
High Performance State Lattice Planning Using Heuristic
Look-Up Tables

Ross A. Knepper and Alonzo Kelly

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA, USA
rak@ri.cmu.edu, alonzo@ri.cmu.edu

Abstract - This paper presents a solution to the

problem of finding an effective yet admissible heuristic
function for A* by precomputing a look-up table of
solutions. This is necessary because traditional heuristic
functions such as Euclidean distance often produce poor
performance for certain problems. In this case, the
technique is applied to the state lattice, which is used for
full state space motion planning. However, the approach
is applicable to many applications of heuristic search
algorithms. The look-up table is demonstrated to be
feasible to generate and store. A principled technique is
presented for selecting which queries belong in the table.
Finally, the results are validated through testing on a
variety of path planning problems.

Index Terms – motion planning, state lattice, heuristic,

nonholonomic, mobile robot

I. INTRODUCTION

The state lattice planner [1] efficiently encapsulates
vehicle constraints such that they need not be considered
during planning. The state lattice is a graph constructed from
edges that represent continuous motions connecting discrete
state space nodes. The control set which corresponds to these
edges is generated according to the dynamic constraints of a
particular vehicle.

A. Motivation
The state lattice planner derives its efficiency from

several sources. First, infeasible motions are culled out prior
to the search process. Second, the graph structure of the
search space allows for elimination of redundant search steps.

Additionally, a heuristic search algorithm such as A* is
needed in order to efficiently find the best path between start
and goal (known as a query). Such algorithms require a
heuristic cost estimate function, which estimates the true cost
of a path. Planning performance depends on the quality of the
heuristic. For some graph search problems, a simple function
such as Euclidean distance is adequate.

However, no good closed-form heuristic for the state
lattice is known. This is a hard problem because the planner
operates in full state space, taking into account a vehicle’s
differential constraints. The Euclidean distance function has

no knowledge of vehicle capabilities, and is thus poor
heuristic because it underestimates actual path cost by
violating differential constraints. Consequently, some of the
most difficult queries to solve put the start and goal are in
close proximity but misaligned, so that much maneuvering is
necessary. The classic example of this situation is parallel
parking. Another such example is shown in Figure 1.

Figure 1: A Difficult Search Problem. When planning in
full configuration space on a vehicle with dynamic
constraints, Euclidean distance is a poor indicator of resulting
path length. Here, an Ackerman-steered vehicle is asked to
move sideways and turn around. The length of the solution
path is approximately forty times what a Euclidean heuristic
would estimate.

B. Problem Statement
Given ample computational resources, a straightforward

and effective way to predict path cost is to pre-compute and
store the actual costs that the planner will need, using the
planner itself. Such a Heuristic Look-Up Table (HLUT) can
be imagined as a large multi-dimensional array of real-valued
query costs. Assuming that such a table could be generated,
the invocation of the heuristic function becomes a simple table
dereference. Like other heuristic cost functions, the HLUT
cannot take into account obstacles or other terrain variation
when precomputing queries. Since it is implausible to encode
all possible worlds in a table, an obstacle-free policy must be
assumed instead. For simplicity, the HLUT discussed here is
designed for an Ackerman-steered vehicle. The techniques
are applicable to any control set for any type of vehicle with
any kind of constraints, but the need for the look-up table is
much reduced in some problems. Below, the issues of
generating, storing and using the HLUT for practical planning
problems are explored.

C. Prior Work
An early approach to robot navigation applied gradient

descent to a potential function in which the goal is a global
minimum and hazards are represented by local maxima.
Many such potential functions were explored, but most proved
incomplete due to the problem of local minima. In [5], it was
demonstrated that a potential function free of local minima,
known as a navigation function, could be constructed. The
HLUT is an example of such a navigation function.

