Proceedings of the 1999 IEEE
International Conference on Robotics & Automation
Detroit, Michigan « May 1999

Path Planning and Control for AERCam, a Free-flying Inspection Robot in
Space.

Howie Choset, Ross Knepper, Joleen
Flasher, Sean Walker, Andrew Alford, and
Dean Jackson

Carnegie Mellon University

Scaife Hall

Pittsburgh, PA 15213

ABSTRACT

This paper describes a prototype robot and the nec-
essary path planning and control for space inspection
applications. The robot is the first generation of a free-
flying robotic camera that will assist astronauts in con-
structing and maintaining the Space Station. The robot
will provide remote views to astronauts inside the Space
Shuttle and future Space Station, and to ground con-
trollers. The first part of the paper describes a planar
robot prototype autonomously moving about an air bear-
ing table. The second part of this paper introduces a
method for determining paths in the three-dimensions
for efficient fuel use. Finally, this paper describes the
software simulation of the path planner with the future
space station.

1 INTRODUCTION

AERCam (Autonomous Extra-vehicular Robotic
Camera) is designed to provide astronauts and ground
control camera views of the space shuttle and sta-
tion. The first generation of AERCam, called AER-
Cam Sprint, flew on a shuttle mission in December 1997.
AERCam Sprint was teleoperated by an astronaut in-
side the space shuttle. AERCam’s only autonomy was
its ability to automatically stop its rotation when com-
manded to do so. The next generation of AERCam,
called AERCam I1, is currently in development at NASA
Johnson Space Center. This robot will have additional
autonomous functionality and will be controlled by an
intelligent layered control architecture called 3T [2].

This paper describes the path planning and control
algorithms that direct AERCam’s motions. First, we
will describe the planar prototype for AERCam and the
planar path planning algorithm that directs it. This
path planning algorithm is based on the generalized
Voronoi diagram (GVD), which has been commonly
used in the motion planning field [13]. One of the contri-
butions of this paper is that we use the GVD to locally
optimize fuel usage of AERCam on the air bearing table.

The second part of this paper then upgrades the pla-
nar path planning approach to three-dimensions using

0-7803-5180-0-5/99 $10.00 © 1999 IEEE

David Kortenkamp, Robert Burridge, and
Jaime Fernandez

Texas Robotics and Automation Center
Metrica, Inc.
Houston, TX 77058

Fig. 1. AERCam space deployment.

a new motion planning structure called the generalized
Voronoi graph (GVG), already described in prior work
[4). Again, we use the GVG initially to first find a path
and then apply a similar optimization technique to min-
imize fuel usage. Software simulations validate this ap-
proach for the space station.

2 PLANAR HARDWARE TESTBED

AERCam IGD is a testbed for a free-flying space
robot. The AERCam IGD consists of several hardware
components and is shown in Figure 2. Although this pa-
per is primarily about the software control algorithms
of AERCam, in this section we will briefly describe the
major components of the hardware testbed.

« Flotation sled. In order to emulate the effects of a
friction-less environment on our control algorithms,
the AERCam IGD robot floats on a thin layer of air
above an air bearing table (ABT). This cushion of
air is provided by a flotation sled, which bears the
weight of AERCam. An on-board reservoir supplies
air, providing tether-free operation.

o Thrusters. AERCam IGD moves by firing small
nitrogen thrusters. There are eight thrusters: two
in each of four directions. By combining differ-
ent thruster firings rotations and movements can

1396

Fig. 2. The AERCam air bearing table robot.

be performed. An on-board tank provides nitrogen
for tether-free operation.

« Infrared detectors. AERCam IGD has a ring of
twelve infrared detectors. These detectors provide a
range to objects ranging from six inches to 36 inches
away. The range is given as one of sixteen steps
between these two distances. Each sensor provides
data at approximately ten hertz.

