
A Unified Sampling-Based Approach to Integrated Task
and Motion Planning

Wil Thomason and Ross A. Knepper *

Department of Computer Science
Cornell University
Ithaca, NY 14850

{wbthomason, rak}@cs.cornell.edu

Abstract. We present a novel method for performing integrated task and motion
planning (TMP) by adapting any off-the-shelf sampling-based motion planning
algorithm to simultaneously solve for a symbolically and geometrically feasible
plan using a single motion planner invocation. The core insight of our technique is
an embedding of symbolic state into continuous space, coupled with a novel means
of automatically deriving a function guiding a planner to regions of continuous
space where symbolic actions can be executed. Our technique makes few assump-
tions and offers a great degree of flexibility and generality compared to state of
the art planners. We describe our technique and offer a proof of probabilistic
completeness along with empirical evaluation of our technique on manipulation
benchmark problems.

1 Introduction

Generalized robot autonomy requires robots to plan solutions for complex and varied
tasks. Most robot problems — for example, manipulation problems — require interaction
with the physical world; as such, they involve both a continuous geometric component
and a discrete symbolic component abstracting some part of the problem or world
state. Traditionally, these two aspects of the problem are studied independently; motion
planners solve geometric problems, whereas task planners solve symbolic problems. If
the planners are invoked serially, then the task plan may inform the geometric problem
specification. A more holistic planning approach, integrated task and motion planning
(TMP), seeks to unify the planning problem using information from each component to
ease the solution of the other.

The qualitative differences between the task and motion planning problems com-
plicate their effective integration. A task planner operates on a high-level abstraction
of the world and thus a valid task plan may have no corresponding valid motion plan
if the abstraction is too coarse. A task planning abstraction fine enough to capture the
geometric details of the world to the same degree as a motion planner may be intractable
for the task planner. Mitigating this problem by re-running the task planner naively

*This material is based upon work supported by the National Science Foundation under Grant
No. 1646417 and by the Department of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program. We are grateful for this support.

2 Thomason and Knepper

following a motion planner failure is also likely to fail, as most task planners produce
only a single plan for a given problem instance. Most TMP approaches focus on creating
a better interface between disparate task and motion planners.

This interface often uses the motion planner as a source of constraints and/or a
validator for task plans [9, 15, 24, 31]. Using a motion planner as a validator may
require repeated executions of both planners, which rapidly becomes expensive. Treating
a motion planner as a source of constraints (which is compatible with the validator
approach) may be more efficient but is often limited by the manual selection of a
restricted set of motion constraints to integrate in the task layer.

We present a novel approach to TMP that fully embeds a symbolic abstraction of a
planning problem into the problem’s continuous representation. This fused representation
(Section 3.2) allows a sampling-based motion planner to solve both problems simulta-
neously and efficiently in a single invocation. To make this process efficient, we also
contribute methods for: a factorization of the sampling problem to avoid a dimensional
explosion (Section 3.2), a continuous semantics for logical formulae in configuration
space (Section 3.3), and the use of standard task-planning heuristics as sampling biases
(Section 3.4), which we build into a planner-agnostic sampling algorithm (Section 3.5)
for solving TMP problems. Finally, we contribute a proof of concept implementation
(Section 3.6) of our technique and evaluate it (Section 5) on a realistic benchmark.

2 Related Work

TMP is an active field of research with many existing approaches. Most of these ap-
proaches represent task-planning problems using STRIPS-style [11] domains and actions
defined in terms of Boolean predicates: representations of symbolic state as Boolean
functions applied to environment symbols. We also use this specification format.

Similarly to the “semantic attachments” of Dornhege et al. [10] or the factorized
samplers of Garrett, Lozano-Pérez, and Kaelbling [13] (as well as related concepts in
other prior work [12, 19]), we rely on user-provided executable predicate semantics
implementations to test what predicates a given state satisfies. In contrast to these
approaches, our predicate semantics are simple tests on a state’s value, do not invoke a
motion planner, and are often portable between problems. Further, we use our predicate
semantics not only to test known states but also to automatically derive a navigation
function to find states satisfying a given predicate.