Another approach to navigation involves the
discretization of space so that search in the continuum can be
approximated via graph search. Graph search, including
heuristic search methods, has been thoroughly studied by the
artificial intelligence community. The concept that a search
could guarantee an optimal result while doing less work than a
brute force search was introduced in [3], with the A*
algorithm. Many variations on that theme have since been
proposed. The connection between heuristics accuracy and
efficient search has long been known. Only in recent years
however has the effect of the heuristic on search complexity
been understood in detail, described in works such as [7]. The
problem of specifying an effective, admissible heuristic
function remains a challenge, and most good heuristics are
application-specific. Perhaps the most significant advance in
heuristic search during the last decade was the concept of the
pattern database, described in [1]. The pattern database is a
look-up table indexed by a subset of the state and containing a
precomputed heuristic value that reflects the cost of solving
the corresponding subproblem. Many enhancements to
pattern databases were proposed, including [2], [4], and [6],
which each describe methods of combining multiple pattern
databases to improve performance. Each of these works
discusses heuristic search in the context of combinatorial
puzzles like the Fifteen Puzzle and Rubik’s Cube. Such
problems have an intractably large but finite search space.

Reference [8] introduces the state lattice, which is an
enhancement of discretized robot planning via graph search.
That paper first introduced the HLUT, which is a type of
pattern database in which the table is indexed by the full state.
Unlike the problems that ushered in the pattern database
however, the state lattice is infinite in extent, yet it can be
represented effectively by a finite look-up table.

II. CONSTRUCTING THE HEURISTIC LOOK-UP TABLE

The lattice planner accommodates differential constraints,
resulting in increased path complexity. In this environment,
Euclidean distance proved a poor heuristic. The need for
more effective heuristics was the impetus for this work.

The notion of an HLUT suggests several design
considerations, including: the utility of a table of reasonable
size; the amount of time required to generate it; and the policy
for handling heuristic queries that are not in the table.

Figure 2: Symmetries of the State Lattice. Many different
lattice edges and combinations of edges are equivalent under
a small set of transformations. Exploitation of these
properties dramatically reduces the total size of the HLUT.
Symmetries shown from left to right: translation, rotation, and
reflection. A. Space

The issue of limited memory can be addressed in most
cases merely by exploiting symmetries in the lattice control set
to eliminate duplicate information. Those symmetries include
translation, rotation, and reflection (Figure 2). Because the
discretization of the lattice is regular in position, all queries
can be treated as if they originate from the origin. Only a
subset of possible initial headings needs to be generated. For
example, if the control set exhibits 8-axis symmetry, it is
sufficient to precompute only 1/8th + 1 discrete initial
headings. Finally, many goal states are redundant. For
instance, with an initial heading of zero, there is symmetry
about the x-axis. With all of these massive space savings, a
useable size HLUT can be stored in 200,000 entries,
consuming perhaps 2.5MB, approximately 0.001% of the size
before symmetry is considered.

B. Time
To generate such a table requires solving many A*

queries. An average A* lattice planning query with the
Euclidean distance heuristic takes about 0.2 seconds on
average (much more in the worst case), so generating 200,000
entries by the most naïve method would require more than ten
hours. Fortunately, several properties of A* allow the table to
be populated much more efficiently. When a search is
performed, much more can be learned about the graph than
just the final path length. Every time a state is expanded and
put on A*’s CLOSED list, the lowest cost path to that state is
known from each state along the path, so several more optimal
query costs can be inserted into the HLUT. Secondarily, it is
wasteful to delete the A* lists and start from scratch between
queries, as these lists contain valuable data. The CLOSED list
can be reused as-is, but the OPEN list is sorted according to
distance estimates to the old goal state. Depending on the size
of the OPEN list, it may be cheaper to delete it and begin
anew or to recompute each estimate according to the new goal
location. For a particular implementation, this cut-off was
found to occur at approximately 150,000 OPEN states, so that
several queries can be processed in a row before the lists need
to be expunged. Finally, the order in which queries are
populated in the HLUT has a significant effect, because the
exact solutions of earlier queries can be used as a heuristic in
later queries. The issue of population of the table is
considered below.

C. Inclusion of Queries for the Table
The look-up table cannot be infinite in size. Therefore,

some queries will occur for which no entry exists in the table.
An alternate backup heuristic such as Euclidean distance
must, of course, already be in use for purposes of generating
the HLUT. It can also be used to satisfy queries missing from
the table during planning. Doing so is easily justified by the
fact that the Euclidean heuristic gives better approximations
on more distant queries (Figure 3).