+ Processor. AERCam has an on-board Pentium
100 MHz processor on a PC-104 bus. The processor
runs VxWorks 5.3. The PC-104 bus provides slots
for attaching additional cards, including cards for
data acquisition.

e Inertial Measurement Unit. AERCam IGD
has a laser gyroscope that can measure acceler-
ations in both rotation and translation. Control
software uses these measurements (plus additional
data) to determine AERCam’s position and veloc-
ity.

e Vision. AERCam IGD has two color cameras
mounted on its top surface. These camera have a
fixed position and a fixed verge (angle between the
cameras). They are attached to a wireless video
transmitter, described in the next section.

¢ Communication. While a great deal of AER-
Cam’s real-time control is done on-board, some
high-level control, some perception and the user in-
terface are off-board the robot. AERCam has a
wireless Ethernet communication system that con-
nects its on-board Pentium processor with off-board
workstations. AERCam also has a wireless stereo
video transmitter to provide a video feed to the user
interface and off-board processors.

3 SOFTWARE COMPONENTS

The AERCam IGD contained a large number of soft-
ware components written many different people that has

been combined to allow for both teloperation and au-
tonomous operation. Some of the software ran on-board
the IGD robot, but most ran on off-board computers.

3.1 Motion Control System

The Motion Control System (MCS) of AERCam pro-
vides two functions: 1) determining AERCam’s posi-
tion; and 2) performing real-time control of AERCam.
Basic commands that the MCS can implement include:
1) moving in any axis and rotating; 2) stopping; 3) mov-
ing to an x,y position; and 4) turning to an angle.

The MCS is a separate process running on-board the
AERCam IGD under VxWorks. It communicates via
shared memory with the intelligent control system (see
Section 3.5). The control laws and position determina-
tion algorithms were written by experts on control of
free-flying spacecraft and tested extensively in simula-
tion and on the air bearing table. This paper does not
focus on the MCS, although its functioning is crucial
to a successful robot system, but instead focuses on the
higher level planning and control that results in com-
mands to the MCS.

A key component of the MCS is a Global Position-
ing System (GPS). This GPS consists of six pseudolites
(beacons that mimic GPS satellites indoors) and two re-
ceiving antenna’s, one on AERCam and one off-board as
a reference receiver. The GPS system uses differential
measurements between the on-board and reference re-
ceiver to determine AERCam’s position. This position
is combined with information from the Inertial Measure-
ment Unit and used to control AERCam. The GPS sys-
tem was developed at Stanford University and modified
for use at NASA JSC.

3.2 Path planning

This path planning algorithm used for the AERCam
IGD is based on a geometric structure called a roadmap
[3]. Sometimes, roadmaps are called skeletons because
they capture the salient geometric structure of an en-
vironment much like an animal’s skeleton reflects the
geometry of its body. Roadmaps have the following
properties: accessibility, connectivity, and departability.
A robot uses a roadmap to plan a path by finding a
path from the start onto the roadmap (accessibility),
then along the roadmap (connectivity) and then from
the roadmap to the goal (departability). This is similar
to how people use roadways, hence the term roadmap
structure. Once the robot determines the path from
the roadmap, the path is then optimized for fuel usage.
The first roadmap used in this paper is the general-
ized Voronoi diagram (GVD), which has been commonly
used in the motion planning field [14]. One of the contri-
butions of this paper is that we use the GVD to locally
optimize fuel usage of AERCam on the planar air table.

1397

Later, we will extend the GVD to three dimensions by
introducing the generalized Voronoi graph.

3.2.1 The generalized Voronoi diagram

The planar roadmap used in this work is the gen-
eralized Voronoi diagram (GVD). O’Dunlaing and Yap
[14] first applied the GVD, which is the locus of points
equidistant to two or more obstacles, to motion planning
for a disk in the plane.

