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Abstract

We present a navigation planning framework for dynamic, multi-agent environments, where no explicit communication

takes place among agents. Inspired by the collaborative nature of human navigation, our approach encodes the concept

of coordination into an agent’s decision making through an inference mechanism about collaborative strategies of col-

lision avoidance. Each such strategy represents a distinct avoidance protocol, prescribing a distinct class of navigation

behaviors to agents. We model such classes as equivalence classes of multi-agent path topology, using the formalism of

topological braids. This formalism may naturally encode any arbitrarily complex, spatiotemporal, multi-agent behavior,

in any environment with any number of agents into a compact representation of dual algebraic and geometric nature. This

enables us to construct a probabilistic inference mechanism that predicts the collective strategy of avoidance among mul-

tiple agents, based on observation of agents’ past behaviors. We incorporate this mechanism into an online planner that

enables an agent to understand a multi-agent scene and determine an action that not only contributes progress towards

its destination, but also reduction of the uncertainty of other agents regarding the agent’s role in the emerging strategy of

avoidance. This is achieved by picking actions that compromise between energy efficiency and compliance with everyone’s

inferred avoidance intentions. We evaluate our approach by comparing against a greedy baseline that only maximizes

individual efficiency. Simulation results of statistical significance demonstrate that our planner results in a faster uncer-

tainty decrease that facilitates the decision-making process of co-present agents. The algorithm’s performance highlights

the importance of topological reasoning in decentralized, multi-agent planning and appears promising for real-world

applications in crowded human environments.
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1. Introduction

The traffic flow in human environments, such as crowded

hallways, sidewalks, and rooms may often be characterized

as unstructured and even unpredictable, as a result of the

lack of formal rules to control traffic and the lack of explicit

communication among agents. Nonetheless, humans are

capable of traversing such environments with remarkable

efficiency, without hindering one another’s motion. Human

navigation not only achieves collision avoidance; it does

so while respecting several social considerations, such as

the passing preference of others and their personal space

(Hall, 1990). This behavior has largely been attributed to

trust, with pedestrians trusting that others will behave com-

petently, according to Wolfinger (1995). This form of trust

enables humans to infer the intentions of others, under

the assumption of rational action (Csibra and Gergely,

2007) but also effectively communicate their own intentions

by leveraging various implicit communication channels,

broadcasting and receiving information through their path

shape, their body posture, their gaze, etc. This exchange

of information through nonverbal, implicit communication,

enables humans to negotiate and agree on a joint strategy

of avoidance. Complying with this strategy yields a socially

acceptable outcome for everyone in the scene.

Inspired by the outlined cooperative mechanisms that

humans employ towards ensuring collision-free and socially

compliant encounters, we design a navigation plan-

ning framework for artificial agents, navigating crowded

environments. We explicitly incorporate the concept of
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cooperation into an agent’s decision-making process by

constructing an inference mechanism that reasons about

joint strategies of avoidance. A joint strategy essentially

corresponds to an avoidance protocol that all agents follow,

while making progress towards their destinations (see Fig-

ure 1). Once a consensus over a joint strategy is established,

the agents may be trusted to finesse the details of their path

plans, in a compliant fashion. To accelerate the convergence

to a state of consensus, the agents select behaviors that (1)

communicate their own intentions but also (2) communicate

acknowledgment of the intentions of others. This results in

a faster decrease of uncertainty, which not only facilitates

everyone’s decision making but also often leads to overall

efficiency improvement.

In this work, we represent joint strategies as topological

patterns of agents’ trajectories, which we model as topolog-

ical braids (Birman, 1975) by employing the construction of

braid groups from low-dimensional topology. Based on this

representation, we design an analytical belief distribution

over joint strategies that allows an agent to estimate what

strategies are mutually acceptable by everyone and approx-

imate the effect of its actions to the belief of others. We

then employ an information-theoretic approach to manipu-

late this belief towards a state of low information entropy,

which corresponds to higher confidence over the emerging

evolution of the scene. We encode this specification into

the agent’s decision making policy, which determines an

action by compromising between personal efficiency and

contribution to consensus establishment.

In contrast to the majority of existing approaches that are

either too myopic, only focusing on local collision avoid-

ance resolution (e.g. Helbing and Molnár (1995), van den

Berg et al. (2009), and related frameworks), or too specific,

reproducing demonstrated behaviors in specific contexts

(e.g. Chen et al., 2017; Kim and Pineau, 2016; Kretzschmar

et al., 2016), our approach enables agents to execute local

collision avoidance maneuvers with a global, multi-agent

collision-avoidance horizon in mind. More specifically, we

contribute: (1) a formal model that may represent and char-

acterize topologically any, arbitrarily complex, multi-agent

behavior in any environment with any number of agents;

(2) a human-inspired inference mechanism for predicting

collective, multi-agent navigation behaviors; (3) an online

decision-making mechanism for decentralized, collabora-

tive navigation planning that accelerates the rate of conver-

gence to a mutually beneficial joint strategy; (4) simulation

results of statistical significance that demonstrate the impor-

tance of incorporating a collective, global spatiotemporal

understanding in the planning process. Our framework was

designed according to the insights of sociology studies on

pedestrian behavior (Wolfinger, 1995) and psychology stud-

ies on action interpretation (Csibra and Gergely, 2007),

reflecting our scope of employing it on a mobile robot plat-

form for navigation in crowded human environments. The

topological structure that our model offers to the motion

planning process is expected to reduce the emergence of

undesired situations such as deadlocks and livelocks that are

Fig. 1. A human and a robot are navigating towards opposing

directions of a hallway. To avoid collision, they need to agree on

an avoidance protocol (passing from the right- or left-hand side

of each other). The jerky behavior of the robot so far and the

smooth but non-committal, with respect to a passing side, path

of the human agent yield a high-entropy belief distribution over an

emerging avoidance protocol from the perspective of both agents.

The goal of our planner is to generate a sequence of highly infor-

mative actions that will rapidly reduce the entropy and break a

potential livelock or deadlock situation.

frequently observed in practice in human–robot pedestrian

encounters. With this work, we aim at providing a thor-

ough, proof-of-concept exploration of the aforementioned

fundamental idea in a case study on a simplified, discretized

board game setup that represents an abstracted version of

the highly complex real-world problem.

This paper extends our past work (Mavrogiannis and

Knepper, 2016) with the incorporation of the following

contributions: (1) a more thorough literature review; (2)

a more rigorous presentation of the topological founda-

tions of our approach; (3) advancements and improvements

to our modeling representations; (4) an extended discus-

sion on the inference mechanism and a more principled

inference construction that incorporates new heuristics and

handles uncertainty over agents’ destinations; (5) a more

detailed presentation of the algorithm design that includes a

discussion of the algorithm’s complexity; (6) an extensive

simulated evaluation, demonstrating results with verified

statistical significance.

2. Related Work

Our work focuses on the development of a navigation plan-

ning framework with the end goal of being employed by
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robots operating in multi-agent human environments. As a

result, it draws principles from several fields, such as action

interpretation, human and robotic navigation, crowd simu-

lation and tracking, and topology. In this section, we review

relevant literature from these communities, discuss works

that influenced our approach and highlight the features that

make our framework unique.

2.1. Human navigation

Understanding and modeling human navigation accurately

has been the focus of researchers from various fields for a

long time. Karp et al. (1977), in their definition of the mini-

max hypothesis of urban life, specify that “urbanites seek

to minimize involvement and to maximize social order.”

This idea is also present in Wolfinger’s definition of the

pedestrian bargain (Wolfinger, 1995), a concise, high-level

protocol of foundational social rules that regulate pedes-

trian navigation: (1) “people must behave like competent

pedestrians” and (2) “people must trust copresent others to

behave like competent pedestrians.” Trust to the rules of

the bargain constitutes the basis of smooth co-navigation

in human environments as it enables pedestrians to plan

with the expectation that others will also behave compe-

tently and, thus, cooperate to resolve potential conflicts.

This is enabled through a sophisticated mechanism of per-

ception and action, enabled through information exchange

mostly via path shape, body posture, and gaze (Goffman,

1966) that has been widely studied from a number of dif-

ferent fields. For example, Carton et al. (2016a) studied the

trajectory planning horizon of humans in locomotion tasks

towards informing the design of models for the prediction

of human walking behaviors. In the field of psychology,

Warren (2006) proposed a model that may describe orga-

nization in human behavior in a number of tasks by treating

an agent and its environment as a pair of coupled interact-

ing dynamical system. More broadly, Csibra and Gergely

(2007) highlighted the teleological nature of human infer-

ence, suggesting that humans tend to attribute goals to

observed actions.

