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Abstract—State-of-the-art social robot navigation algorithms
often lack a thorough experimental validation in human en-
vironments: simulated evaluations are often conducted under
unrealistically strong assumptions that prohibit deployment in
real world environments; experimental demonstrations that are
limited in sample size do not provide adequate evidence regarding
the user experience and the robot behavior; field studies may
suffer from the noise imposed by uncontrollable factors from the
environment; controlled lab experiments often fail to properly
enforce challenging interaction settings. This paper contributes a
first step towards addressing the outlined gaps in the literature.
We present an original experiment, designed to test the implicit
interaction between a mobile robot and a group of navigating
human participants, under challenging settings in a controlled lab
environment. We conducted a large-scale, within-subjects design
study with 105 participants, exposed to three different conditions,
corresponding to three distinct navigation strategies, executed
by a telepresence robot (two autonomous, one teleoperated). We
analyzed observed human and robot trajectories, under close
interaction settings and participants’ impressions regarding the
robot’s behavior. Key findings, extracted from a comparative
statistical analysis include: (1) evidence that human acceleration
is lower when navigating around an autonomous robot compared
to a teleoperated one; (2) the lack of evidence to support the
conventional expectation that teleoperation would be humans’
preferred strategy. To the best of our knowledge, our study is
unique in terms of goals, settings, thoroughness of evaluation and
sample size.

Index Terms—Navigation; Motion Planning; Social Robotics.

I. INTRODUCTION

State-of-the-art autonomous navigation frameworks have
been shown to achieve impressive benchmarks in simulation
and to exhibit competent behaviors in experimental demonstra-
tions, field studies, and lab experiments. However, their valida-
tion is often not sufficiently rigorous and in-depth. Simulated
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Fig. 1: This study examines the performance of autonomous robot
navigation algorithms in crowded pedestrian spaces.

evaluations are inevitably conducted under strong assumptions
on the type of the environment, the context, and the type of
behavior exhibited by other agents; thus addressing the reality
gap problem is not a trivial extension. Experimental demon-
strations contribute a significant step towards deployment to
the real world but lack a significant sample size of repeated
interaction with human users and thus statistical power. Large-
scale field studies are an important step in the validation
process of any robotic system as they may provide evidence
of robust performance under challenging settings. Nonetheless,
the noise induced by the frequently massive complexity of a



real-world environment may prohibit the extraction of concrete
conclusions about the performance of the robot and the user
experience. Lab studies may definitely isolate the system from
external variables and enable rigorous testing of the desired
conditions. However, designing an experiment that will isolate
the desired nontrivial interaction between a target system
and human participants is a not an easy task and it may
often be observed that lab experiments with mobile robots
do not test a challenging type of setting. Finally, ensuring
the repeatability of the performance of an autonomous robotic
system, exposed to close interaction with humans is also not
a trivial task and often requires frequent maintenance and
high costs. Thus, to approach interesting research questions
without the complication of exhaustively testing the autonomy
of the platform, a significant amount of research considers
only Wizard of Oz experiments [33]. While the findings of
such experiments are often of great significance regarding the
human-robot interaction, they inevitably leave a gap in the
validation of the autonomy itself.

A. Contributions

In this paper, we contribute a step towards addressing the
outlined gap in the validation process of social navigation plan-
ning algorithms. We present an original experiment design,
constructed to enforce naturally a series of challenging implicit
interactions between a mobile robot and a group of human
participants that navigate in a shared workspace in a controlled
lab environment. A simple background scenario serves as a
driving force towards interesting, nontrivial interactions but
also as a way to cognitively load and distract human subjects
from the goal of the experiment. We conducted an extensive,
large-scale (N = 105), within-subjects user study in which we
recorded 945 minutes of interaction between a mobile robot
and human subjects (3 at a time). Participants are exposed to
a set of three distinct robot navigation strategies, executed by
a telepresence robot platform. We considered two autonomous
navigation strategies and a teleoperated condition in which a
human teleoperates the robot.