To define the GVD, assume the robot is a point oper-
ating in a work space, W, which is populated by convex
obstacles C,...,Cr. Non-convex obstacles are modeled
as the union of convex shapes. The distance between a
point and an obstacle is the shortest distance between
the point and all points in the obstacle. The distance
function, and its “gradient,” respectively are

r—Co
llz = coll”
where (1) d; is the distance to obstacle C; from a point
z, and (2) the vector Vd;(z) is a unit vector in the
direction from z to cp, where ¢y is the nearest point to
z in Cj;.

The basic building block of the GVD is the set of
points equidistant to two sets C; and Cj, such that
each point in this set is closer to the objects C; and
C; than any other object. We term this structure the
two-equidistant face,

di(z) = min |l —cof] and Vd;(z)=
co€C;

Fij = {x eR™:0< d,’(l‘) = dj(I) < dh(:t) Vh#1,j
and Vd,-(a:) # Vdj(z)}.

A two-equidistant face has co-dimension one in the am-
bient space, and thus in the plane, a two-equidistant face
is one dimensional [4]. The union of the two-equidistant
faces forms the generalized Voronoi diagram, i.e.,

n—~1 n
Gvo=J U %4
i=1 j=i+1
See Figures 3 for examples of the GVD. Note GVD edges
terminate on the boundary at nodes termed boundary
points and at nodes termed meet points where other
GVD edges terminate.

Now, we show how the robot can use the GVD for
motion planning. Given an arbitrary start location for
AERCam, there always exists a path from the start to
at least one point on the GVD. This path is described
as

&(t) = Vdi(e(t))
where C; is the closest object to the robot. Essentially,
this path directs AERCam away from the closest obsta-
cle until it encounters another obstacle which is equidis-
tant to the first closest obstacle. This accessibility prop-
erty of the GVD was show in [14] but is restated here in

Fig. 3. The solid curve segments are the edges of GVD.

terms of the distance function. Loosely put, the GVD
has the accessibility property because when the robot
moves away from its closest object it must encounter
another object to which its is equidistant due to bound-
edness.

1t is shown in [5], that all points in the free space are
within at least one point on the GVD. This means, when
the robot negotiates the entire GVD, it is guaranteed to
“see” the entire work space. This feature furnishes the
GVD with the property of departability.

So, we have shown that the robot can access the GVD
and depart from it, and now we describe the intermedi-
ate step — traversing the GVD from the access to the
depart locations on the GVD. Since the GVD is con-
nected [14), we are guaranteed that there will be a path
on the GVD between the access and depart locations.
This path is determined via a graph search of the GVD.
The robot traverses an edge until it encounters a meet
point. Here, the robot search branches and another edge
is traversed. If the robot encounters a boundary point,
it simply returns to a meet point with an un-searched
edges associated with it. If the robot encounters an al-
ready visited meet point, then there is a cycle in the
graph and again, the robot returns to a meet point with
an unexplored edge associated with it. If a path exists,
this procedure will terminate when the robot becomes
within line of sight of the goal, at which point the robot
departs the GVD for the goal. See Figure 4.

If no path exists between the start and goal, then
this procedure terminates when all meet points have no
un-searched edges associated with them. The power of
this procedure is that it determines a path when one
exists or reports failure when no path exists. Such a
path planner is called complete.

3.2.2 Minimizing Fuel Usage

The planar AERCam uses its thrusters to move on
the air table, thereby emulating space-like deployment.
Naturally, AERCam must fire its thrusters several times
to follow an arbitrary path. In Figure 4, AERCam
would have to fire its thrusts several times to negoti-

1398

Fig. 4.

AERCam determined a path from a start to a goal lo-
cation by accessing the GVD, traversing the GVD, and then
departing the GVD.

ate the curved portions of the GVD. Firing thrusters
requires fuel; fewer bursts requires less fuel thereby mak-
ing the mission more cost-effective. Our goal is to mini-
mize the number of firings AERCam requires to traverse
from a start to a goal location.