Unlike human navigation which is heavily based on a

multi-modal information exchange, our approach only con-

siders the modality of path shape. Our planning frame-

work aims at generating motion that maximizes social

order through a local, collision-free action selection with

a global lookahead. This is made possible with a principled

design of a goal-driven inference that connects individual

and collective behavior towards enabling artificial agents to

understand the effects of their actions on the behaviors of

others.

2.2. Multi-agent simulation

The problem of generating smooth, collision-free, multi-

agent simulations has been central in a number of

applications, ranging from city planning to the study of

evacuation scenarios and even computer game design. To

this end, a class of works models agents as interacting par-

ticles, attracted to their destinations and repulsed by others.

Within this class, the social force model (Helbing and Mol-

nár, 1995) has been one of the first and most influential

approaches, whereas several works have employed simi-

lar models with additional considerations such as discom-

fort fields (Treuille et al., 2006), local predictive processes

(Hoogendoorn and Bovy, 2003; Karamouzas et al., 2009),

and cognitive heuristics (Moussaïd et al., 2011; Farina et al.,

2017). Some works have employed data-driven techniques

to learn the parameters of human navigation in different

contexts from simulated (Henry et al., 2010) or real-world

demonstrations (Karamouzas et al., 2014). Finally, van den

Berg et al. (2009) and Knepper and Rus (2012) have pro-

posed decentralized motion planners that explicitly leverage

the expectation of cooperation.

Our planner is also cooperative by design. However, in

contrast to most of the aforementioned approaches that

either treat agents as moving obstacles or make purely local

motion prediction, our inference mechanism enables agents

to understand that they are part of a crowd of intelligent

agents that cooperate to reach consensus over a collision

avoidance protocol.

2.3. Multi-agent tracking

From a different perspective, the computer vision commu-

nity has contributed a number of methods focused on track-

ing the local or global behavior of pedestrians in different

environments. For example, Scovanner and Tappen (2009),

Pellegrini et al. (2009), Alahi et al. (2016), and Ma et al.

(2017) present data-driven models for local short-term tra-

jectory predictions for interacting pedestrians, that make

use of models of social interactions, whereas Zhou et al.

(2012) predict large-scale, global pedestrian interactions.

These contributions are of particular significance both for

offline labeling of pedestrian datasets, but also for online

tracking of multi-agent behaviors for robotics applications.

Similarly to some of the aforementioned approaches, our

proposed inference mechanism enables agents to perceive

the global nature of observed actions. Under the assumption

of rationality (agents move efficiently towards intended des-

tinations), our prediction model essentially scores the set of

possible multi-agent collision avoidance strategies that the

agents could follow to reach their destinations in a collision-

free fashion. In a recent work, we showed how such a model

can be learned from deep neural sequence-to-sequence

architectures (Mavrogiannis et al., 2017).

2.4. Social robot navigation

Humans are intelligent agents, reacting to observed behav-

iors upon making inferences about their own future behav-

iors. Thus, enabling robots to navigate seamlessly alongside
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humans in pedestrian environments requires an incorpora-

tion of our understanding of human navigation and decision

making into the robot’s motion planning processes.

To this end, a class of works have proposed optimization-

based planners that consider different criteria related

to social compliance. Sisbot et al. (2007) presented a

cost-based planner that incorporates considerations of

human comfort and context-specific social conventions,

whereas Park et al. (2012) proposed an online model-

predictive control framework that generates locally optimal,

smooth, collision-free trajectories for autonomous robotic

wheelchair navigation. Mead and Matarić (2017) consid-

ered the incorporation of psychophysical proxemics theory

into a cost-based planner, aiming at driving the robot to con-

figurations that facilitate speech and gesture-based social

interactions between a human and a robot.

Another class of works has focused on reproducing

observed human behaviors. Bennewitz et al. (2005), Sehest-

edt et al. (2010), and Ziebart et al. (2009) proposed plan-

ning frameworks that generate socially compliant robot

motion through the use of human motion prediction mod-

els, learned from demonstrations of human trajectories

in specific environments. Trautman et al. (2015) devel-

oped a planning framework that enables the generation of

competent robot motion through dense human crowds via

the consideration of a learned inference mechanism over

cooperative collision-avoidance strategies. Kim and Pineau

(2016) and Kretzschmar et al. (2016) proposed planning

frameworks for generating humanlike robot motion, based

on cost functions that model human preferences as observed

in datasets collected from human demonstrations or from

robots teleoperated in crowded environments. Chen et al.

(2017) learned a model for generating motion that respects

culture-specific social norms such as passing from the right-

hand side. Finally, Bera et al. (2017) learned a probabilistic

planning and prediction model that incorporates psycholog-

ical and social constraints, based on identifying personality

traits of pedestrians. For an extensive discussion of the state

of the art in social robot navigation, the reader may refer to

Thomaz et al. (2016).

The main contribution of this paper is an online, cost-

based navigation planner for the generation of socially

competent robot motion in multi-agent environments. Our

framework aims at enabling a robot to interact (passively)

with other agents, by socially avoiding them and does not

consider the task of (active) social engagement. In con-

trast to some of the aforementioned data-driven approaches

that imitate demonstrated human behaviors or social norms

and are, thus, domain and context specific by design, our

framework focuses on the underlying topological founda-

tion of multi-agent collision avoidance, which represents an

inherently generalizable basis across domains and contexts.

Our work leverages the foundational idea that, under

the assumption of rationality, the collision avoidance con-

straints (with the environment and with others) introduce

a topological structure on agents’ global behaviors. To

the best of the authors’ knowledge, this work is the first

to incorporate the existence of this structure into agents’

inference mechanisms. This is done through the introduc-

tion of an inherently-generalizable representation of col-

lective behavior, based on the braid group, a group of

topological objects with a dual geometric and algebraic

nature. This representation enables agents running our

algorithm to reason about the topology of the spatiotem-

poral pattern of everyone’s future trajectories instead of

reasoning individually about the detailed trajectories of

other agents.

Conceptually, the frameworks of Trautman et al. (2015)

and Kretzschmar et al. (2016) are similar in that they also

incorporate models of joint strategies into their planning

processes. However, their models are not as expressive as

our model of multi-agent collision-avoidance behaviors,

based on topological braids. Braids allow our agents to

understand the effect of their actions on the decision making

of others and make decisions of global outlook that serve

the social welfare.

2.5. Intention-aware and intent-expressive

motion planning

Over the past few years, a significant amount of research

has been devoted to the design of planning frameworks

for explicit or implicit human–robot interaction. Ensur-

ing safe, natural, seamless, and efficient interaction under

this setting often necessitates the development of mecha-

nisms for intention recognition and nonverbal communica-

tion. Towards this goal, roboticists have been inspired by

the insights of studies on the principles underlying action

interpretation by humans. Representative works include the

studies of Csibra and Gergely (1998, 2007), Baker et al.

(2009), and Wiese et al. (2012) who have highlighted the

teleological nature of human inference, i.e. their tendency

to interpret observed actions as approximately rational and

hence to attribute context-specific intentions to them.

Based on these insights, Dragan and Srinivasa (2014) for-

malized the concepts of legibility and predictability as prop-

erties of motion that allow an observer to make a correct

inference of another agent’s goal, given observation of its

action and of its future action given knowledge of its goal,

respectively, under the principle of rational action. These

formalisms may be used for encoding intentions into robot

motion; intent-expressive robot motion has been shown to

lead to increased efficiency in human–robot collaboration,

but also to reduced planning effort for humans (Carton

et al., 2016b). Generalizing these concepts to any human–

robot collaboration task, involving any type of modality,

Knepper et al. (2017) developed a formal framework for

planning implicitly communicative actions.

Finally, the recent interest in autonomous driving has led

to several works specializing on a street navigation context.

For example, Bandyopadhyay et al. (2012) and Ferguson
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et al. (2015) presented navigation frameworks for plan-

ning autonomous car navigation, based on models for pre-

dicting pedestrian intentions, whereas Sadigh et al. (2016)

proposed a planning framework that reasons about human

drivers’ mental models to plan actions that influence their

decision making towards desired outcomes.

Our planner aims at generating intent-expressive robot

behaviors in dynamic multi-agent environments. In particu-

lar, it aims at manipulating an agent’s path shape to convey

its intentions to others. Our inference mechanism allows

our agents to monitor the uncertainty over future multi-

agent behaviors and take information-rich or legible actions

that aim at reducing this uncertainty. In contrast to existing

approaches that generate legible robot motion in static and

structured environments (e.g. Dragan and Srinivasa, 2014),

our framework is the first to address the problem of planning

legible motion in a dynamic, multi-agent environment.