We collected human and robot trajectory data, recorded
by an overhead motion capture system, and responses to a
questionnaire designed to assess participants’ impressions of
the robot’s intelligence, social compliance, and safety. We
performed comparative statistical analyses on the collected
datasets and report the results. Key findings, extracted by
focusing on the close interactions (distance < 1m) between the
robot and human subjects include the following: (1) human ac-
celerations are significantly lower around an autonomous robot
executing Social Momentum [29] than around a teleoperated
one; (2) contrary to our expectations, we found no evidence
to support the hypothesis that humans prefer the human-
teleoperated navigation strategy—in fact humans did not dis-
tinguish between conditions in their ratings; (3) teleoperated
motion that follows the same high-level rules as autonomy
results in lower topological complexity [8] than autonomy, an
observation potentially reflecting the more global character of
human decision making for navigation tasks.

II. RELATED WORK

Social robot navigation constitutes a significant thrust of
human-robot interaction research over the past few decades
[24, 37, 6]. Particular emphasis has been placed on the design
of autonomous socially aware navigation planning algorithms
and on the study of the interaction between navigating robots
and humans. Researchers have been inspired by the mecha-
nisms underlying human navigation [45] and general human
behavior in public spaces [11, 13]. This has led to the adoption
of theory, models and methods from the field of cognitive
science [30], psychology [44], sociology [45] and human-robot
interaction [22] into the design and evaluation of proposed
navigation frameworks. However, the complexity and cost
of building and testing an autonomous robotic system often
prohibits a systematic and thorough experimental validation of
navigation frameworks. This section presents a classification
of state-of-the-art approaches with respect to their type of
validation.

A. Simulation Studies

Recent advances in the fields of graphics [15, 42, 17]
and crowd dynamics [14, 16] were based on physics-inspired
models of the interactions among multiple navigating agents:
socially compliant and humanlike motion is generated as
the result of multiple interacting potential fields, representing
agents’ objectives and intentions. This foundational idea has
set the conceptual basis behind the design of a number of
approaches in the field of social robot navigation.

Luber et al. [25] learn a set of dynamic navigation pro-
totypes from a human trajectory dataset and use them for
trajectory prediction and generation. They demonstrate the
performance of their planner with respect to the efficiency
and humanlikeness of generated paths on 182 scenarios of
the same dataset and show how it outperforms a rule-based,
proxemics-theory enforcing baseline. Vasquez et al. [43] learn
a cost function to represent the dynamics of social navigation
by training on a dataset extracted by teleoperating a robot in
different real-world scenarios. They evaluate the ability of their
learned model to reproduce trajectories of social compliance,
modeled as a composite score of cost functions representing
human comfort. Mavrogiannis et al. [28] learn a model that
predicts the unfolding multi-agent trajectory topology [26, 27]
in a crowded scene and use it to generate intent-expressive
robot behaviors. Their approach is shown to simplify in-
ference and decision making for co-present, heterogeneous
agents in challenging simulated scenarios. An extension of
their work, the Social Momentum planning framework [29] is
shown to outperform two other baselines in terms of motion
expressiveness, according to an online, video-based user study
with 180 human participants. Finally, Bera et al. [5] make
use of concepts from Personality Trait theory to classify the
behavior of pedestrians towards informing their motion models
and a robot’s path planning. Simulation results demonstrate
improved trajectory prediction and more socially compliant
on a number of human datasets.



B. Experimental Demonstrations

A number of works have presented important experimental
demonstrations in human environments to validate their ap-
proaches. Althaus et al. [2] focus on the problem of social
engagement. They build a robot designed to approach humans
and engage in a conversation with them. They present control
laws for approaching a person and maintaining a socially
acceptable distance. A recorded experiment with three par-
ticipants demonstrates the efficacy of their approach. Sisbot
et al. [35] presents a cost-based planner that considers a
set of social heuristics at the planning stage to generate
motion that is visible and safe around humans. A series
of documented interactions between the robot and a human
in a lab environment demonstrate the capabilities of the
framework. Park et al. [32] build an automated wheelchair
and design a model-predictive control law for smooth motion
generation in crowded environments. Their approach treats
humans as dynamic obstacles and focuses on avoiding them
smoothly. They test their framework in an indoor environment
and report a set of successful collision avoidance processes
under crowded settings. Kretzschmar et al. [23] employ an
inverse reinforcement learning approach to learn the social
components of human navigation by training on an hour-
long lab dataset of four navigating humans and on a public
dataset on a crowded scene. They deploy the model on a
robotic wheelchair that is able to navigate socially next to
navigating humans in a narrow hallway. Finally, Chen et al.
[7] present a deep reinforcement learning approach to learn
social norms (passing from the right-hand side and overtaking
on the left) from a synthetic, simulated dataset. They report an
experimental demo, run in a large, crowded academic building.