Prior work has applied sampling-based motion planners to symbolic planning and
TMP. Cambon, Alami, and Gravot [7] coupled probabilistic roadmaps (PRM [20]) with
symbolic search for transit and transfer paths over a manipulation graph to solve TMP
problems, Burfoot, Pineau, and Dudek [6] use rapidly exploring random trees (RRT [27])
to solve STRIPS-style planning problems, and Branicky et al. [5] apply RRTs to planning
for hybrid systems (requiring a fusion of continuous and discrete spaces).

Work in multi-modal planning [15–17, 30] and manipulation [2, 3] fuses discrete and
continuous configuration spaces. The “modes” of this literature correspond closely to
our notion of symbolic state. This work generally assumes the existence of (sometimes
precomputed) domain-specific samplers for constraint manifold intersections and uses
fixed, specific motion planning algorithms. In contrast, our work contributes an automatic

Unified Sampling-Based Task and Motion Planning 3

derivation for manifold-intersection samplers (Section 3.3) and a sampler compatible
with any sampling-based motion planning algorithm (Section 3.5).

The method of Plaku and Hager [29] is perhaps closest to ours. It also uses a
symbolic planner to guide the growth of a random motion planning tree toward a goal.
Our approach differs in its handling of purely discrete state (i.e. discrete state without a
reasonable continuous representation) and uses a different, improved method of guiding
the search and sampling in constraint-satisfying regions.

Approaches to finding constraint-satisfying states are diverse. Dantam et al. [9] use
the constraint stack of a satisfiability modulo theories (SMT) solver to efficiently search
possible task plans with knowledge of some geometric constraints. Garrett, Lozano-Pérez,
and Kaelbling [13] directly sample in feasible regions for actions, whereas Lagriffoul et
al. [23] propagate geometric constraints to find such regions, and Toussaint et al. [33, 34]
optimize a manually specified differentiable representation of symbolic action constraints.
Our approach introduces a continuous semantics for logical formulae specifying the
valid execution region of an action and optimizes this automatically derived potential
function to locate a state within the region. This approach is also closely related to work
in constrained motion planning [21] and formal methods for control synthesis [35].

3 Approach

Our approach is simple: we perform normal motion planning in a space including both
the geometric and symbolic state for a problem (Section 3.2). A valid motion plan in
this space will by construction obey all geometric, kinematic, and symbolic constraints;
as such, it solves both the task and motion parts of a TMP problem. Motion planning
in this space is possible with off-the-shelf sampling-based planning algorithms using
our novel sampling algorithm (Section 3.5). This sampler guides a planning algorithm
toward important regions of the fused geometric/symbolic space without breaking the
planner’s other properties, such as completeness and exploration bias.

3.1 Geometric and Symbolic Predicates

We consider task-planning problems specified by a domain consisting of a set of predi-
cates (Boolean-valued functions) and actions conditioned and operating on these pred-
icates [11, 28]. The “semantics” of a predicate — what it represents in the real world
— is determined solely by its use in the definition of the symbolic actions and problem
instance. In the context of TMP, we can partition these predicates into two types. Ge-
ometric predicates can be interpreted in terms of the continuous state space, such as
whether one object is on top of another. Symbolic predicates have a purely symbolic
meaning, such as whether a light is on or off. Each grounding (assignment of ground
atoms to arguments) of each symbolic predicate corresponds to one “bit” of symbolic
state. Similarly, for each grounding of each geometric predicate there is a corresponding
subset of continuous state space where the predicate is true. We call this subset the
predicate region for a given predicate. Formally:

Definition 1. Predicates and Predicate Regions
A Boolean-valued predicate is a function Pi : C Ñ Z2, where C is some configuration

4 Thomason and Knepper

space (we define a specific C below). We define the predicate region for Pi to be TPi “
tq P C : Pipqq “ Ju Ď C — that is, the subset of C where Pi is true. In general, TPi may
be of a lower dimension than C. Given a formula Fi involving one or more predicates,
we similarly define a formula region TFi . If the formula is a precondition for an action,
we typically refer to its formula region as a precondition region.