2.6. Braids in robotics

The foundation of this work is the topological construc-

tion of braids from the field of low-dimensional topology

(Kassel and Turaev, 2008). The formalism of braids, first

presented by Artin (1947a,b) and extensively studied by

Birman (1975) has been an inspiration for applications in

various disciplines. Our approach is specifically inspired by

the use of braids as a model that captures the entanglement

of particle trajectories in a fluid (Thiffeault, 2010); in a sim-

ilar fashion, we employ braids to model the entanglement of

the trajectories of navigating agents.

The idea of employing braids in planning problems in

robotics is not new. It may be traced at least as far back to

Ghrist (1999), who drew a parallel between braids and con-

figuration spaces of robotic systems. Later, Diaz-Mercado

and Egerstedt (2017) developed a framework for centralized

multi-robot navigation, in which the agents are assigned

trajectories that contribute to a topological pattern corre-

sponding to a specified braid. Although we are also making

use of braids to model multi-robot behaviors, the scope of

our approach is inherently different, since our target appli-

cation concerns navigation in dynamic environments where

no explicit communication takes place among agents. In

our case, the agents do not follow a pre-specified braid

pattern, but rather employ a braid-based probabilistic rea-

soning to reach a topological consensus that best complies

with everyone’s intentions or preferences. For our purposes,

braids provide an abstraction of the complex spatiotem-

poral multi-agent dynamics of interaction among agents.

This abstraction enables artificial agents to reason about

uncertainty in a principled fashion, as the dual geomet-

ric and algebraic representation of braids enables them

to enumerate a set of diverse, topologically distinct scene

evolutions. As a result, our algorithm generates socially

competent behaviors, i.e. behaviors that explicitly take into

consideration the social welfare of the system of all agents.

To showcase the benefits of braids for multi-agent plan-

ning problems in robotics, we consider a case study on

an abstracted, discretized version of the real-world, multi-

agent navigation problem. Simulation results demonstrate

that our agents learn to coordinate faster than purely greedy

agents. Recent work of ours (Mavrogiannis et al., 2017,

2018) has demonstrated the potential of the proposed plan-

ning architecture for real-world environments by consid-

ering continuous workspaces and comparing against other

widely used baselines such as the social force model (Hel-

bing and Molnár, 1995) and the optimal reciprocal colli-

sion avoidance (ORCA) framework (van den Berg et al.,

2009). Ongoing work involves validation of our framework

on an autonomous telepresence robot platform, designed to

navigate around humans in crowded workspaces.

3. Foundations

Consider a set of n ≥ 2 agents N = {1, . . . , n} navigating

a workspace Q ⊂ R
2. Denote by qi ∈ Q the configuration

of agent i ∈ N . Agent i starts from an initial configuration

qs
i ∈ Q at time t = 0 and reaches a final configuration qd

i

at time t = Ti. The final configuration qd
i corresponds to a

landmark di from a set of landmarks D ⊂ Q (we assume that

di 6= dj for any two agents i, j ∈ N). The path agent i follows

to reach its destination is a function ξi : [0, Ti]→ Q.

The agents do not explicitly exchange any kind of infor-

mation with each other but are assumed to be acting ratio-

nally, which in our context means that (1) they always

aim at making progress towards their destinations and (2)

they have no motive for acting adversarially against other

agents (e.g. blocking their paths or colliding with them).

The notion of rationality is in line with the concept of com-

petence as described by Wolfinger (1995) in his definition

of the pedestrian bargain and also with the concept of teleo-

logical reasoning that appears to be foundational for human

inference (Csibra and Gergely, 2007).

3.1. Game-theoretic setup

Inspired by Wolfinger’s observations on the cooperative

nature of human navigation, we approach the problem of

robotic navigation in multi-agent, dynamic environments as

a finitely repeated coordination game of imperfect informa-

tion and perfect recall. The game is repeated a finite number

of rounds K, which is unknown a priori and corresponds

to the round at which the slowest agent reached its desti-

nation. At each round k ∈ {1, . . . K}, each agent i decides

on an action ak
i from a set of available actions (actions that

could potentially lead to collisions and actions that violate

the agent’s dynamics are excluded) Ak
i by minimizing a cost

function ui. The agents are simultaneously selecting their

actions and therefore they have no access to other agents’

plans (imperfect information); we assume however that they

maintain a history of all previous rounds (perfect recall).

The result of all agents’ decision making at round k is the
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strategy profile Ak = {ak
1, . . . , ak

n}. The sequence of strat-

egy profiles of all rounds, from the beginning to the end

of the game, A1 . . . AK , forms a global joint strategy τ that

the agents engaged in to avoid each other, while making

progress towards their destinations.

Although the agents do not explicitly coordinate with

each other to decide on a joint strategy, their strategy pro-

files at every round gradually reinforce and contribute to

one. Imbuing artificial agents with an understanding of the

collective dynamics of a multi-agent scene may allow them

to make informed and socially competent decisions that

contribute to the avoidance of undesired situations, such as

hindering others’ paths, deadlocks and livelocks. For this

reason, in addition to personal efficiency, it is important

that agents’ cost functions incorporate a model of multi-

agent efficiency, reflecting the social welfare of the system

of agents.

In this paper, we develop a topological model of joint

strategies, employing the formalism of braids (Birman,

1975), which we use to develop a human-inspired infer-

ence mechanism, supported by studies on human action

interpretation. Our mechanism provides a principled pre-

diction over the scene evolution that allows agents to take

into consideration the effect of their decision making on any

observers.

3.2. A topological model of joint strategies

Let us collect the state of the system of all agents in a

tuple Q = (q1, . . . , qn) ∈ Qn. The system state evolves

from a starting configuration Qs =
(

qs
1, . . . , qs

n

)

to a final

configuration Qd =
(

qd
1 , . . . , qd

n

)

, by following a path 4 :

[0, T] → Qn, from the space of system paths Z , starting

from Qs and ending at Qd . The system path is a function

4 : [0, T] → Qn \ 1, where 1 = {Q =(q1, q2, . . . , qn)∈
Qn : qi = qj for some i 6= j ∈ N} is the set of all sys-

tem states with agents in collision and T = maxi∈N Ti (it is

assumed that agents remain at their destinations until every-

one reaches their own). Naturally 1 partitions the space of

system paths Z into a set of classes of homotopically equiv-

alent system paths. Each such class has distinct topological

properties which indicate a distinct joint strategy that the

agents followed to reach their destinations. To enumerate

such classes of joint strategies but also to characterize topo-

logically the collective behavior of a system of agents, we

develop a model of joint strategies using the concept of

braids (Birman, 1975). In the following paragraphs, we pro-

vide a primer on braids, establish a correspondence between

braids and collective navigation behaviors and define a

topological model of joint navigation strategies.

3.2.1. Background on braids. Braids are topological

objects with algebraic and geometric presentations. We

first introduce them as geometrical entities, following a

presentation based on Artin (1947b) and continue with a

Fig. 2. A set of four particles are initially (z = 0) arranged along

the x-axis, on the points 1, 2, 3, and 4. Through a sequence of

rearrangements, the particles finally (z = 1) reach a final arrange-

ment on the points 2, 3, 1, and 4, respectively. The pattern of their

trajectories is a geometric braid.

(a) (b) (c)

Fig. 3. The generators of the braid group Bn: (a) σ1; (b) σ2; (c)

σn−1.

discussion of their algebraic presentation and their group

formation.

Denote by x, y, z the Cartesian coordinates of a Euclidean

space R
2 × I . A braid string is a curve X ( z) : I → R

2 that

increases monotonically in z, i.e. has exactly one point of

intersection X ( z)=( x, y) with each plane z ∈ I . A braid on

n-strings or n-braid (see Figure 2) is a set of n strings Xi( z),

i ∈ N = {1, . . . , n} for which:

1. Xi( z) 6= Xj( z), for i 6= j ∀z ∈ R;

2. X ( 0)=( i, 0) and X ( 1)=( p( i) , 0);

where p( i) is the image of an element i ∈ N , through a

permutation p : N → N from the set of permutations of N ,

Perm( N), defined as

p =

(

1 2 . . . n

p( 1) p( 2) . . . p(n)

)

(1)

This geometric representation of a braid is commonly

referred to as a geometric braid. More formally, a geometric

braid is often represented with a braid diagram, a projection

of the braid onto the plane R× 0× I (see, e.g., Figure 3).
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Fig. 4. Example of the composition operation σ1 · σ−1
2 for

σ1, σ−1
2 ∈ Bn.