C. Experimental Studies

A significant body of work has employed field studies in
crowded environments such as museums, malls or academic
hallways. Thrun et al. [38] present a tour-guide robot equipped
with a set of probabilistic algorithms for mapping, local-
ization, people-tracking, and planning. The robot interacted
successfully with thousands of visitors for two weeks in a
busy museum. The authors present a comprehensive report
of the robot’s log and a classification of observed types of
interaction between the robot and visitors. Bennewitz et al.
[4] cluster a dataset of observed human trajectories into a set
of classes and use it for on-line prediction on a robot. A series
of 10 experiments indicates increased time-efficiency resulting
from their approach, compared to a linear prediction baseline.
Pacchierotti et al. [31] implement and test a proxemics-based
control framework on an autonomous robot through a user
study, conducted in a corridor. A total of 10 participants were
exposed to three different conditions corresponding to the
robot passing next to them with a different lateral distance each
time. Users’ ratings showed that humans felt uncomfortable
when the robot was closer to them. Foka and Trahanias
[9] present a probabilistic algorithm that makes predictions
about future human paths to plan collision-free motion. They
report logs and performance aspects upon running the robot

for 70 hours in an indoor academic building. Kirby et al.
[21] present a constrained optimization-based algorithm that
incorporates a series of social conventions, such as passing-
side conventions and respect of humans’ personal space into
the robot’s decision making. A user study involving 27 human
subjects navigating alongside a robot in an academic hallway
demonstrated evidence that humans interpret the robot’s be-
havior as socially appropriate [20]. Shiomi et al. [34] present
a planner, based on the social force model [14] for generating
humanlike collision avoidance navigation behaviors. A 4-hour
field study in a shopping mall demonstrated that the proposed
approach achieves safer and more comfortable interaction than
a baseline. Trautman et al. [40] present a navigation framework
that explicitly incorporates the assumption of human coopera-
tion into their learned trajectory prediction model to enable a
robot to navigate among dense human crowds. They report the
performance of a real robot in terms of safety and efficiency
in a large-scale field study (488 runs), conducted in a crowded
cafeteria. Kato et al. [18] learn a model of human intent
inference to generate social approaching navigation behaviors.
They test their approach on a humanlike robot employee
in a crowded mall and record interactions with 130 people,
suggesting that a compromise between proactive and passive
approaching behavior is preferred by humans. Kim and Pineau
[19] learn a model of socially compliant robot motion from
human demonstrations and robot teleoperations in crowded
environments. They test their approach on a robotic wheelchair
in a crowded hallway and report humanlike and efficient per-
formance in 10 field runs. Truong and Ngo [41] fuse elements
of the social force model [14] and the Reciprocal Velocity
Obstacle model [42] to generate socially aware robot motion
in crowded scenes. Examples from experiments, conducted in
an office environment demonstrate smooth operation against
static or moving obstacles.

III. USER STUDY

In this paper we present an IRB-approved (approval code:
1805008009) lab study, focused on the evaluation of a set
of distinct robot navigation algorithms with respect to social
compliance. The lab environment allows us to have significant
control over variables that can interfere with the experimental
setting. We leverage this level of control to enforce challenging
navigation behaviors in a natural fashion through the design
of an original experiment scenario and task.

We enforce a setting of implicit, nonverbal social engage-
ment among agents, similar to the type of interaction among
walking pedestrians so that we can study phenomena involv-
ing collaborative collision avoidance processes, as observed
by Wolfinger [45]. Furthermore, we construct a moderately
crowded scene that balances close interactions with space for
the robot to showcase its distinct navigation strategies (see
Fig. 1). We also ensure the emergence of nontrivial inter-
actions, involving challenging collision-avoidance maneuvers
between participants and the robot through the definition of
rules. Moreover, we motivate natural walking behaviors by
not disclosing the real purpose of the study until the debriefing



(a) Robot. (b) Easel.

(c) Construction helmets with trackers, sticky notes, and markers.
Fig. 2: Study apparatus: Beam Pro robot [1] (Fig. 2a); an easel,
representing a machine with sticky notes, representing completed
maintenance tasks (Fig. 2b); tracking helmets, sticky notes and
markers distributed to participants (Fig. 2c).

process and by increasing participants’ cognitive load through
the background scenario and task. Finally, we consider three
conditions and keep the total duration less than thirty minutes
to facilitate recruiting and minimize potential effects resulting
from participants’ fatigue.