When generating the table, there must be some
termination condition. Such a condition should be automatic,
principled, and tunable according to the needs of various
applications. This issue really breaks down into two separate
questions. First, which queries should be included or
excluded? Second, how many entries should be included?

To answer the first question, it is helpful to define the
trim ratio as the ratio of the backup heuristic’s estimate for a
particular query to the true path cost which the HLUT would
include for that query. There are two considerations for
including a particular entry in the HLUT. As described in [4],
it is more important to avoid low heuristic estimates than to
retain large ones. Thus, queries with low trim ratios should be
included because the backup heuristic does a poor job of
estimating them (hence, they should be “trimmed” last.).
Secondly, frequently needed queries should be included for
the sake of efficiency, since failing over to the backup
heuristic results in additional processing. Figure 5 shows trim

ratios in a slice of the HLUT where initial and final headings
are zero for each query. Note that paths into dark regions (of
low trim ratio) would correspond to compositions of
maneuvers that result in ultimate sideways motion. These are
the queries whose costs are most valuable to have stored in the
HLUT.

Figure 3: Euclidean Distance is a Good Approximation
for Distant Queries. As two states are separated by a greater
distance, parameters like curvature and heading have an
increasingly insignificant effect on the overall path length.

III. POPULATING THE HEURISTIC LOOK-UP TABLE

When performing A* searches to populate the look-up
table, an important consideration is the order in which queries
are performed. Ordering affects the ultimate selection of
queries due to the inclusion of all states on the CLOSED list.
In addition, the ability to reuse previously computed state
varies considerably with ordering of queries. Three different
approaches to HLUT population are considered here.

The simplest method of look-up table population is the
naïve approach, which iterates through each entry in the table
in a raster-scan fashion. The result of A* when run on each
query is inserted in order. This is the slowest of the methods
that were tested. It does not share significant state between
sequential queries, and the most difficult queries are presented
to the planner first, when no HLUT data have yet been built
up to improve performance.

Parts of the table can be populated much faster by the use
of Dijkstra’s algorithm. In this approach, the search is run in
such a way that the next node expanded in the graph is always
the unexpanded node closest in cost to zero. This algorithm
very quickly populates many HLUT entries, but those states
are the easiest ones to reach, meaning that they generally have
higher trim levels (Figure 4). This method produces queries
that are monotone in distance from the start, but queries that
are monotone in trim ratio are preferred, as discussed above.
The Dijkstra’s search can be terminated at an arbitrary time.

The horizon method is more principled in that it selects
first those queries with the lowest trim levels. This algorithm
maintains a HORIZON list of queries sorted by trim level,
similar to the way in which A*’s OPEN list is sorted by cost.
The HORIZON list is initially populated with queries in
which both states are at the origin in every combination of
initial and final heading (because these are the most difficult
queries). Each is assigned a trim ratio of 0.0, since that is the
Euclidean distance between overlapping points in a plane.
During each iteration, the lowest-valued query is popped from
the HORIZON list and presented to A*. Each neighboring
state in the x,y-plane (with the same orientation) is considered
a child of the popped state. Each child state is pushed onto the
HORIZON list and sorted according to its parent’s trim ratio.
The ratio of the parent state is used since the exact cost of the

Figure 5: Visualization of HLUT. This cross-section of an
example 4D HLUT shows a slice of paths from the origin to
various x, y positions in which θ0=θf =0. Brightness represents
trim ratio, the ratio of Euclidean distance / nonholonomic path
length. Dark regions correspond to low ratios.

Figure 4: Populating the HLUT Using Dijkstra’s
Algorithm. Expansion of the lowest cost unexpanded state in
the tree is an efficient way of finding the shortest distance to
many states at once.

Trim ratio HLUT entries Generation time
(mm:ss)

0.6 202,338 01:15

0.7 365,345 03:28

0.8 648,877 13:33
Table 1: Generating the HLUT. Through a combination
of techniques, sizeable heuristic look-up tables can be
generated efficiently. The runs shown here were
performed on a 3 GHz Pentium 4.

query is required to compute trim ratio, and that is not yet
known for the child. The horizon algorithm terminates when
a desired trim level is reached. The process is depicted
graphically in Figure 6; note that symmetry can be considered
to speed up the algorithm. In order for this method to find all
states below a given trim level, it must be possible to draw a
path outward from the origin through an arbitrary state such
that the trim ratio increases monotonically along the path
(Figure 7). Horizon is a faster algorithm than the naïve
approach because it makes better use of precomputed state,
but it is slower than Dijkstra’s algorithm because it requires
A* list resets.