3.2 Composite Space

The hybrid systems, multi-modal planning, and manipulation planning literature com-
monly combines discrete modes and continuous degrees of freedom into a single planning
space [1, 14, 16, 17, 25]. Similarly, we construct a composite space in which the “modes”
correspond to unique settings of the bits of symbolic state of a TMP problem and the
continuous state consists of both robot configuration and movable object pose. Formally,

Definition 2. Composite Space
The composite space for a TMP problem is

C “ CRobot

ą

M

SEp3q
ą

B

Z2,

where M is the number of movable objects, B is bits of symbolic state, CRobot is the robot
configuration space, and Z2 is the two-element field. Although we use Boolean symbolic
state here, our definitions can be extended to arbitrary symbolic state.

This space may be high-dimensional for even moderate numbers of movable objects
and bits of discrete state. Three key insights make planning in composite space tractable:
(1) we can factor the composite space to reduce the effective dimensionality for planning;
(2) we can avoid sampling in the full object pose space; (3) we can sample within regions
that satisfy geometric predicates by introducing an “unsatisfaction semantics”. This
semantics provides a potential function we can optimize to sample configurations that
satisfy arbitrary combinations of predicates. We detail these insights below.

Factoring Composite Space: To decrease the effective dimensionality of a compos-
ite space, we can factor it based on unique settings of its bits of symbolic state. This
factorization is best understood through a helpful metaphor. By definition, a symbolic
predicate describes world state that is not captured by the continuous part of composite
space; it is akin to an additional fact added to the world state1. In other words, a particular
bit of symbolic state is either true or false for the entire continuous configuration space
at a given point in composite space. Thus, we can think about different combinations of
values for symbolic predicates as encoding distinct “universes”; continuous configuration
spaces where different symbolic facts are true. This factorization permits us to consider a
single symbolic state at a time as an otherwise ordinary continuous configuration space,
and only need to consider reachable symbolic states (i.e. the combinations of symbolic
predicate values attainable by taking some sequence of symbolic actions from the initial
symbolic state) rather than directly sampling symbolic states.

1The distinction between facts captured or not captured by the configuration space is largely a
choice of granularity in representation.

Unified Sampling-Based Task and Motion Planning 5

Sampling Object Configurations: We assume quasi-static dynamics (i.e. objects
move only when manipulated) to further reduce the difficulty of the composite configu-
ration sampling problem. This assumption, which holds for many realistic manipulation
problems, allows us to avoid sampling in the full object pose space. Instead, we can track
known stable poses of objects (e.g. by adding to a set of valid poses when we choose
an action that sets a held object down) and sample from this set. If we have further
information about valid stable poses for objects and stable surfaces in the scene, we can
sample poses more aggressively, including new poses that match the given template. Our
technique neither assumes nor relies on the availability of this information.

3.3 Unsatisfaction Semantics

To plan effectively in composite space, we need to efficiently sample states in precon-
dition regions for symbolic actions with effects that move us closer to the symbolic
goal. Accomplishing this without either an explicit representation of the regions where a
geometric predicate holds or a predicate-specific sampler is difficult; all previous work
that we are aware of relies on one of these two approaches [4, 13]. We cannot rely on
simple uniform sampling of the entire composite space because (1) many geometric
predicates correspond to lower-dimensional manifolds (and thus have measure zero in
the ambient space) and (2) even geometric predicates that are full-dimensional may be
sparsely distributed in the composite space. For a pathological example of this, consider
a predicate which is true whenever each of its arguments is an integer. The correspond-
ing predicate region is not a manifold (each of the points where it is true has no open
neighborhood), and the integers have measure zero in the reals.