A. General Experiment Procedure

Our study is organized into a set of experiment sessions.
In each session, three different human subjects participate

Fig. 3: Top view of the workspace along with example human and
robot trajectories, corresponding to transitions between easels (blue
objects).

in a set of three experiment trials. Before the first trial,
participants are asked to give written consent to confirm their
participation and optionally to be video recorded. A member
of our research team delivers the instructions and answers
questions. During each trial, participants repeatedly visit a
set of stations inside a rectangular workspace of area 16m2

(see Fig. 3), driven by a fictional scenario. In parallel, a
mobile robot (a Suitable Technologies Beam Pro, equipped
with a quad core i7 processor laptop from 2017), shown in
Fig. 2a, also moves between the stations. During each trial, the
human and robot trajectories are tracked and recorded through
an overhead motion capture system of six high-accuracy
(< 1 mm), high-fidelity (frequency 180 Hz) cameras and
videotaped if participants gave consent. Real-time tracking was
enabled through the use of construction helmets (see Fig. 2a,
Fig. 2c) with reflective markers. After each trial, participants
are asked to fill in a questionnaire, containing questions about
their impressions from their interactions with the robot. At
the end, participants are asked to provide basic demographic
data and information regarding their prior experience with
user studies and robotics technology. Participants are then
debriefed, compensated and dismissed.

B. Background Scenario and Task Description

Participants are asked to imagine that they are workers
in a factory (the factory setting helps justify the tracking
helmets) and the robot is a supervisor. The factory environment
(lab workspace) contains six machines, represented as easels
(see Fig. 2b), spread around the workspace, as shown in
Fig. 3. Each worker is given a distinctly colored marker
and a contrasting, distinctly colored set of sticky notes (see
Fig. 2c). The duty of a worker is to perform maintenance tasks
to machines and assign tasks for other workers to perform.
Assigning a task is done by drawing a square on the pad
of an easel, whereas performing a task is done by posting a
sticky note inside a square drawn on an easel pad (see Fig. 2b).
Participants are asked to perform only tasks represented with



squares of color that matches the color of their sticky notes.

C. Trial Description

Before the start of each trial, participants are randomly
positioned next to different machines and the robot is placed
in the middle of the workspace, as shown in Fig. 3. A trial
is organized into a set of maintenance cycles, initiated by a
gong sound, played by the robot. Each time the gong is played,
participants are instructed to leave their machines towards a
non-adjacent machine of their choosing. Each time participants
reach a new machine, they are instructed to perform up to
one pre-assigned task (if one exists) and assign a new task.
At the same time, the robot is navigating in the workspace
by following the same rules of transitioning between stations,
i.e. it only moves to a randomly picked, non-adjacent machine
when the gong sound is played. For synchronization purposes,
the gong sound is played when the robot is ready to move
towards its next machine. Each trial lasts exactly three minutes,
during which an ambient factory sound track is played.

D. Conditions

All participants were exposed to the same three conditions
(within-subjects design), each corresponding to a different
navigation strategy, executed by the robot. To account for
potential ordering effects (i.e., due to fatigue, frustration,
learning), the condition order was methodically varied and
approximately equally spread across all sessions. The selected
set of navigation strategies consists of Optimal Reciprocal
Collision Avoidance (ORCA) [42], Social Momentum (SM)
[29]) and teleoperation (TE). These strategies were mainly
selected due to the diversity of decision making principles
that they represent, i.e., ORCA is designed to be optimal,
SM is inherently intention-aware; TE is designed to appear
humanlike. Additional reasons that influenced our selection
included: (1) the fact that ORCA constitutes a common bench-
mark and work of reference for multi-agent simulations (e.g.
[7, 10, 23, 29]); (2) the existence of an open source, optimized
C++ implementation of ORCA; (3) the ease of implemen-
tation of SM; (4) the widespread use of telepresence robot
platforms through teleoperation via their navigation interfaces.
The complexity of a real-world pedestrian environment would
pose a significant challenge to any of these navigation plan-
ners. However, we believe that an extensive and comparative
evaluation of planners with distinct philosophies provides us
with significant insights and experience for the design of
the next generation of social navigation planning algorithms.
The following paragraphs provide short descriptions of the
mechanisms underlying the selected navigation strategies.