The set of all braids on n strings, along with the compo-

sition operation, form a group Bn. The group may be gener-

ated from a set of n − 1 elementary braids σ1, σ2, . . . , σn−1

(see Figure 3), called the generators of Bn, that satisfy the

following relations:

σjσk = σkσj, |j− k| > 1 (2)

σjσkσj = σkσjσk , |j− k| = 1 (3)

A generator σi, i ∈ {1, 2, . . . , n − 1} can be described as

the crossing pattern that emerges upon exchanging the ith

string (counted from left to right) with the ( i + 1)th string,

such that the initially left string passes over the initially

right one, whereas the inverse element, σ−1
i , implements the

same string exchange, with the difference that the left string

passes under1 the right (see Figure 4). An identity element,

e, is a braid with no string exchanges.

Two braids b1, b2 ∈ Bn may be composed through the

composition operation (·), which is algebraically denoted as

a product b1 · b2. Geometrically, this composition results in

the pattern that emerges upon attaching the lower endpoints

of b2 to the upper endpoints of b1 and shrinking each braid

by a factor of two, along the z-axis (see Figures 3 and 4).

Any braid can be written as a product of generators and gen-

erator inverses. This representation is commonly referred to

as an algebraic braid or a braid word (Figure 4).

3.2.2. Abstracting joint strategies using braids. Denote by

fx : Qn → Perm( N) a function that takes as input the

system state Q ∈ Qn and outputs a permutation p ∈
Perm( N) corresponding to the arrangement of all agents

in order of increasing x-coordinates. As the agents move

towards their destinations, they employ navigation strate-

gies: maneuvers to avoid collisions. These contribute to a

system path 4 that corresponds to a path of permutations

π : [0, T]→ Perm( N) that may be extracted by evaluating

fx throughout the whole path 4. This path can be repre-

sented by a sequence of permutations of minimal length

π∗ =( p0, . . . , pK), i.e. pj−1 6= pj, ∀ j = {1, . . . , K} and con-

secutive waypoints are adjacent transpositions,2 i.e. permu-

tations that differ by exactly one swap of adjacent elements.

Owing to continuity, a transition from the ( j−1)th permuta-

tion, pj−1, to the jth permutation, pj, implies the occurrence

of an event τj, which may be described as the intersection

of the x-projections of the paths of two agents that were

Fig. 5. A space–time representation of a system path in a

workspace with four agents (left) along with its corresponding

braid diagram (right) and braid word (top right), defined with

respect to the path’s x-projection. The visualization of the braid

diagram and the extraction of the braid word was done using

BraidLab (Thiffeault and Budišić, 2013–2017).

adjacent in the permutation pj−1. The event τj may be rep-

resented as an elementary braid τj ∈ σ±1
i , i ∈ {1, . . . , n−1},

where i corresponds to the index of the leftmost swapping

agent in permutation pj−1. Therefore, the whole execution

from t = 0 to t = T may be abstracted into the braid that

corresponds to the temporal sequence of events:

τ = τ1τ2 · · · τK ∈ Bn (4)

This braid word not only constitutes a topological charac-

terization of the system path (see Figure 5 for an example

of characterizing a system path as a braid) but it also repre-

sents a topological class of system paths that are homotopy-

equivalent with the system path in consideration. In the

remainder of this paper, we refer to the sequence τ as

the joint strategy or the entanglement of the system path.

Essentially, we model the space of joint strategies T as the

braid group, i.e. T := Bn.

Remark 1. In our model, a braid constitutes a two-

dimensional abstraction of a three-dimensional pattern of

trajectories. Depending on the selection of the projec-

tion line, a different braid emerges. Although a change of

projection line only changes the braid by conjugation (Thif-

feault, 2010), in practice, this implies that a set of non-

communicating agents might encode the same joint strategy

with a different symbolic representations (braids). However,

this does not affect the convergence to a consensus on a

mutually acceptable joint strategy among agents; despite

their different representations, they still take actions that

contribute towards the same outcome, as will be shown in

our simulation results. Therefore, the selection of the pro-

jection plane for a planning agent is not important, as long

as its action selection process is consistent with it.
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4. Inference of collective behaviors

An individual agent has no sole control over a specific joint

strategy. The joint strategy is an emergent behavior, result-

ing from the superposition of the individual strategies of all

agents. In fact, since agents are not explicitly communicat-

ing or coordinating, they cannot have a priori knowledge or

a precise sense of the actual joint strategy they are about

to follow. However, understanding the dynamics of collec-

tive behavior may allow agents to adopt individual navi-

gation strategies that allow others to infer their intentions

more clearly, thus facilitating everyone’s decision making

by reducing uncertainty fast. Judging from our everyday

life experience, we may argue that this is the case with

humans as well. When humans encounter others in a hall-

way, they do not exactly know the specific joint strategy

they will be following. However, they realize that their deci-

sions are coupled with the decisions of others and are able

to reach a consensus regarding an avoidance protocol that

is comfortable for everyone.

In this section, we present a probabilistic intention infer-

ence mechanism that connects an observed system path

with a future system path topology, designed according to

the insights of psychology studies on human action inter-

pretation. This design is motivated by our goal of employing

our framework on an autonomous social robot that will be

navigating in a safe and socially competent fashion around

human pedestrians.

4.1. Teleological reasoning in multi-agent

navigation

Csibra and Gergely (1998, 2007) argued that the mech-

anisms of human action interpretation are teleological in

nature, i.e. humans tend to interpret observed actions as

goal-directed in a given context. Following their insights,

we design an inference mechanism of the form P(τ|4t, Mt),

corresponding to a belief over an emerging joint strategy

τ ∈ T given a partial system path 4t and the state of the

context at time t. The joint strategy represents a collective

goal, whereas the system path plays the role of the action.

By context, we refer to publicly available information, such

as a model of the static environment (e.g. a map, obsta-

cles, points of interest, etc.) but also information extracted

through processing, e.g. by employing secondary inference

mechanisms regarding group formations, identification of

reactive agents, etc.

4.2. Inferring joint strategies from context

From (4), the belief P(τ|4t, Mt) may be expanded as

P(τ|4t, Mt)= P(τ1, . . . , τK |4t, Mt) (5)

which, by applying the chain rule, may be factored as

P(τ|4t, Mt)=

K
∏

k=1

P(τk|

k−1
⋂

j=1

τj, 4t, Mt) (6)

This belief quantifies the likelihood of a sequence of events

τ1, . . . , τK given observation of agents’ past behaviors and

the context. Essentially, this corresponds to predicting the

minimal sequence of permutations π∗ but also the quality

of the physical transitions between consecutive permutation

waypoints (passing from the right-/left-hand side).

A joint strategy describes the avoidance protocol that the

agents followed to avoid each other throughout the scene

evolution, while navigating from Qs to Qd . These system

path endpoints are not incorporated in the definition of the

strategy as geometric entities but rather as the permutations

ps = fx( Qs), pd = fx( Qd). This design decision reflects

the observation that an agent navigating a multi-agent envi-

ronment does not need to know the precise intended des-

tinations of others to avoid collisions successfully; they

just need to understand their passing preferences/intentions.

However, the geometric arrangements of agents’ intended

final configurations greatly influence the convergence to a

joint strategy τ. In particular, given the initial permutation

ps, only a subset T ∈ Bn may lead to pd .

Given the importance of the final permutation in the pre-

diction of a joint strategy, we may break the problem of

predicting a joint strategy into two separate inference sub-

problems: (1) a prediction of the final permutation and (2) a

prediction of a compatible system path entanglement, braid

word, conditioned on the predicted final permutation. Fol-

lowing this reasoning, Equation (6) may be rewritten as the

following product:

P(τ|4t, Mt)=P( pd , τd|4t, Mt) (7)

=P(τd|pd , 4t, Mt) P( pd|4t, Mt) (8)

where τ
d ∈ T represents a braid that is compatible with

the prediction of a final permutation pd , given the permuta-

tion pt = fx( Qt) corresponding to the current system state

Qt = 4( t). Figure 6 depicts a graphic representation of the

structure of our inference mechanism.

4.2.1. Inferring the final permutation of the system. A

planning agent knows with certainty its own destination but

has no access to other agents’ destinations. Although there

is no need to make an inference regarding others’ actual

destinations, it is important to infer a final permutation pd

so as to make an informed inference regarding the emerg-

ing joint strategy, as discussed in the previous subsection.

Under the assumption of rationality and given a model of

the world, stored in the context Mt, the planning agent may

infer the general directions of others through a belief:

P( pd|4t, Mt)= P( pd( 1) , . . . , pd(n) |4t, Mt) (9)

where

pd =

(

1 . . . n

pd( 1) . . . pd(n)

)

(10)

For simplicity, let us assume that the planning agent’s ID

is #1. Then, under the assumption that all agents are mov-

ing towards destinations from the known set D, the agent’s
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Fig. 6. Schematic representation of the inference mechanism from the perspective of a robot, navigating in a workspace with three other

agents. From the perspective of the robot, the system state at time t corresponds to a permutation pt (derived upon projecting on the

x-axis of the robot’s body frame), represented graphically with the color permutation at the bottom (the robot order in the permutation

is denoted with red color). A set of M final permutations, taking the robot to its destination are considered and a set of three compatible

joint strategies–braids are planned for each final permutation. The robot reasons over the set corresponding to the union of all sets of

joint strategies T =
⋃

T
m, m = {1, . . . , M}.

index under the permutation pd , i.e. pd( 1), is constrained.