The Dijkstra’s search algorithms may leave gaps in the
HLUT, as shown in Figure 4, while the two slower
techniques produce dense results. A gap occurs in the table
when an entry is absent but is surrounded by neighboring
entries that are included. Gaps are undesirable because they
result in less predictable search time among potential A*
queries using the heuristic. Furthermore, a major
underestimate resulting from falling back to a backup heuristic
due to a gap causes a false lead for A*, which then expends a
lot of unnecessary search time.

In order to populate the HLUT quickly while retaining

desired properties, a combination of methods can be used.
First, Dijkstra’s algorithm fills in the majority of the HLUT.
Then the gaps are filled in using the horizon method. In this
case, the horizon method skips over those queries that were
previously filled in to avoid duplication of effort.

0.2
0.3

0.4

0.5
0.6

0.2
0.3

0.4

0.5
0.6

Figure 6: Growth of HLUT in the Horizon Method. As
the HORIZON grows outward, queries of higher trim ratio
are incorporated into the HLUT.

Taken together, these techniques are remarkably efficient.
Table 1 shows computation time required to generate several
different sizes of HLUT on an ordinary desktop computer.
Each size look-up table was produced by performing
Dijkstra’s algorithm out to some size (ranging from 70 to 90
cells depending on the desired trim ratio), and then running
the horizon algorithm to fill in the gaps.

IV. BENCHMARKING THE HEURISTIC LOOK-UP TABLE

Thus far, the HLUT has been discussed in theoretical
terms. The remainder of this paper is devoted to an
examination of more practical considerations. Several points
are demonstrated empirically through extensive testing. First,
the HLUT produces a speedup in the state lattice when
compared to other heuristics. Second, there is an optimal
HLUT size when considering trade-offs such as memory and
processor time.

A. Experimental Setup
A representative lattice control set was used in all tests.

Its state space consisted of the 2D translational coordinates,
heading and curvature (x, y, θ, and κ). For the sake of
simplicity, curvature was constrained to be zero at each
discrete state. This control set is depicted in Figure 8.

For these tests, a list of 10,000 random queries was
generated, consisting of an initial and final state, also
expressed as position, heading, and curvature. The set of
queries was generated with the intent to require the planner to
produce paths ranging from simple (nearly straight) to
complex (e.g. parallel parking or n-point turn maneuvers)
among obstacles. Each query was tested with a variety of
configurations, including different obstacle fields and various
start-goal relationships. Metrics for performance included
time and memory consumption.

Start and goal states were produced with a random
number generator that provides evenly distributed real values
in a requested range. Initial positions were selected at random
from the free space in order to produce the maximum possible
variety of queries. The goal position was then specified by a
randomly selected radius and angle specified in polar

Figure 7: Monotonicity of Trim Level. Several example
paths are shown in the x,y-plane, which are monotonic in trim
level. Every point in the plane must have at least one such
path that passes through it in order for the horizon algorithm
to populate the HLUT with all queries below a certain trim
level.

Figure 9: World with Obstacles. A portion of the world
with point obstacles used in the experiments is shown here.
The size of the vehicle is shown for scale.

coordinates with respect to the start, repeating this step as
necessary to ensure that the goal is also in the free space.
Initial and final headings were randomly selected, and
curvature at end-points was constrained to be zero. Goal states
were constrained to be no more than ten minimum turning
radii (80 cells) from their corresponding start states when
projected onto x, y space.

Each query was tested in two worlds. In both worlds,
cost to traverse free space was held constant at 1 unit per cell
of free space. Hence, path cost was equal to the distance
traveled. The baseline case was an obstacle-free world,
meaning that the HLUT was a perfect heuristic. Results were
also obtained using a world with randomly placed point
obstacles, shown in Figure 9 with paths generated by two
different planners. These obstacles are the size of one map
cell, which in this control set corresponds to 1/8th of the
minimum turning radius. Points were generated with uniform
distribution and 5% density in the plane.