Optimal Reciprocal Collision Avoidance (commonly re-
ferred to as ORCA; in the results section of the paper we will
be using the codename OR for brevity) [42] is a decentralized
navigation planning framework for the generation of smooth,
collision-free, natural-looking simulations of multi-agent sce-
narios. It is an optimization-based approach that determines
the velocity of minimal divergence from an agent’s desired
velocity that is guaranteed to be collision-free for a desired

time horizon. This approach makes local collision avoidance
considerations by incorporating a model of intentions, based
on agents’ current velocities. It operates however, under the
assumption that other agents also run the same decision
making mechanism to guarantee safe and smooth behaviors.

Social Momentum (SM) [29] is a decentralized, cost-based,
navigation planner, designed to generate legible robot motion
in multi-agent environments. The cost is a weighted sum of
two functions: one representing efficiency and one represent-
ing social compliance. At planning time, the robot selects and
executes the action that contributes the best compromise be-
tween the two costs. This policy results in consistent progress
towards an agent’s destination while taking into consideration
the collision-avoidance intentions and preferences of other
agents. Unlike ORCA, SM does not explicitly assume that
others run the same policy; instead, it focuses on reading the
intentions of others and incorporates this knowledge into its
motion planning process.

The Teleoperation strategy (TE) was implemented through
the official navigation interface provided by the manufacturer
[1], using the arrow keys on a standard laptop keyboard.
This interface contains two live streams of video, providing
the teleoperator with real-time video streams of a forward,
wide-angle field of view (top) and a floor view (bottom).
Navigation commands may be executed through a simple
keyboard’s arrow keys (or with a mouse). Selected commands
are demonstrated as projected future trajectories on the video
streams, providing visual feedback to the user. The teleop-
eration condition was executed by the same member of our
research team across all sessions, from a remote location
(outside of the lab). The teleoperator had significant prior
experience of the navigation interface for several years. Before
collecting data for our final dataset, we completed a total of
7 rounds of pilot sessions under different variants of the final
study setup. Thus by the time we officially started the study,
the teleoperator had reached a skill level that qualitatively
appeared to be appropriate for the needs of the condition.
Although it is hard to precisely quantify the operator’s skill
level, his experience was in the order of several hours prior
to the start of the study and thus we do not believe that his
performance evolved over the course of the study as a result
of learning.

E. Hypotheses

Upon experimenting with the three navigation strategies
considered (simulations conducted with SM and ORCA, per-
sonal teleoperated teleconference sessions with the Beam), we
observed very different patterns of decision making. These
patterns were interpreted as the result of the different design
principles and objectives behind each framework: ORCA was
developed to produce efficient, realistic simulations of virtual
multi-agent scenarios; SM was designed to generate legible
robot motion in dynamic multi-agent environments; TE was
based on a navigation interface [1], specifically designed to
allow non-expert users to control a robot intuitively. To the
best of our knowledge, these strategies have never been tested



against each other under challenging, multi-agent, experimen-
tal settings. It was unclear how close interaction between
the robot and different human participants would affect the
motion generated by the different strategies. Furthermore, it
was uncertain how humans would react to different behaviors
exhibited by the robot and how this interaction would affect
overall performance for both humans and the robot. Using the
dataset generated by our study, we explore these questions by
examining the validity of the following hypotheses:

(H1) - Robot Performance: In close interactions with
humans: (a) ORCA generates the most geometrically efficient
paths; (b) SM generates the jerkiest paths; (c) TE generates
the most energy-efficient paths.

(H2) - Human performance: Humans navigating in close
proximity with the robot: (a) follow the least jerky paths when
the robot runs SM; (b) spend the least energy when the robot
runs TE; (c) spend the most energy when the robot runs OR.

(H3) - Group performance: Global group (human and
robot) behavior under SM results in trajectories of lower
Topological Complexity than the other two conditions.

(H4) - Human Impressions: Participants consider the be-
haviors generated by TE as more socially compliant, intelligent
and safe than the rest of the strategies.

IV. ANALYSIS

We conducted 35 experiment sessions, in which a total of
105 human subjects were exposed to all three conditions.
Subjects were recruited from a university population (Cor-
nell University), through a centralized, university-run subject-
recruitment website and also through fliers posted across
campus. The subjects (59 female, 45 male, 1 unidentified)
were 21.45 years old on average (SD = 3.19 years) with
their age ranging from 18 to 33 years. About half of them
(57) had prior experience of user study participation and they
rated their familiarity with robotics technology with an average
of 2.47 (SD = 1.27) on a 5-point Likert scale.