Leveraging this, the planning agent may conclude to a sub-

set of feasible permutations P ⊂ Perm( N), by ruling out

any incompatible permutations from Perm( N) as unlikely.

Under the assumption that the cardinality |D| ≥ |N |, mul-

tiple assignments of destinations to agents may be possible

for each permutation in P .

More formally, for each compatible permutation pd
m ∈

Perm( N), m ∈ {1, . . . M}, where M =(n − 1) !, we may

derive a set of possible destination assignments 1m that

are compatible with (1) pd
m and (2) the image of agent #1,

through the permutation pd
m, i.e. pd

m( 1), corresponds to a

final arrangement of all agents to destinations of D, with

agent #1 at its destination d1. Essentially, an assignment

δ ∈ 1m is an injective function δ : N → D that maps

all agents to a subset of landmarks from D. Upon marginal-

izing over all possible δ ∈ 1m, the probability that the final

permutation pd = pd
m may be derived as

P( pd=pd
m|4t, Mt)=

∑

δ∈1m

P( pd=pd
m|4t, Mt, δ) P( δ|4t, Mt)

(11)

By definition, pd = pd
m, if we know that agents are going to

δ and therefore Equation (11) may be simplified as follows:

P( pd = pd
m|4t, Mt)=

∑

δ∈1m

P( δ|4t, Mt) (12)

The destination that an agent is aiming for is conditionally

independent of the destinations of others, given 4t and Mt,

therefore we may express P( δ|4t, Mt) as

P( δ|4t, Mt)=

n
∏

j=2

P(qd
j = δ( j) |4t, Mt) (13)

where we incorporated the fact that agent #1 is certain about

its destination. Finally, under the assumption of rational-

ity, we follow an approach similar to Dragan and Srinivasa

(2014) to model P(qd
j = δ( j) |4t, Mt) as

P(qd
j = δ( j) |4t, Mt)=

1

Z

exp(−c( ξj)−c∗(qs
j , δ( j) ) )

exp(−c∗(qs
j , δ( j) ) )

(14)

where ξj is the path agent j has followed so far, c measures

the length of a path, c∗ returns the shortest path between

two points, and Z represents a normalizer across the set of

landmarks D.

Algorithm 1 outlines the process of scoring all

compatible final permutations from Perm( N). Function

Get_Permutation returns a permutation pl of the set

D, corresponding to the arrangement of landmarks in an

order of increasing x-coordinates with respect to the agent’s

frame. Then, all permutations are accessed and checked for

compatibility with the planning agent’s destination d (func-

tion Check_Perm). In case a permutation is compatible,

the set of possible assignments of agents to destinations

that are in compliance with the permutation, is extracted

with function Get_Assignments and then scored (func-

tion Score_Assignments). Otherwise, the correspond-

ing permutation is assigned a zero score. The scores are
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Algorithm 1. Score_Permutations(d, 4, D, perms)

Input: d, agent’s intended destination; 4, state history of

all agents; D, list of landmark locations; perms, list of

permutations.

Output: P, probability distribution over permutations.

1: pl ← Get_Permutation(D)

2: for i = 1 : n! do

3: compatible← Check_Perm( perms[i], pl, d)

4: if compatible then

5: 1← Get_Assignments( pl, perms[i])

6: S[i]← Score_Assignments(1, 4)

7: else

8: S[i]← 0

9: end if

10: end for

11: P← S/sum( S)

12: return P

finally normalized and returned in the form of a probability

distribution P.

4.2.2. Inferring the path entanglement. The second distri-

bution, over system path entanglements P(τd|pd , 4t, Mt) is a

harder distribution to approximate. In particular, events that

take place further than one event ahead may be impossible

to be traced back to the decisions that agents have made

until time t. For this reason, in this work, we approximate

P(τd|pd , 4t, Mt) as

P(τd|pd , 4t, Mt) = P(τd
1 , . . . , τd

K |p
d , 4t, Mt) (15)

≈
1

0
P(τd

1|p
d , 4t, Mt) (16)

that is, given the state of execution at time t, as expressed

in 4t and Mt, the probability of a braid word is set to be

approximately proportional to the probability of the next

generator, observed after time t, being equal to that pre-

scribed by τ1, where 0 is an appropriate normalizer. All

entanglements that share the same first generator τ1 are

assigned the same probability. Finally, in case the current

permutation of agents is equal to the predicted final permu-

tation pd , it is assumed that the only possible path entangle-

ment is the trivial one, i.e. τ = e, and the rest are assigned

zero probabilities.

To model P(τd
1|p

d , 4t, Mt), we first encode a gener-

ator τ
d
1 ∈ {σ1, σ−1

1 , . . . , σn−1, σ−1
n−1} into a tuple g =

(

swapg, signg

)

, where swapg ∈ {1, . . . , n − 1} contains the

generator’s subscript (corresponding to the pair of agents

that are exchanging sides) and signg ∈ {−1 + 1} contains

the generator’s superscript (how they are exchanging sides).

This model allows us to decompose the generator prediction

problem into (1) a prediction of the immediately swapping

Fig. 7. Demonstration of the momentum heuristic for predicting

a generator superscript: the x-projections of the agents’ paths are

about to cross, forming a σ−1
1 generator. The z component of their

angular momentum is negative, indicating a tendency for a coun-

terclockwise rotation, which indicates a negative braid exponent;

likewise, in case the z component of the angular momentum were

positive, the emerging exponent would be positive.

agents and (2) a prediction of the type of their swap:

P(τd
1 = g|pd , 4t, Mt)=P( swapg, signg|p

d , 4t, Mt)

=P( signg|swapg, pd , 4t, Mt)

P( swapg|p
d , 4t, Mt)

(17)

Regarding the prediction of the next swap, we employ the

following model:

P( swapg|p
d , 4t, Mt)=

1

H

n−1
∏

i=1

Rswap( i) (18)

where H is a normalizer across swaps and Rswap is defined

as

Rswap( i)=

{

1
1+exp(1xi−ε)

, i = swapg

1
1+exp(−(1xi−ε))

, i 6= swapg

(19)

where 1xi = xi+1 − xi represents the x-distance between

the agents of the pair i (agents pt( i) and pt( i + 1) in the

current permutation pt) and ε > 0 is a constant. Smaller

distances indicate swaps corresponding to generators that

are exponentially more likely.

Given a prediction of a swapg, the next step is to

determine the type of swapping, i.e. signg. To model

P( signg|swapg, pd , 4t, Mt) we employ a heuristic based on

the angular momentum of the system of the agents in con-

sideration, which, assuming unit masses, may be defined

as
EL( swapg)= Erc

i × Evi + Er
c
i+1 × Evi+1 (20)
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where Erc
i and Erc

i+1 are the positions of the currently right

and left agents, respectively, defined with respect to their

current center of mass Erc =( Erc
i + Er

c
i+1) /2, whereas Evi and

Evi+1 are their respective velocities. For two masses mov-

ing on the same plane, the angular momentum is a vector,

normal to the plane, along the direction of rotation. If the

masses are about to rotate counterclockwise, with respect

to an axis of reference, the z-component of the momentum,

Lz, is positive, and negative in case the masses are about

to rotate clockwise. Based on this observation, we model

P( signg|swapg, pd , 4t, Mt) as

P(signg|swapg, pd , 4t, Mt)=
{

1
2

1
1+exp(−signgLz(swapg))

, if |Evi| + |Evi+1| > 0

1
2

1
1+exp(−signg1yi)

, otherwise
(21)

where 2 is an appropriate normalizer. The more posi-

tive Lz is, P( signg = +1|swapg, pd , 4t, Mt) gets exponen-

tially closer to 1, whereas in the opposite case, P( signg =
−1|swapg, pd , 4t, Mt) gets closer to 1. In case the veloci-

ties of both agents are currently zero, the corresponding

scores only depend on their distance along the y-axis, 1yi =
yi+1 − yi. Figure 7 demonstrates schematically the concept

of momentum (for non-zero velocities) and how it is used

to predict signg.