B. Performance
When comparing heuristic performance, it is important to

compare problems of similar complexity. In order to quantify

the complexity of a particular query, the distinction is made
between absolute difficulty, which is proportional to path
length, and relative difficulty, which reflects how much the
resulting path deviates from a straight line. Figure 10
illustrates the two concepts. Both factors contribute to the
overall resource requirements for a particular planning
problem. Absolute difficulty is measured here by the path
length. In the case of relative difficulty, the ratio of Euclidean
distance / nonholonomic distance was used. In this scale,
values near one indicate that the resulting path is nearly a
straight line, while those values nearest to zero indicate that
much maneuvering is necessary to reach the final pose. In the
analysis below, results are shown for queries with absolute
difficulty of 40 cells. This number was chosen arbitrarily for
clarity of presentation. Any other absolute difficulty would
have conveyed similar results.

Figure 8: Lattice Control Set Used in Experiments. The
state lattice control set selected for testing has 16 discrete
headings, a maximum curvature of 1/8 of cell, and an average
outdegree of 12, for a total of 192 curves. The straight edges
cannot be seen because they are obscured by the longer
curved edges.

A performance breakdown of the HLUT versus Euclidean
distance heuristic is shown in Figure 12. Across the entire
range of relative difficulty (the straightness of the solution
path), the HLUT outperforms the simpler heuristic. It may
seem counterintuitive that performance for the HLUT is best
on those problems which are considered the hardest. This
phenomenon is explained by the fact that the control set’s
straighter edges are shorter than the very curvy edges – a
situation which naturally arises from the control set generation
process described in [1]. In each query, the search using the
HLUT performs no more expansions than are necessary, but
more expansions are needed with the straighter paths. Since
these expansions are compulsory, searches with the HLUT
must be at least as fast as Euclidean in every case.

C. Sizing
The heuristic look-up table has been shown to have some

benefits over simple heuristics, but that experiment relied on
mately 2.3 million entries consuming

over 28MB. This table was generated by first using Dijkstra’s
method to a distance of 100 cells, followed by the horizon
method with a trim ratio of 0.9. Even though this amount of
memory is insignificant by today’s standards, it would be
desirable to devote fewer resources to the heuristic function if
possible. Therefore, the impact on the planner of using
smaller HLUTs was examined.

an HLUT with approxi

There is a basic trade-off involving HLUT size, which is
defined according to its backup heuristic (Euclidean distance).
An HLUT with maximum trim ratio of 0.0 is tantamount to a

A
B C

O

A
B C

O

Figure 10: Absolute and Relative Query Difficulty. The
difficulty of a query can be quantified in two dimensions.
Each path, A, B, and C, starts at O. Query A is high in
absolute difficulty as well as relative difficulty because it is
long and has multiple cusps. B is simple in both measures.
Query C has the same absolute difficulty as A (same length),
but the same relative difficulty as B (nearly a straight line).

Figure 12: Performance Comparison of Heuristics. The
HLUT consistently outperforms the Euclidean heuristic across
all types of queries. The improvement varies from 2 to 1000x.

simple Euclidean distance heuristic function, which we have
seen to perform poorly on many lattice queries because it
performs unnecessary A* expansion steps. Conversely, if the
HLUT is very large, few expansions are performed at the
expense of increased demands for memory to store the HLUT
itself. The ideal HLUT is large enough to solve queries
efficiently without being so large that gains in memory saved
in exploration are consumed by a monstrous HLUT.

The effect of trim level on average processor requirement
can be observed by aggregating all queries for a given trim
level and examining the effect of varying the HLUT size on
CPU consumption. In Figure 13, the effect of trim level on
computation time is shown. There is a clear knee in the
curves both with and without obstacles, which occurs at trim
level 0.8, corresponding to an HLUT size of approximately
2.5MB.

In Figure 11, the same data are examined from the
perspective of memory usage. Here it is apparent that there is
a trade-off between the amounts of memory consumed by the
HLUT and because of the graph search itself. Once again, the
optimal size is a trim level of 0.8.