We collected a dataset comprising the trajectories of all
105 participants and the robot across all trials. Focusing on
dynamic interactions of close proximity, we split this raw
dataset into two datasets of trajectory segments: (a) a dataset
comprising 1033 robot trajectory segments of close interaction
with humans (minimum distance d < 1m) and (b) a dataset
comprising 1566 human trajectory segments of close interac-
tion with the robot (also, of minimum distance d < 1m). We
analyze the trajectory dataset using a set of trajectory quality
measures from relevant literature [23, 12, 29], computed over
fixed timestep intervals (100 timesteps, totaling 0.2 seconds).
In particular, we computed: (1) the average Acceleration per
segment, a; (2) the average Energy per segment, E, where
energy is defined as the integral of the squared velocity of
an agent throughout its trajectory; (3) the minimum Distance
between the robot and any other humans per segment, d; (4)
Path Irregularity per segment, PI , measuring the total amount
of unnecessary rotation (angle between an agent’s heading and
direction to goal) that an agent exhibits per unit path length
[12]; (5) Path Efficiency, E , defined as the ratio of the distance

between the endpoints of a segment over the length of the path
that the agent actually followed; (6) time spent per unit path
length over a segment, τ ; (7) Topological Complexity, TC
[8, 29], defined as the amount of entanglement among agents’
trajectories throughout a trial (the Braidlab software package
[36] was used for these computations).

We also collected a dataset comprising the responses of
all 105 participants to a questionnaire, containing Likert-scale
style questions, based on the instrument of Bartneck et al. [3]
and short response questions.

TABLE I: Effect of Navigation Strategy on Robot Behavior
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 56.09 28.05 2 65.12 58.94 < 0.0001
E 0.7083 0.3541 2 1015 440.1 < 0.0001
E 0.05796 0.02898 2 999.1 4.825 0.008213
PI 454.4 227.2 2 1012 355.3 < 0.0001
τ 116.5 58.27 2 1016 1056 < 0.0001

A. Effect of Navigation Strategy on Robot Behavior

We model the effect of condition (ORCA, SM, TE) on each
one of the trajectory quality measures considered. We use
linear mixed-effects regression models, to account for both
fixed effects resulting from the conditions but also for random
effects resulting from the session and the trial (expected means
with confidence intervals are depicted in Fig. 4).

One-way ANOVA performed on the models demonstrates a
significant effect of the condition on all robot trajectory quality
criteria at the p < 0.05 level (see table I for the test statistics
and Fig. 4 for the expected means and confidence intervals
for all criteria) and thus, we find that (H1) is confirmed.
More specifically, it can be observed that ORCA generates the
smoothest motion among all strategies (lowest acceleration,
lowest path irregularity, lowest time), which confirms (H1a).
This trend was expected as ORCA selects actions that mini-
mize divergence from an agent’s direction to goal and desired
speed to ensure collision avoidance for a desired time window.
This results in a smoother speed profile than other conditions.
SM on the other hand, prioritizes intent-expressiveness by
exaggerating its motion to indicate an intended passing-side
intention; this results in higher acceleration (due to rotation)
and path irregularity, which confirms (H1b). Finally, TE is
the most energy-efficient — which confirms (H1c) — but
also the least time-efficient of all strategies. These findings
could mainly be attributed to the defensive driving style of
the teleoperator and the navigation through arrow keys.

B. Effect of Navigation Strategy on Human Behavior

Similarly to robot trajectory, we model the dependency
of the human trajectory quality measures to the condition
with linear mixed-effects models, accounting also for random
effects of session, trial and helmet per trial. Fig. 5 depicts
the expected means and confidence intervals for the human
trajectory quality measures, whereas table II contains statistics
extracted upon performing ANOVA on the models at the
p < 0.05 significance level.