Remark 2. It should be noted that the model of inference

presented in this section constitutes is an extended ver-

sion of the one presented by Mavrogiannis and Knepper

(2016), as it may handle (a) uncertainty over destinations,

(b) redundancy of destinations (case with no unique map-

ping from a permutation to the set of destinations), and (c)

incorporates a novel heuristic for predicting the exponent

of braid generators. However, it should also be noted that

this distribution is a simplified approximation that cannot

guarantee robust performance and generalization. We are

using it to provide a proof of our concept. In recent work of

ours (Mavrogiannis et al., 2017) we presented a data-driven

framework for directly learning to predict future trajectory

topologies from simulated demonstrations of challenging

multi-agent scenarios.

5. Decision making

In multi-agent environments, where no explicit communica-

tion takes place among agents, uncertainty regarding every-

one’s actions is typically high, which complicates decision

making. Humans usually overcome such a complication by

communicating implicitly, mostly through motion. Doing

so is made possible through inference mechanisms that

allow them to read the intentions of others and select

socially compliant actions that reduce uncertainty. This

enables them to reach a consensus over an avoidance pro-

tocol that serves everyone and ensures comfort, while mak-

ing progress towards their destinations. The superposition

of these considerations represents what, to our interpreta-

tion of the pedestrian bargain (Wolfinger, 1995), constitutes

socially competent behavior in a pedestrian context.

To generate socially competent behaviors, we design

a cost-based policy. Our cost function enables an artifi-

cial agent to take actions that not only contribute progress

towards its destination but also towards a consensus over

a joint strategy that appears to be mutually beneficial for

everyone in the scene. Regarding the first specification, a

distance-based efficiency cost is employed, whereas for the

second specification, the entropy of the distribution over

joint strategies P(τ|4, M) is used. The distribution allows

the planning agent to estimate the long-term effects of an

action in consideration and how it might influence the deci-

sion making of others. The reduction of the entropy of the

distribution may allow the agent to select an action that

reduces the uncertainty for everyone.

In the following subsections, we describe our decision-

making framework in detail.

5.1. Modeling agents’ cost functions

We model the interests of an agent i with a cost function

ui : Ai → R that maps an action ai ∈ Ai to a real num-

ber. We design this cost to comprise two terms: (1) Ei,

which represents the agent’s personal efficiency and (2) Ci,

which represents the state of consensus over a joint strategy

among agents, from the perspective of agent i, upon taking

an action ai ∈ Ai:

ui(ai)= λEi(ai)+(1− λ) Ci(ai) (22)

We define the personal efficiency term Ei, to be the length

of the shortest path to the agent’s destination, whereas Ci is

modeled as the information entropy of the belief distribu-

tion over joint strategies P(τ|4, M), from the perspective of

agent i, i.e.

Ci(ai)= −
∑

τ∈T

P(τ|4+, M) log2 P(τ|4+, M) (23)

where 4+ denotes the system path so far, 4, augmented

with the action in consideration ai. Finally, λ is a weight-

ing factor, expressing the compromise between efficiency

and consensus. Formally, the decision-making policy may

be described as a minimization of (22):

a∗i = arg min
ai∈Ai

ui(ai) (24)

Note that the cost function ui plays the role of a utility

function, with the difference that lower values are better.

Overall, this policy enables an agent to make decisions

that not only contribute progress towards its destination but

also towards a mutually beneficial consensus over a scene

outcome. The faster such a consensus is established, the

lower the uncertainty will be for all agents throughout the

remainder of the execution. The efficiency term represents
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agents’ intention of reaching their destinations by spending

low energy and is in line with the principle of rational action

as highlighted in the definitions of the pedestrian bargain

(Wolfinger, 1995) and the teleological reasoning (Csibra

and Gergely, 1998). The consensus term scores the cur-

rent state of the global consensus among agents regarding

the joint strategy to be followed and, therefore, it directly

incorporates a form of social understanding into the agent’s

decision-making policy. The lower the entropy, the lower

the uncertainty regarding the emerging joint strategy. Thus,

by consistently picking actions that contribute to entropy

reduction, an agent communicates its intention of com-

plying with a subset of scene outcomes that appear to be

preferable by everyone according to the model P(τ|4, M).

As a result, the agents are expected to reach a consensus

over τ easier and faster, avoiding ambiguous situations such

as livelocks or deadlocks and reach their destinations with

lower planning effort.

5.2. Planning joint strategies

In practice, making use of the distribution P(τ|4, M)

requires determining a set of candidate joint strategies T .

The braid group Bn is countably infinite; in practice, how-

ever, only a subset of joint strategies (braids) are meaningful

under the context of a scene Mt and given observations of

agents’ past behaviors 4t. In particular, as discussed in Sec-

tion 4, given any compatible final permutation pd
m ∈ P ,

only a subset T m ⊂ Bn may be achievable from the cur-

rent permutation pt = fx( Qt). Consequently, there arises

the problem of planning a set of joint strategies T =
⋃

T m,

m = {1, . . . , M}, compatible with the set of different final

permutations in consideration from P .

Planning a joint strategy that transitions the system from

a permutation corresponding to the current state of the

system, pt, to a permutation corresponding to the final

state of the system, pd
m, may be decomposed into the fol-

lowing subproblems: (1) planning a path of permutations,

πm =( pt, . . . , pd
m) connecting pt with pd

m through a sequence

of adjacent transpositions; and (2) assigning compatible

elementary braids to the transitions between consecutive

permutations. Each transition may be implemented in two

different ways, i.e. by a compatible generator or its inverse.

For example, a path π of length lπ (the number of tran-

sitions required to reach pd
i from pt, through π ) may be

implemented by 2lπ different braids.

Assuming that we have concluded to a set P ∈ Perm( N)

of potential final permutations, for each one of them

pd
m ∈ P , we plan a set of paths of adjacent transpositions,

Pm, based on which we generate a batch of joint strategies

T m. These are used to form the final set of joint strategies

T =
⋃

T m, m = {1, . . . , M}.
In this paper, we convert the problem of planning a

topological joint strategy into a search in a graph of

permutations. In the following sections, we describe the

construction of the graph and the planning procedure.

Fig. 8. A multi-agent scene from the perspective of the planning

agent (blue). At time t, the agent arranges all agents in the scene

in an order of increasing x-coordinates with respect to the x-axis

of its body frame {B} and derives a corresponding permutation

pt. Based on observation of all agents’ past trajectories (solid

lines) and given knowledge of existing landmarks in the scene,

the blue agent makes a prediction of everyone’s destination (col-

ored pointers) and derives a corresponding final permutation pd .

Transitioning from pt to pd may be implemented with a joint

strategy τ ∈ T .

5.3. Permutation graph search

The set of all permutations on N , Perm( N), along with the

composition operation, form the symmetric group Sn. Here

Sn is a group of order n!, that can be generated by the set of

adjacent transpositions βj =
[

j j+ 1
]

, for 1 ≤ j < n− 1.

We make use of the symmetric group to construct a graph

G = ( V , E), where V = Perm( N) and any pair of nodes

νa, νb ∈ V is only connected iff ∃ βab ∈ Sn that per-

mutes νa into νb. The graph G may be represented as a

(n−1)-dimensional polytope, embedded in a n-dimensional

space, which is commonly referred to as a permutohedron

(Ziegler, 1995). Figure 9 depicts a permutohedron of order

four, along with example paths and indications of braid

transitions.

Planning a path from a permutation pa to a permutation

pb, corresponding to the vertices νa, vb ∈ V , respectively,

is equivalent to finding a path of vertices–permutations

that connect them. Figure 8 illustrates the concept of plan-

ning a joint strategy. At planning time t, the agents have

already followed trajectories 4t. The planning agent (blue

color) has predicted that they are aiming at reaching the

destinations denoted by pointers of corresponding colors.

Transitioning from the current system configuration to the

predicted final system configuration corresponds to transi-

tioning from the current permutation pt to a permutation pd ,

both defined with respect to the dashed line, parallel to the

x-axis of the agent’s body frame {B}.
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Fig. 9. A permutatohedron of order four for a scene with four

agents. Three alternative paths implementing the transition from

the permutation 1234 to the permutation 3412 are depicted in dif-

ferent colors. Each path consists of a sequence of transitions, each

of which can be implemented topologically with a braid generator

or its inverse.

5.4. Online algorithm

In this section, we describe our algorithm design for online

navigation planning that makes use of the components

detailed in the previous sections. The algorithm compro-

mises between making progress towards the agent’s des-

tination and being respectful of everyone’s intentions, as

inferred by their past behaviors. In case the planning agent

does not observe other agents on its way to its destination,

it switches to efficiency optimization.

The SCN algorithm (Algorithm 2) is our online

algorithm for socially competent navigation. At every

replanning cycle, the function Get_Reactive_Agents
first returns a list of agents, R, which the planning

agent should be avoiding collisions with. Then, function

Collision_Check generates a set of implementable,

collision-free actions A. If R 6= ∅, the algorithm pro-

ceeds by planning a set of joint strategies T (function

Get_Strategies) and then picking the minimizer of

(22) (function Cost_Optim). In case R = ∅, the

function Efficiency_Optim computes the most effi-

cient action. The algorithm terminates when the boolean

AtGoal becomes true, indicating that the planning agent has

reached its destination.