Initially, we considered orbital mechanics calculations
to optimize fuel usage. This proved to be unneces-
sary because recently NASA researchers at the Johnson
Space Center have shown that taking orbital dynamics
into account when doing AERCam-type navigation does
not significantly reduce fuel usage [8]. The scientists
concluded that a sequence of straight line paths from
start to goal suitably approximates an optimal solution
for fuel usage.

Once the GVD-path is determined from the GVD,
the straight-line-path-sequence optimization procedure
is quite simple: move along the GVD-path until the
start location can no longer be seen. The last point
where the start is within line of sight is a “way-point”
for AERCam. This procedure is then repeated with the
way-point serving as the start location until the goal is
reached. The result is a sequence of way points that
describe a piece-wise linear path from start to goal.

This optimization procedure will produce paths that
bring AERCam unacceptably close to obstacles, so the
operator specifies a safety parameter describing the min-
imum distance to an obstacle AERCam is allowed to
achieve. The robot moves along the GVD-path from
the start. Whenever the distance of the line segment
defined by the current robot location and start loca-
tion falls below the safety threshold, the robot defines
a way point. This procedure is then repeated with the
way point serving as the start location until the goal is
reached. See Figure 5.

3.3 Stereo vision

One goal of the AERCam IGD was to be able to
maintain a fixed distance and heading to a person. To do

Fig. 5. Using the GVD, AERCam determined a path as a se-
quence of straight line segments from a start to a goal loca-
tion.

this an active stereo vision system was used. This vision
software has been developed over a number of years at
NASA Johnson Space Center and Metrica/TRACLabs
[9], [10], [12]. When tracking an object it can provide
the location of the object with respect to the camera. It
runs under Windows NT on a 300 Mhz Pentium II using
four C80 DSP chips and operates at approximately ten
frames per second.

In order to efficiently process the enormous amount
of information available from stereo cameras, the sys-
tem uses techniques that have recently been developed
by the active vision research community [1], [6]. In par-
ticular, the system addresses the issue of gaze control,
i.e., where to focus attention and visual resources. In
our vision system a Laplacian of a Gaussian convolu-
tion is performed on the image data streams as they are
simultaneously acquired. Only the sign of the LOG out-
put is stored in memory. Then, a search is performed
in which a patch from the left LOG image is compared
with a portion of the right LOG image, producing cor-
relation measurements. This search produces a series
of correlations from which the strongest (the “peak”) is
chosen as the best. At the same time, the right LOG im-
age from the frame before is compared with the current
right LOG image to measure motion. This correlation
data is used to assess information within a bounded vol-
ume of space called a proximity space. Each proximity
space is controlled by a set of behaviors. These behav-
iors keep the proximity space on an object that is being
tracked and the object’s position is reported to the in-
telligent control system so that the robot’s motion can
be determined. There is not enough room in this paper
to give a detailed account of the stereo vision system —
see [11] for more information.

3.4 User interface

All commands to AERCam flow through a user in-
terface. The user interface is implemented in C++ and

1399

runs on a Pentium laptop running Windows 95. The
user interface displays telemetry from AERCam and al-
lows the user to teleoperate AERCam using a joystick,
to command AERCam to a position and to begin stereo
tracking.

3.5 Intelligent control

In the AERCam IGD, high-level control of the robot
was done using an intelligent control architecture called
3T [2]. The 3T architecture separates the general in-
telligent control problem into three interacting layers or
tiers (and is thus known as 3T).

o A set of hardware-specific situated skills that repre-
sent the architecture’s connection with the world.
The term “situated skills” [15] is intended to de-
note a capability that will achieve or maintain a
particular state in the world.

« A sequencing capability that can activate the situ-
ated skills in order to direct changes in the state of
the world and accomplish specific tasks. This tier
of the architecture is implemented using Reactive
Action Packages (RAPs) [7].

e A deliberative planning capability which reasons
in depth about goals, resources and timing con-
straints. The planning layer was not used in the
AERCam IGD.