(a) Acceleration per segment. (b) Energy per segment. (c) Path Irregularity per segment. (d) Time per segment.
Fig. 4: Expected means and confidence intervals for robot trajectory quality criteria. Quantities labeled with distinct letters (A, B, C) come
from significantly different distributions (Tukey’s HSD test, p < 0.05).
TABLE II: Effect of Navigation Strategy on Human Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 1.415 0.7073 2 250.4 3.888 0.02173
d 0.1075 0.05377 2 231.5 0.5872 0.5567
E 0.112 0.05599 2 253.3 3.449 0.03326
E 0.02977 0.01489 2 68.46 1.959 0.1488
PI 0.5394 0.2697 2 249.4 3.286 0.03904
τ 0.08277 0.04139 2 252.7 2.145 0.1192

Overall, we find that (H2) is confirmed. In particular, we see
that humans exposed to the SM condition followed smoother
trajectories, of lower acceleration (Fig. 5a) and path irregu-
larity (Fig. 5c) than humans exposed to either ORCA or TE,
which confirms (H2a). This was in line with our expectations:
SM’s intention-aware navigation strategy adapts the robot’s
behavior to the preferences of humans, thus facilitating human
inference and decision making. Further, it was observed that
humans spend the least energy when exposed to TE, which
confirms (H2b). We attribute this finding to the perceived
humanlikeness of the motion generated by a teleoperated
robot: the embodiment of human decision making on a robot
platform features humanlike traits that potentially enable a
higher level of human comfort. Finally, humans spend the most
energy around OR (see Fig. 5b), which confirms (H2c). This
could be perceived as an result of ORCA’s more predictable
motion (minimal divergence from desired direction). Higher
predictability potentially results in higher confidence for par-
ticipants, which allows them to move faster and thus spend
more energy.

C. Effect of Navigation Strategy on Group Behavior

We model the effect of condition on the Topological
Complexity of the group trajectory (the set of all agents’
trajectories) over a trial, using a linear mixed-effects model
(accounting for random effects of session, trial and helmet
per trial). Overall, we find that (H3) is rejected. ANOVA per-
formed on the model uncovered a significant variance among
conditions (F (2, 67.71) = 8.075, p = 0.000716, see table
III, Fig. 5d). In particular, it was found that the Topological
Complexity of trajectories, generated by groups exposed to
TE was significantly lower than both SM and OR. Global
group behavior generated in the presence of autonomy was
significantly more complex, despite the fact that the human
teleoperator was following the same rule for transitioning

between machines (random selection of any non-adjacent
machine). In other words, autonomous strategies resulted in
more intense mixing among all four agents. This could be
attributed to the mechanisms underlying human navigation,
as the decision making computations under TE were done
by the human teleoperator. Lower TC represents trajectory
entanglement which intuitively corresponds to behaviors of
passing around as opposed to passing through others. Thus,
this trend could be attributed to the tendency of the human
teleoperator to avoid collisions more globally, by avoiding any
type of encounter with other participants whereas the robot
was employing a more local collision avoidance mechanism
by sequentially responding to any challenging encounters.
This finding is perhaps unsurprising since both autonomous
algorithms considered explicitly favor the avoidance of closer
collisions over further ones.

TABLE III: Effect of Navigation Strategy on Group Behavior
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

TC 107.3 53.66 2 67.71 8.075 0.000716

D. Effect of Navigation Strategy on Human Impressions

We model the effect of condition to each of the Likert
scale questions considered, using a Linear Mixed Effects
Regression Model. Table IV contains a list of the questions
that were posed to participants (as 5-point Likert scales, with
1 denoting a negative response and 5 denoting a positive re-
sponse), grouped into three different classes: (a) one referring
to the robot’s behavior (orange rows); (b) one referring to
participants’ emotional states during the experiment (yellow
rows); (c) one referring to participants’ expectations about
the future presence of the robot (blue rows). The table also
contains the statistics of one-way ANOVA tests, performed to
participants’ responses to each question. Significant variance
was observed in the responses to the question about the robot’s
intelligence (F (2, 269.73) = 3.115, p = 0.0460) and it was
found that participants rated the intelligence of TE as slightly
higher (M = 3.29, SE = 0.11) than both SM (M = 3.01,
SE = 0.11) and OR (M = 3.04, SE = 0.11). This trend
also suggests a potential perception of the humanlikeness of
TE from the perspective of the participants, which appears
to be in line with the fact that they spent significantly less
energy around TE. However, this trend is not reflected in the



(a) Acceleration per segment. (b) Energy per segment. (c) Path Irregularity per segment. (d) Top. Complexity per trial.
Fig. 5: Expected means and confidence intervals for human (Fig. 5a, Fig. 5b, Fig. 5c) and group trajectory quality criteria (Fig. 5d). Quantities
labeled with distinct letters (A, B) are significantly different (Tukey’s HSD test, p < 0.05).

responses to the rest of the questions. Therefore, we cannot
conclusively confirm or reject (H4). It might be the case that
the quantitative differences among conditions in terms of the
quality criteria were below the precision of human perception.