5.4.1. A discussion of complexity. The most computation-

ally expensive part of the proposed algorithm is the compu-

tation of the set of joint strategies T . Obtaining T involves

determining the set of all compatible final permutations

P = {pd
1 , . . . , pd

M } that correspond to final system states

Algorithm 2. SCN(D, Q, d, 4, At_Goal, M)

Input: D, list of landmarks; Q, system state; d, planning

agent’s intended destination; 4, state history of all

agents; At_Goal, Boolean variable signifying arrival at

agent’s destination; M , context.

Output: a, action selected for execution

1: while ¬AtGoal do

2: R← Get_Reactive_Agents( 4)

3: A← Collision_Check( 4, M , R)

4: if R 6= ∅ then

5: T ← Get_Strategies( d, Q, D, R)

6: a← Cost_Optim(A, T , d, 4, M)

7: else

8: a← Efficiency_Optim(A, d, M)

9: end if

10: end while

11: return a

with the planning agent at its destination. This set has car-

dinality |P| = M =(n − 1) ! and may be computed in

time O(n!). For each permutation pd
m, we are computing the

following.

1. A set of K permutation paths 5m that connect the

current system permutation pt with pd
m ∈ P . For com-

puting this path set, we employ an algorithm for find-

ing K-shortest paths. Such algorithms typically make

use of a shortest path algorithm, e.g. Dijkstra’s (Dijk-

stra, 1959); therefore, their complexity depends on the

number of calls to the shortest path algorithm. Katoh’s

algorithm (Katoh et al., 1982) appears to be the most

efficient among them, with a runtime complexity of

O(K( |E| + |V | log |V |) ), where |V | and |E| represent

the number of nodes and edges in the graph, respec-

tively, which for a permutohedron of order n are equal

to |V | = n! and |E| = n!(n − 1). For a constant K, this

computation runs in time O(n!n log n).

2. A set of braids T m, consistent with each permutation

path πm ∈ 5m. For each permutation path in 5m, we

derive 2l different braids (where l is the number of

edges in the path), by taking all possible permutations

of consistent generator assignments on the permutation

path edges. For a constant K and considering a maxi-

mum path length
n(n−1)

2
, this computation runs in time

O( 2
n(n−1)

2 ) (worst-case complexity).

The dominant term in the expression of the overall worst-

case complexity for computing the set of possible braids

T m for one permutation pd
m is the exponential term O(n!).

This implies that the complexity of the present algorithm

does not scale well with large numbers of agents. Fur-

thermore, considering that the aforementioned computation

needs to run for all possible permutations in P , the com-

plexity becomes O( (n!)2 ). However, we argue that for our

purposes, i.e. eventual deployment on a social robot nav-

igating in real-world human environments, the following
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considerations may enable us to restrict ourselves to low

n and |P| and K.

(a) A real robot has limited sensing capabilities, usually

corresponding to a local radius of a few meters. There-

fore, even in crowded environments, the surrounding

agents will be considered as they enter the sensing

radius and not universally.

(b) The rationality assumption for agents, which is sup-

ported by studies on human inference (Csibra and

Gergely, 2007) and human navigation (Wolfinger,

1995). Rational agents aim at avoiding undesired diver-

gences from the direction pointing towards their des-

tinations (Moussaïd et al., 2011). This implies that (i)

humans end up following short permutation paths and

(ii) a good final permutation prediction can be done

by simply projecting forward agents’ current veloc-

ity on the boundary of the robot’s sensing radius (the

robot does not need to know exactly where others are

going). These observations motivate low K and low |P|,
respectively.

(c) The rationality assumption also allows us to assume

that once two agents pass each other, they stop react-

ing. For this reason, at replanning time, we restrict our-

selves to considering only the number of agents that are

ahead and are assumed to be observing the planning

agent. Therefore, as the execution progresses and the

robot approaches its destination, the number of reac-

tive agents is expected to drop, allowing the robot to

switch to efficient, and less computationally intense,

execution.

(d) Our algorithm is based on frequent replanning. Plans

have a short horizon but are made with a global rea-

soning (over joint strategies). The short planning hori-

zon has been shown to be in compliance with human

locomotion according to Carton et al. (2016a), who

presented evidence that humans employ a shorter plan-

ning horizon as they navigate complex environments, to

avoid collisions that could emerge from unexpected dis-

turbances. The global planning horizon ensures that the

motion of the robot will be consistent throughout the

whole sequence of consecutive planning cycles.

For reference, in a game with five agents, a replanning

cycle of SCN that generates three permutation paths per

permutation runs at an average of ∼ 185 ms, with the worst

case being ∼ 402 ms in a non-optimized MatLab imple-

mentation on a MacBook Pro of 2015 with an Intel Core

i7 processor of 2.5 GHz, running macOS Sierra. These

times appear to be encouraging for real-time execution

on a mobile robot platform, upon the transfer to a faster

language and the appropriate code optimizations.

6. Evaluation

In this section, we present simulation results, demonstrat-

ing the benefits of our approach. Section 6.1 describes the

Algorithm 3. GREEDY(Q, d, 4, AtGoal, M)

Input: Q, system state; d, agent’s destination; 4, state his-

tory of all agents; At_Goal, Boolean variable signifying

arrival at agent’s destination; M , context.

Output: a, action selected for execution

1: while ¬AtGoal do

2: A← Collision_Check( Q, M)

3: a← Efficiency_Optim(A,Q, d, M)

4: end while

5: return a

experimental setup and provides implementation details,

whereas Section 6.2 presents results extracted by testing our

algorithm under different settings.

6.1. Setup

We consider a setup where a set of n agents navigate a dis-

cretized square workspace, partitioned into a set of N2
t tiles,

where Nt is the number of tiles per side (Figure 10). Each

agent i ∈ {1, . . . , n} starts from an initial tile qi and moves

towards a final tile di. The game is played in rounds until all

agents reach their destinations.

To assess our approach and demonstrate its benefits, we

consider challenging game scenarios that reinforce intense

encounters among agents. We do so by positioning agents

on the sides of the workspace and having them navigate

towards opposing sides. Each game scenario is sampled at

random from the space of scenarios of size Nn
t × Nn

t , cor-

responding to the number of distinct assignments of agents

to initial and final configurations. At every round, the play-

ers simultaneously pick an action, which corresponds to a

neighboring, unoccupied square. Forward, backward, left,

right, and diagonal, collision-free transitions are allowed.

Since at planning time each agent has no access to the

plans of others, in order to ensure collision avoidance, tran-

sitioning to a square that is adjacent to a square currently

occupied by another agent is not allowed. Depending on the

number of agents and the size of the workspace, this setup

might result in deadlocks. In our evaluation, executions that

result in deadlocks are discarded. However, note that the

purpose of our evaluation is to study how agents behave

when they have multiple actions available. We examine

how the adoption of different strategies in action selec-

tion may affect the evolution of the game qualitatively and

quantitatively.

To demonstrate the importance of incorporating a topo-

logical understanding into agents’ decision-making pro-

cess, we compare the performance of our algorithm (SCN)

against a greedy baseline (see Algorithm 3) that plans

actions, greedily seeking to maximize its efficiency (the

progress to the agent’s destination) at every round. The

GREEDY algorithm makes use of the same collision check-

ing function as SCN. Their main difference lies in how

they select an action when multiple of them are available.
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Fig. 10. A game with three agents in a 6× 6 workspace. (a) and (b) depict partial executions of the same scenario (same start and end

positions for all agents) with SCN and GREEDY respectively. The current system state is denoted with non-transparent system circles,

whereas faded configurations correspond to configurations of past time steps. (a) SCN: By the end of round 2, the agents have reached

a system configuration corresponding to a clear consensus over a joint strategy. (b) GREEDY: By the end of round 2, the agents are in a

system configuration that is about to lead to conflicting encounters.

Fig. 11. Comparative diagrams, generated upon running 200 experiments with three agents in a workspace of size 6 × 6. (a) Average

entropy profile per agent per experiment over 200 scenarios involving three agents. On average, SCN agents reached a consensus over

a joint strategy faster. (b) Average efficiency profile per agent per experiment over 200 scenarios involving three agents. On average,

SCN agents made greater progress towards their destinations per round. The red curves correspond to agents running SCN and the blue

curves to agents running GREEDY. The compromise between efficiency and consensus was set to λ = 0.2 and the number of paths per

permutation to three. Student’s t-tests were performed on all rounds to determine the statistical significance of the profiles difference.