The skills and skill manager reside on-board the free-
flyer running under VxWorks. The sequencing layer
runs off-board the free-flyer on a Windows 95 machine.
The two communicate via TCP/IP using the wireless
ethernet.

3.6 Communication

All interprocess communication in this project was
done using the IPC software package from Carnegie Mel-
lon University (approval to use IPC on this project was
given by CMU). IPC supports the VxWorks, SunOS,
IRIX, Linus, System 7, MacOS 8.0, and Windows
95/NT operating systems. It supports the C, C++, Al-
legro Common Lisp and Macintosh Common Lisp pro-
gramming languages. It allows for dynamic reconfigura-
tion of processes and both primitive and complex data
structures.

IPC works on a publish/subscribe paradigm. That
means that processes that have data publish that data
as predefined messages with an identifier. Processes that
need data subscribe to these predefined messages us-
ing the identifier. Whenever a message is published,
the subscribing processes are notified immediately. A
central router (called the central server) keeps track of
which processes are publishing and subscribing to which
messages and routes the messages among them. IPC
handles differences in byte ordering between different
computer architectures.

4 EXPERIMENTS

Over a period of several months the AERCam IGD
was tested on the air bearing table performing a variety
of tasks. These tasks included:
o Teleoperating the AERCam IGD using a joystick.
At any time, AERCam can be commanded to halt.

« Teleoperating the AERCam IGD using voice com-
mands. At any time, AERCam can be commanded
to halt.

« Autonomous navigation of the AERCam to a spec-

ified position using path planning.

« Tracking a moving human.

« Obstacle avoidance while navigating to a specified

position.

All of these tasks relied on a key set of skills. The
sequencer (see Section 3.5) enabled the appropriate set
of skills depending on the task and on the situation.
First, we will list the core set of skills. Then we will
look at each task and examine how the different software
components come together to perform each task.

4.1 Skills

Skills are 3T’s interface to hardware and low-level
robot processes. AERCam has a number of skills that
can be activated by the sequencer. The skills all run in
VxWorks on-board the robot. A skill manager schedules
the skills and manages their data. The following are the
core implemented skills:

o mcs_interface: communicates with the motion

control system (see Section 3.1) on-board the robot.

o thruster_control: manages the eight AERCam
thrusters.

o teleop: interprets joystick commands and produces
appropriate AERCam commands.

« voice_cont: interprets the voice system commands
and produces appropriate AERCam commands.

+ attitude_hold: maintains the current AERCam
attitude.

o translate_hold: maintains the current AERCam
position.

o turn_to: generates the appropriate MCS command
to turn AERCam to a given angle.

e move_to: generates the appropriate MCS com-
mands to move AERCam to a given position.

» find_object: initiates a visual search using the
stereo tracking system.

o track_object: takes data on the object’s location
from the stereo tracking system and determines the
appropriate movement for AERCam in order to
track the object.

» obstacle_avoid: examines the infrared sensor data
and generates appropriate AERCam movement to
avoid any obstacles.

1400

« battery_state: monitors the battery and alerts the
sequencer when the battery is running low.

o propellant_level: monitors the on-board thruster
propellant and alerts the sequencer when the pro-
pellant is low.

There are a number of other skills that perform
more mundane operations such as interfacing to vari-
ous hardware and software components. However, the
skills given above allow the sequencer to task AERCam
through a wide variety of activities as will be described
in the following subsections.

4.2 Teleoperation

The user interface contained a six degree-of-freedom
joystick that could be used to command AERCam. The
user first needs to click on the user interface to request
control of the robot. This sends an IPC message to the
sequencer, which stops any current robot activity and
enables the teleop skill. The teleop skill then waits
for IPC messages generated by the user interface corre-
sponding to joystick directives. This continues until the
teloperation mode is disabled at the user interface. Once
teleoperation is disabled, the robot will not respond to
any joystick commands.