When using this new look-up table as a heuristic rather
than the original one (which was ten times larger), the
reduction in performance of the planner was shown to be quite
insignificant, since only large-trim-ratio queries were
removed. The size of the HLUT can be easily tuned as
desired for any application, simply by selecting the desired
trim ratio.

V. CONCLUSIONS

The state lattice combined with a heuristic look-up table
has been shown to be an efficient means of generating path
plans in full configuration space. The look-up table can be
generated efficiently, and a useful HLUT can easily within the
size of modern computer memory. Using the concept of trim
ratio, entries in the HLUT may be selected for inclusion in a
principled manner. This notion provides a useful knob for
adjusting the trade-off between performance and space
savings. While an HLUT is generated with respect to a
particular vehicle’s control set, the techniques are generally
applicable to the creation of heuristic functions for A*.

ACKNOWLEDGMENT

This research was conducted at the Robotics Institute of
Carnegie Mellon University under contract to NASA/JPL as
part of the Mars Technology Program.

REFERENCES
[1] Culberson, J.C., and J. Schaeffer, “Pattern Databases,” Computational

Intelligence, Vol. 14, No. 3, pp. 318-334, 1998.
[2] Felner, A., et al., “Compressing Pattern Databases,” National

Conference on Artificial Intelligence, 2004.
[3] Hart, P.E., N.J. Nilsson, and B. Raphael, “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, Vol. SSC-4, No. 2, July 1968.

[4] Holte, R.C., et al., “Multiple Pattern Databases,” International
Conference on Automated Planning and Scheduling, 2004.

[5] Koditschek, D.E., “Exact Robot Navigation by Means of Potential
Functions: Some Topological Considerations,” International Conference
on Robotics and Automation, 1987.

[6] Korf, R.E., and A. Felner, “Disjoint Pattern Database Heuristics,”
Artificial Intelligence, Vol. 134, Issues 1-2, pp. 9-22, January 2002.

[7] Korf, R.E., and M. Reid, “Complexity Analysis of Admissible Heuristic
Search,” National Conference on Artificial Intelligence, 1998.

[8] Pivtoraiko, M., and A. Kelly, “Efficient Constrained Path Planning Via
Search in State Lattices,” International Symposium on Artificial
Intelligence, Robotics, and Automation in Space, 2005.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

HLUT Size (MBytes)

T
ot

al
 M

em
or

y
U

sa
ge

 (M
B

yt
es

)

0% Obstacle Density
5% Obstacle Density

0.8

0.9

1.0

0.7

Figure 11: Memory Comparison of HLUT Sizes. Upper
trim levels are annotated. Memory consumption varies with
HLUT size, but a minimum occurs at trim level 0.8.

0 .0 0 0 1

0 .0 0 1

0 .0 1

0 .1

1

0 0 .2 0 .4 0 .6 0 .8 1

R e lativ e D iffic ulty (R atio o f E uc lide an / N H D is tanc e)

T
im

e
(s

ec
)

E uc lide an H e uris tic
H L U T H e uris tic

0 .0 0 0 1

0 .0 0 1

0 1

0 .1

1

0 0 .2 0 .4 0 .6 0 .8 1

R e lativ e D iffic ulty (R atio o f E uc lide an / N H D is tanc e)

T
im

e
(s

ec
)

0 .

E uc lide an H e uris tic
H L U T H e uris tic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30

HLUT Size (MBytes)

T
im

e
(s

ec
)

0% Obstacle Density
5% Obstacle Density

0.9

1.0

0.8

0.7

Figure 13: Time Comparison of HLUT Sizes. Upper trim
levels are annotated. A* search time varies inversely with
HLUT size, but there is a clear knee to the curve, with limited
gains at trim levels above 0.8.

	Introduction
	Motivation
	Problem Statement
	Prior Work

	Constructing the Heuristic Look-Up Table
	Space
	Time
	Inclusion of Queries for the Table

	Populating the Heuristic Look-Up Table
	Benchmarking the Heuristic Look-Up Table
	Experimental Setup
	Performance
	Sizing

	Conclusions
	Acknowledgment
	References