The symbols ∗, ∗∗, and ∗ ∗ ∗ denote rounds on which the difference in the performance between SCN and GREEDY was found to be

significant to a degree described by p-values < 0.05, 0.01, and 0.001 respectively, according to a paired Student’s t-test. Owing to space

constraints, the significance symbols were placed vertically.

Considering a homogeneous setup (n agents running SCN

versus n agents running GREEDY), we show that explic-

itly reasoning about the emerging joint strategy at planning

time, benefits everyone in the scene, as it leads to a faster

uncertainty decrease that simplifies everyone’s decision

making. Note that despite the different braid convention that

each agent is making, they still manage to converge to a

mutually beneficial consensus on a joint strategy of avoid-

ance much faster than GREEDY agents. Qualitatively, our

algorithm leads to less ambiguous system configurations,

which result in higher average progress per round and lower

average time to destination.
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6.2. Simulation results

In this section, we present the behavior that our algo-

rithm generates and demonstrate its benefits by compar-

ing its performance with the performance of the GREEDY

baseline.

6.2.1. Qualitative behavior. Figure 10 depicts partial exe-

cutions, after two rounds, of a scenario from a game involv-

ing three agents. Figure 10a depicts the play of agents run-

ning SCN, whereas Figure 10b shows the corresponding

play of the agents running GREEDY. It can be observed

that the agents running our algorithm have led the game to

a configuration that is more beneficial for everyone, as all

of their encounters are essentially resolved by the end of the

second round. This was achieved by planning informative

actions that rapidly led to a significant entropy decrease and

accelerated convergence to a consensus over a joint strategy.

In contrast, the agents running the baseline, having initial-

ized their game by focusing on efficiency, are now reacting

suboptimally to their constrained action spaces. A video

presentation, demonstrating the concept of our approach as

well as our system in action, is provided as Extension 1.

6.2.2. Performance. Figure 11 depicts comparative perfor-

mance diagrams, derived upon running 200 randomly sam-

pled game scenarios involving three agents navigating a

small workspace of size 6× 6. The quality of agents’ deci-

sion making is illustrated in the profiles of average entropy

and average progress to destination, depicted in Figure 11a

and (b), respectively. It can be observed that the systems of

agents running SCN achieve faster entropy reduction and

higher average progress towards destinations, compared to

the systems running the baseline, with statistical signifi-

cance noted in the diagrams. Figure 13a depicts compar-

ative plots of average time to destination (left) and average

time to “get free,” which corresponds to the time an agent

first has full control over the scene evolution, i.e. the first

time when no other agents are ahead.

Similar comments can be made for the case of four

agents, navigating a workspace of the same size 6 × 6.

Figure 12 presents comparative performance diagrams for

entropy and progress to destination, whereas Figure 13b

depicts a comparison of average time to destination and

average time to get free.

For the simulated examples presented, each agent models

joint strategies as braids, defined with respect to a projec-

tion line that is parallel to its starting side. For the case of

the GREEDY agents, entropy was evaluated by employing

the inference mechanism of the agents running SCN, i.e. we

computed what their belief would be if they had access to

the inference mechanism of SCN agents. To ensure proper

comparison, the same set of braids was considered at each

time step for the same agent in both setups. The weighting

factor λ was set to 0.2, as it was found experimentally to

lead to a desired compromise between efficiency and con-

sensus. For deriving multiple candidate paths in the permu-

tation graph, we use the algorithm of Yen (1971) for finding

K shortest paths.

7. Discussion and future work

We have considered the problem of decision making in a

navigation scenario involving multiple rational and cooper-

ative agents that do not explicitly communicate with each

other. In such a scenario, the uncertainty over the exact

strategies of other agents make it hard for an agent to predict

their behaviors and, thus, to make safe and socially compli-

ant decisions over its own actions. These settings may be

found in a variety of real-world application, such as robotic

navigation in crowded human environments.

To address this problem, we presented an online plan-

ning framework, inspired by the insights of recent studies

on the cooperative nature of pedestrian behavior (Wolfinger,

1995) and the goal-directed inference of humans (Csibra

and Gergely, 2007). Our framework explicitly incorporates

the concept of cooperation by modeling multi-agent collec-

tive behaviors as topological global joint strategies, using

the formalism of braids (Birman, 1975). Our topological

model forms the basis of an inference mechanism that asso-

ciates observed behaviors with future collective topologies.

In the decision-making stage, each agent decides on an

action that corresponds to a compromise between its per-

sonal efficiency (progress towards destination) and a form

of joint efficiency (the status of a consensus on a joint strat-

egy of avoidance). To clearly showcase the benefits of our

decision-making concept, we deliberately studied a simpli-

fied version of the real-world problem by considering an

abstract, discrete setup, involving artificial agents playing

a cooperative game. Extensive trials over randomly gen-

erated, challenging scenarios demonstrated the benefits of

reasoning about joint strategies over a baseline that greed-

ily prescribed actions of high efficiency. Our algorithm was

shown to lead to a faster decrease of uncertainty regarding

the scene evolution, which resulted in efficiency increase

and lower execution times with high statistical significance.

Our purpose in this paper was to demonstrate the benefits

of a topologically based decision-making mechanism for

dynamic multi-agent environments. Future work involves

modifications of the proposed approach towards enabling

online, sensor-based, real-world operation in unstructured

environments. We contributed a first step towards that direc-

tion by developing a data-driven approximation of our infer-

ence mechanism with a deep neural model, learned from

demonstrations of simulated, challenging, multi-agent sce-

narios in continuous settings (Mavrogiannis et al., 2017); a

comparative evaluation against the social force model (Hel-

bing and Molnár, 1995) demonstrated promising results in

simulation. Another step towards approaching more real-

istic execution settings was done with our social momen-

tum motion planner (Mavrogiannis et al., 2018), which also
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Fig. 12. Comparative diagrams, generated upon running 200 experiments with four agents in a workspace of size 6 × 6. (a) Average

Entropy profile per agent per experiment over 200 scenarios involving four agents. On average, SCN agents reached a consensus over

a joint strategy faster. (b) Average Efficiency profile per agent per experiment over 200 scenarios involving four agents. On average,

SCN agents made greater progress towards their destinations per round. The red curves correspond to agents running SCN and the blue

curves to agents running GREEDY. The compromise between efficiency and consensus was set to λ = 0.2 and the number of paths per

permutation to three. Student’s t-tests were performed on all rounds to determine the statistical significance of the profiles difference.

The symbols ∗, ∗∗, and ∗ ∗ ∗ denote rounds on which the difference in the performance between SCN and GREEDY was found to be

significant to a degree described by p-values < 0.05, 0.01, and 0.001, respectively, according to a paired Student’s t-test. Owing to space

constraints, the significance symbols were place vertically.

Fig. 13. Average time to destination and average time to get free, i.e. reach a configuration at which no agents are ahead, generated after

running 200 experiments involving (a) three and (b) four agents, in a workspace of size 6×6. Red bars correspond to agents running SCN

and blue bars to agents running GREEDY. On average, the SCN agents (red color bars) reached their destination faster and managed

to “get free" faster than the GREEDY agents (blue color bars). The error bars indicate 25–75 percentiles. For these experiments, the

compromise between efficiency and consensus was set to λ = 0.2 and the number of paths per permutation to 3. The ∗ ∗ ∗ symbol

denotes a highly significant timing difference, according to Student’s t-test (p-value < 0.001).

follows the principles of topological braid theory to gen-

erate legible behaviors in multi-agent environments; this

approach was also shown to outperform social force and

ORCA (van den Berg et al., 2009) in terms of intent-

expressiveness, social compliance, and topological com-

plexity of executions.

Ongoing work involves learning a data-driven model of

our inference mechanism from human trajectory datasets

(e.g. Brščić et al., 2013) that would enable agents to form

a humanlike belief over the future behavior of systems of

multiple agents. We are also in the process of planning an

extensive user study that will measure the effects of the
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behaviors generated by our planning architecture on human

subjects in a controlled lab experiment.
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Notes

1. This specific convention is not particularly important, as long

as one is consistent. There are works that use the inverse

convention when defining the positive and negative generator

exponents. Our selection facilitates the exposition of further

concepts in the remainder of the paper.

2. A transposition can be described as a permutation involv-

ing exactly one swap of a pair of elements. An adjacent

transposition is a transposition involving an exchange of two

adjacent elements. An adjacent transposition implementing

an exchange of the elements with order j and j + 1, with

1 ≤ j < n− 1 in a list of n elements, is commonly denoted as

βj =
[

j j+ 1
]

.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video A simulated demonstration of our

system, illustrating the main con-

cepts underlying our approach.