4.3 Voice

The voice system is commercial-off-the-shelf voice
recognition software. The user requests voice command
from the user interface. The sequencer shuts down other
robot activity and turn on the voice_control skill.
While the voice recognition system is always active, any
commands it receives are be ignored by the robot unless
it was in the proper mode. Once in the proper mode,
commands like ‘turn right’, ‘move forward’, ‘stop’, etc.
can be given. The voice system generates an IPC mes-
sage for each utterance and this is interpreted by the
voice_control skill and an appropriate robot action is
. performed.

4.4 Autonomous navigation

To do autonomous navigation, the user selects a goal
position by clicking their mouse on a drawing of the
air bearing table on a laptop computer. The goal posi-
tion is sent to the sequencing layer of the architecture.
The sequencer requests a path from the path planner
(described in Section 3.2). The path planner returns
a list of via points (or way points) that will move the
AERCam robot safely through the environment to the
goal position (or it returns an error message stating
that no path was found). The sequencer then steps
through the via points, activating the appropriate skills
in the skill tier. Before sending a new via point, the
sequencer checks to make sure that the robot had suc-
cessfully reached the current via point. If the robot was
not successful, the sequencer re-sends the original via

point or takes other action (such as asking for a new
path). The user can stop the robot’s navigation at any
time by pressing a button on the laptop.

A sequencer script obtains a path, navigates the robot
to each via point in the path and then turns the robot
to a final orientation. The actual RAP scripts used in
AERCam are more complicated with more checking of
robot state and conditional execution paths. The actual
RAP scripts also conform to the RAP language, while
the example in the figure is in a pseudo-code scripting
language. Each step in the RAP script may be another
RAP that has its own script or it may be a primitive
skill that is then activated.

4.5 Tracking

To track an object or person, the AERCam opera-
tor opens the tracking window on the graphic user in-
terface (GUI), which shows the video image from the
robot’s left camera. The operator positions and sizes a
selection box around the object to be tracked and clicks
the tracking button. This sends an IPC message to the
RAPs sequencer with the coordinates for the box and
the command to try to track the object there. The se-
quencer enables the find_object skill with these coor-
dinates (top, bottom, left, right), narrowing the search
space for the skill. Then it enables the track object
skill, which holds a constant distance from the tracked
object.

The stereo vision system tracks the moving person
and sends their location in camera coordinates via IPC
to the skill manager. A new update is available approx-
imately ten times a second. The track_object skill
converts the location into world coordinates and deter-
mines a location for the robot to move to in order to
stay a fixed distance away from the person and in order
to stay facing the person. This location is passed the
the MCS for execution.

In our experiments, we could track a person who
moved at a very slow walk for periods of up to fifteen
minutes (limited by the amount of on-board propellant).
If the vision system lost the person it automatically per-
formed a search and reacquired the person. Unfortu-
nately, space does not permit a complete detailing of
how the vision system acquires and reacquires a moving
person. See [11] for more details.

4.6 Obstacle avoidance

AERCam has a ring of twelve infrared sensors that
give a distance to obstacles around AERCam. Ob-
stacle avoidance mode can be initiated from the user
interface. = This causes the sequencer to start the
obstacle_avoidance skill, which reads all twelve in-
frared sensors and determines if there is an obstacle in
the path of AERCam. An obstacle is signalled if any in-

1401

Varonol D‘xm}n (surfece) Voronol Vertex

Voronoi
Edge

Fig. 6. Two-dimensional GVD in a three-dimensional world.

frared sensor reads an obstacle within thirty inches for
three straight readings. When an obstacle is detected,
the MCS is signalled to immediately halt the robot. The
user then needs to reselect the goal location after veri-
fying that the robot’s path is free of obstacles.