TABLE IV: Effect of Nav. Strategy on Human Impressions
Rating Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Competent 3.249 1.625 2 269.1 1.875 0.1553
Responsible 0.546 0.2732 2 269.7 0.3047 0.7376
Predictable 0.8769 0.4384 2 270.6 0.3760 0.6870
Compliant 3.599 1.800 2 269.7 2.279 0.1044
Sensible 1.687 0.8435 2 269.7 0.9756 0.3783
Friendly 2.346 1.173 2 269.6 1.299 0.2745
Safe 4.5409 2.270 2 270.0 1.793 0.1684
Pleasant 1.8920 0.9460 2 269.5 1.149 0.3184
Polite 0.9942 0.4971 2 269.8 0.7171 0.4891
Coordinated 2.971 1.485 2 269.4 1.425 0.2423
Intelligent 4.840 2.420 2 269.7 3.115 0.0460∗
Trustworthy 0.5773 0.2887 2 269.2 0.4823 0.6179
Socially aware 4.507 2.254 2 268.6 2.131 0.1207
Discreet 4.742 2.371 2 270.2 2.238 0.1087
Relaxed 2.603 1.301 2 269.1 1.210 0.2998
Calm 2.405 1.202 2 269.7 1.123 0.3268
Tranquil 0.1069 0.0535 2 269.4 0.0575 0.9441
Noticeable 3.139 1.570 2 270.3 1.341 0.2633
Predict (future) 0.4635 0.2318 2 270.5 0.1937 0.8241
Bump (future) 7.572 3.786 2 270.2 2.682 0.0702

V. DISCUSSION

We presented a within-subjects user study design for the
experimental evaluation of mobile robot navigation strategies
in a controlled lab environment. Our experiments involved
the navigation of a mobile robot in a workspace shared with
three human participants, under challenging settings of implicit
interaction, emulating aspects of pedestrian navigation. We
conducted a total of 35 experiment sessions in which 105
human participants were exposed to the same set of conditions
corresponding to three different navigation strategies executed
by the robot. We analyzed the collected dataset through the
use of objective measures (trajectory analysis) and subjective
measures (questionnaires asking for ratings of participants’
impressions of robot’s intelligence, safety and personality).
We found statistical evidence that humans follow less jerky
and irregular paths when navigating around one autonomous
navigation condition [29] than around a teleoperated robot.
Furthermore, contrary to our expectations, humans did not dis-
criminate between conditions, according to their responses to
our questionnaire. Finally, we presented evidence that human
decision making, as captured in the teleoperated condition, had

a more global character than the autonomous strategies. We
plan to investigate this finding further in future work.

A. Limitations

Our study encompasses some limitations generally inherent
to any HRI study, and some specific to our scenario. First, a
controlled lab environment cannot emulate the complexity of a
real-world pedestrian environment and no background scenario
or task could give rise to perfectly natural human walking be-
haviors. Furthermore, humans lack models of interaction with
robotic technology, which inevitably affects their behavior
around a mobile robot. Even the robot’s appearance, structure
and dynamics could attract attention and distract participants
from the task. Moreover, the selection of the navigation
strategies inevitably impacts the generalizability of the results.
Either of the autonomy conditions could struggle with erratic
human behavior and specifically with human motion that is
suboptimal with respect to intent and flexibility [39] whereas
the teleoperator’s performance may vary across individuals,
experience, skill level, driving style, etc. Finally, the sample of
participants, mostly coming from the undergraduate population
of a university introduces another confound.

B. Broader Impact

Despite its many limitations, this study is unique in terms of
its goals, settings, thoroughness of evaluation and sample size.
As stated in the introduction, this study was motivated by an
observed gap in the literature: we believe that the validation of
social navigation algorithms requires a more thorough process.
The stage of a controlled lab evaluation is an indispensable
part of the validation process and should not be discounted
before deploying a robot to the field. The field of social
robot navigation could benefit greatly from extensive in-lab
validation of additional algorithms, under various interaction
settings. We hope that this study will constitute a paradigm
for such future studies in terms of its design and scope and a
reference for informing the design of future algorithms, within
the field of navigation and beyond.
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