trajectories by merely expanding the con-

figuration space one dimension to include (discretized)

time and then computing/approximating path diversity

on the resulting paths in space-time.

The result would be formulas and approximation

algorithms that maximize spatio-temporal path diversity,

or briefly trajectory diversity. These would favor pruning

of overlapping trajectories and the resulting trajectory

sets would be those that have the lowest probability of

being blocked, averaged uniformly over all space-time

obstacle environments.

The benefit of computing/approximating tree prunings

that maximize such spatio-temporal diversity would be

lost unless one considers environments with dynamic

obstacles. The reason is that, in the completely static

case, the sum over all environments in (1) should not

treat obstacles as arbitrary in both space and time.

Instead, such obstacles would be “columns” in space

time: they would have arbitrary bases in space, but

extend across the complete time set.

It is future work to determine whether space and

time should be have equal weighting when computing

(1) or its approximations herein, even in the case of

dynamic obstacles. Should different weightings be used

for different bounded obstacle velocities?

Finally, it is interesting to note that even though paths

may overlap greatly in space, they may have many fewer

intersections as trajectories in space-time.

1363

VII. SUMMARY AND DISCUSSION

The eventual goal of this work is to aid in the

design of precomputed path sets. Through principled

path selection, planning efficiency can be maximized and

the probability of failure minimized. In the process of

evaluating a path set against a collection of obstacles,

the collision of one path provides information which

can be used to inform future path selection. In an

uninformed path set, computation will be, in essence,

wasted by repeatedly colliding different paths with the

same obstacles. A planner could use this information

explicitly by generating a decision tree of paths, but

a static path set may also elicit the desired behavior.

Our algorithms decrease this wasted computation by

selecting a path set that minimizes the amount of overlap

between paths at all points in the world.

As we have shown, when planning with such paths,

the survival rate is maximized, so fewer cycles are

wasted on paths that collide. With more viable options

produced per path evaluation, the likelihood of the goal

being achieved is maximized. Due to extreme combi-

natorial complexity, it is impractical to compute the

exact probability of collision of a particular path set.

However, we have shown that approximate algorithms

can be effectively employed to design a diverse path set

that is expected to perform well during planning.

This work represents progress toward understanding

how best to prune existing sets of paths or reachability

sets as well as providing information to help make

informed decisions about trajectory set design. The

presented algorithms work with any path set, including

those generated incrementally (say, by an RRT), or by

a model that incorporates dynamic constraints. Because

our methods work on resulting paths/trajectories, they

are also agnostic with respect to whether the gener-

ated paths are parametrized or non-parametrized. In the

former case, it may be possible to obtain diversity in

specific cases. However, if the dynamics are non-trivial

(non-linear, non-holonomic, etc.), it may be expensive or

impossible to generate diverse paths through judicious

parameter selection. Also in such general cases, RRTs

produce non-separated—even overlapping—workspace

paths. Algorithms like ours that work on resulting paths

offer a general solution to the diversity problem.

We have explored discretized versions of the path

diversity problem using numerical simulations. One av-

enue of future work would involve designing analytical

metrics for path diversity along the lines of [14] to

eliminate arbitrary discretizations from the analysis. An-

other direction for future work is to perform experiments

on space-time trajectories with dynamic obstacles, for

which the Inclusion-Exclusion algorithm may be a better

match. Finally, yet another direction is to experiment

with non-uniform obstacle distributions and to extend

the framework and algorithms for pruning to environ-

ments where one has only partial obstacle information

(say, partial occupancy from LIDAR or vision sensing)

but also has a statistical description of the environment

in terms of a Markov random field (MRF). Such MRF

descriptions would have joint (versus independent) prob-

abilities of obstacles occurring in a given cell, based on

the presence of obstacles in its neighboring cells. We

anticipate that such models would be especially useful

in terms of path diversity and pruning for the types of

natural environments mentioned in the Introduction and

also in virtual natural environments where such fields

are used to “texture,” say, forests or other terrain, planet

surfaces, or even city environments. Similar arguments

apply to dynamic, multi-agent environments where oc-

cupancy probabilities would come from traffic models

and/or Kalman filter biases arising from vehicle tracking.
Acknowledgments: This work was partially sup-

ported by NSF grants CCR-0208919 (Branicky) and

EEC-0540865 (Kuffner) and DARPA (Knepper), The

authors gratefully acknowledge Manfred Lau for making

the large motion capture path set available.

REFERENCES

[1] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion plan-
ning for agile autonomous vehicles,” AIAA Journal of Guidance,

Control, and Dynamics, vol. 25, no. 1, pp. 116–129, 2002.
[2] P. Leven and S. Hutchinson, “A framework for real-time path

planning in changing environments,” Intl. J. Robotics Research,
vol. 21, no. 12, p. 999, 2002.

[3] J. Go, T. Vu, and J. Kuffner, “Autonomous behaviors for inter-
active vehicle animations,” Int. J. Graphical Models, 2005.

[4] M. Lau and J. Kuffner, “Precomputed search trees: Planning for
interactive goal-driven animation,” in Proc. ACM SIGGRAPH /

Eurographics Symposium on Computer Animation, 2006.
[5] S. Thrun et al., “Stanley: The robot that won the DARPA grand

challenge,” J. Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.
[6] L. Kavraki et al. “Probabilistic roadmaps for path planning in

high-dimensional configuration spaces,” IEEE Trans. Robotics

and Automation, vol. 12, no. 4, pp. 566–580, 1996.
[7] S. LaValle and J. Kuffner, “Randomized Kinodynamic Planning,”

The Intl. J. Robotics Research, vol. 20, no. 5, p. 378, 2001.
[8] R. Bohlin and L. Kavraki, “A lazy probabilistic roadmap planner

for single query path planning,” Intl. J. Robotics Research, 2000.
[9] M. Branicky et al., “Quasi-randomized path planning,” Proc.

IEEE Intl. Conf. Robotics and Automation, vol. 2, 2001.
[10] B. Burns and O. Brock, “Toward optimal configuration space

sampling,” Proc. Robotics: Science and Systems.
[11] S. Ramamoorthy et al., “Low-discrepancy curves and efficient

coverage of space,” Alg. Foundations of Robotics VII, 2006.
[12] A. Bicchi et al., “On the reachability of quantized control

systems,” IEEE Trans. Automatic Control, 47(4):546–563, 2002.
[13] S. Goldberg, M. Maimone, and L. Matthies, “Stereo Vision and

Rover Navigation Software for Planetary Exploration,” Proceed-

ings of the 2002 IEEE Aerospace Conference, pp. 2025–36, 2002.
[14] C. Green and A. Kelly, “Toward optimal sampling in the space of

paths,” in Proc. Intl. Symp. Robotic Research, Hiroshima, 2007.

1364