5 THREE-DIMENSIONAL
PLANNING

The two-dimensional testbed described in this pa-
per is only a first step in producing a free-flying robot
for space applications. Many important research issues
need to be addressed in the move to three-dimensional
environments. Path planning in three dimensions is
both computationally complex and non-intuitive. A
free-flying robot, such as AERCam, or a person tele-
operating this robot, can eliminate this complexity and
acquire an intuitive solution using a geometric structure
termed a roadmap. With the roadmap in-hand, path
planning becomes computationally efficient because the
search takes place on the one-dimensional roadmap as
opposed to the ambient three-dimensional space.

PATH

5.1 Roadmap Definition: The Generalized

Voronoi Graph

The roadmap defined in the previous section is lim-
ited to the planar case. In three dimensions, the set of
points equidistant to two obstacles is a two-dimensional
set. Figure 6 has a rectangular and triangular based
prism enclosed by a rectangular prism. The dotted lines
outline the locus of points equidistant to two obstacles.
These two-dimensional sheets comprise the GVD.

Note that the two-dimensional sheets in Figure 6
intersect on a one-dimensional manifold. These
one-dimensional edges form our roadmap in three-
dimensions. Let JFjj;; be a three equidistant face that
is defined by the intersection of two-equidistant faces
Fijy Fix, and Ty, Le., Fije = Fij NFi n?jk- The pre-
image theorem asserts that the three-equidistant faces
are indeed one-dimensional. The union of the three-
equidistant face is termed the generalized Voronoi graph,

Fig. 7. Generalized Voronoi Graph (GVG) of a simple room with
the ceiling removed. The GVG is the set of points equidistant
to three obstacles.

Fig. 8. Space station with GVG.

ie.,
i=n—2j=n—1 k=n
ove=J U U Fin
=1 j=i+l k=j+1
Figure 7 has a GVG, for a simple three-dimensional rect-
angular enclosure with a box on the side. The ceiling is
removed so the GVG can be viewed.

5.2 Minimize Fuel Usage with the GVG

Variables such as fuel, safety, and time must be opti-
mally budgeted for effective long-term use of AERCam.
The AERCam in space will also have a suite of thrusters
to effect motion. AERCam must fire its thrusters sev-
eral times to following an arbitrary path. Hence, the
GVG path, by itself, is not optimal for fuel usage (just
as the GVD in Section 3.2.2 was not optimal in the pla-
nar case).

Again, we do not have to consider orbital mechanics
to optimize a path determined by the GVG because of
the result found in [8]. Instead, we use the same op-
timization routine that is described in Section 3.2.2 to
determine a sequence of safe piece-wise linear path from
start to goal in three-dimensions.

Figure 8 contains the space station, the GVG, and a
path that brings AERCam from a start location to a goal
location along the GVG. This path is then optimized
to minimize the number of thruster firings. The space
station, with the GVG path and its optimized path,
is shown in Figure 9. Note how the optimized path
severely cuts the corners.

1402

Fig. 9. Space station, path found with GVG, and optimized path.

6 CONCLUSION

The ultimate goal of this work is to enable AER-
Cam, a free-flying robot, to autonomously fly around
the space station to look for flaws in its hull. This pa-
per describes two necessary component to achieve this
goal: path planning and control. The three-dimensional
path planner uses the generalized Voronoi graph (GVG)
method and the control was based on an intelligent lay-
ered control architecture called 3T.

Before considering the full three-dimensional prob-
lem, we used a planar analog to AERCam. This planar
robot floated on a thin cushion of air and used small
nitrogen thrusters to move. Naturally, if the robot fired
a thruster, it would move until either another thruster
firing stops it or until the robot collides with an object.
This planar system is complicated enough to capture
many of the features involved with a free-flying space
robot, while simple enough to demonstrate the concepts
in a short amount of time.

The first concept demonstrated what the path plan-
ning which used a roadmap called the generalized
Voronoi diagram (GVD). A robot uses the GVD to plan
paths between any two points in an environment by first
finding a path onto the GVD, then along the GVD, and
then from the GVD to the goal. We then optimize this
path with respect to fuel usage and safety.

The second concept demonstrated was the intelli-
gent control architecture. The architecture separates
the real-time control of the robot from the more delib-
erative aspects of intelligent behavior. It is the control
architecture that interacts with the robot user and in-
terprets her commands. The control architecture then
calls the three-dimensional path planner when neces-
sary. When a path is returned, the control architecture
navigates the robot along the path while responding to
anomalous conditions.

Upon the successful completion of the planar exper-
iments, we upgraded the technology to handle three-
dimensional environments. Therefore, this paper also
described a three-dimensional path planning technique

and its application to free-flying space robot. The three-
dimensional path planner uses the generalized Voronoi
graph (GVG). An intelligent control architecture is used
to traverse the three-dimensional path and serves to co-
ordinate path planning and execution.

Future work on this project includes using the GVG
to localize the AERCam, which would be useful in the
case of GPS loses tracking. The localization procedure
draws from the previous work of the authors’ in mobile
robot localization. Essentially, we will exploit geome-
tries encoded in the GVG to determine landmarks that
the robot can use for localization. Another avenue of
future research is using the HGVG to plan optimal in-
spection paths for AERCam.

References

[1] Dana H. Ballard. Animate vision. Artificial Intelligence,
49(1), 1991.

[2] R. Peter Bonasso, R. J. Firby, E. Gat, David Kortenkamp,
D. Miller, and M. Slack. Experiences with an architecture
for intelligent, reactive agents. Journal of Ezperimental and
Theoretical Artificial Intelligence, 9(2), 1997.

[3] J.F. Canny. The Complerity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

[4] H. Choset and J.W. Burdick. Sensor Based Planning, Part I:
The Generalized Voronoi Graph. In Proc. IEEE Int. Conf.
on. Robotics and Automation, Nagoya, Japan, 1995.

[5] H. Choset and J.W. Burdick. Sensor Based Planning, Part I:
Incremental Construction of the Generalized Voronoi Graph.
In Proc. IEEE Int. Conf. on Robotics and Automation,
Nagoya, Japan, 1995.

[6] David J. Coombs and C. M. Brown. Cooperative gaze hold-
ing in binocular vision. In Proceedings of the Fifth IEEE
International Symposium on Intelligent Control, 1991.

[7} R. James Firby. An investigation into reactive planning in
complex domains. In Proceedings of the National Conference
on. Artificial Intelligence (AAAI), 1987.

[8] Rodolpho Gonzalez. Translation maneuver dv costs to the
solar array, cw and line trajectories (nasa memo), 1998.

{9] Eric Huber. Object tracking with stereo vision. In Proceed-

ings of the AIAA/NASA Conference on Intelligent Robots

in Field, Factory, Service, and Space (CIRFFSS ’94), 1994.

Eric Huber and David Kortenkamp. Using stereo vision to

pursue moving agents with a mobile robot. In Proccedings

of the IEEE International Conference on Robotics and Au-

tomation, 1995.

Eric Huber and David Kortenkamp. A behavior-based ap-

proach to active stereo vision for mobile robots. Engineering

Applications of Artificial Intelligence, 11(1), 1997.

David Kortenkamp, Eric Huber, and R. Peter Bonasso. Rec-

ognizing and interpreting gestures on a mobile robot. In Pro-

ceedings of the National Conference on Artificial Intelligence

(AAAIL-96), 1996.

J.C. Latombe. Robot Motion Planning. Kluwer Academic

Publishers, Boston, MA, 1991.

C. O’Diinlaing and C.K. Yap. A “Retraction” Method for

Planning the Motion of a Disc. Algorithmica, 6:104-111,

1985.

Marc G. Slack. Sequencing formally defined reactions for

robotic activity: Integrating raps and gapps. In Proceedings

of SPIE’s Conference on Sensor Fusion, 1992.

(10]

(11]

[12]

(3]

(14]

(15]

1403