We solve this problem by introducing a continuous semantics for geometric predi-
cates which tells us how far a given state is from the nearest state at which the predicate
is true, or how “unsatisfied” it is at that state. A geometric predicate (or formula of
geometric predicates) interpreted under this semantics provides a potential function
allowing us to project uniform random states from the ambient space directly onto the
nearest state in the predicate region. This projection requires computing the minimal
ε-weakening of a predicate at a point.

Definition 3. ε-Weakening
Take Pi to be a particular predicate defined solely as a formula of the comparison
operators t“,ă,ď,ą,ěu Ă RˆRÑ Z2, arithmetic operators t´,`u Ă RˆRÑ R,
and the Boolean operators^,_, 2. Then the ε-weakening of Pi is defined as WpPi, εq :
C Ñ R; that is, Pi evaluated with each of the aforementioned comparison operators
replaced by its ε-equivalent such that (for a, b real-valued arithmetic expressions):

a “ε b :“ |a´ b| ď ε

a ăε b :“ a ă b` ε

a ďε b :“ a ď b` ε

a ąε b :“ a ą b´ ε

a ěε b :“ a ě b´ ε

2Although we restrict ourselves to this sufficient set of operators in this paper, ε-weakening
can be extended to allow a broader operator set.

6 Thomason and Knepper

We define the minimal ε-weakening of Pi at a point q P C to be WminpPi, εq for

ε “ argmin
ε1

`

Pi1εpqq “ J
˘

We analytically solve for the minimal ε for a point q P C by refining our ε-weakened
operators and adding real-valued definitions for the logical operators ^ and _ (is
implemented as a syntactic transformation, e.g. flipping ď for ą, etc.):

a “ε b ùñ ε “ |a´ b|

a ăε b ùñ ε “ a´ b

a ďε b ùñ ε “ a´ b

a ąε b ùñ ε “ b´ a

a ěε b ùñ ε “ b´ a

a^ε b :“
a

maxpa, 0q2 `maxpb, 0q2

a_ε b :“ minpa, bq

We clamp ε to R`, so that WminpPi, εqpqq defines the shortest distance from a point
q P C to a point q1 P C such that Pipq1q “ J. We can use WminpPi, εq as a potential
function leading to the predicate region for Pi and use any technique for following
potential functions to find a state in said predicate region. For our proof-of-concept
implementation, we use forward-mode automatic differentiation with gradient descent to
find a sample in the truth region for any given predicate formula.

This semantics has an important subtlety: if a geometric predicate is combined
with other geometric predicates via ^ε or _ε in a formula, then its definition must
be restricted to using the above set of operators, conditionals, and iteration in order
for the unsatisfaction value of the formula to be correct. Geometric predicates used in
isolation in a formula may use any operators, etc., so long as (a) they return the result
of one of ă,ď,ą,ě,“ and (b) they compute a potential function. This stems from the
ε-weakening of ^ and _; in future work we seek to remove this restriction. In practice,
we find the set of allowable predicate functions even under this restriction to be sufficient.

Predicate regions have little required structure. Since WminpPi, εq gives the distance
from a state to the nearest state in the predicate region, ∇WminpPi, εq may be discon-
tinuous or have local minima at which Pi is not true. To mitigate these issues, we use
smooth approximations of min and max in our implementation and standard techniques
for escaping local minima. When gradient descent finishes, we test the resulting state
q against the ordinary Boolean version of Pi to ensure that it is valid. If it is not (i.e.
Pipqq “ false), we repeat gradient descent from a new uniform random sample in C.

3.4 Heuristic Guidance

We need to be able to pick precondition regions as subgoals to efficiently plan in
composite space. In other words, we require a means of selecting symbolic actions which
will accomplish the goal. We handle this by defining the following minimal interface to
a task-planning heuristic:

Unified Sampling-Based Task and Motion Planning 7

Definition 4. Heuristic interface
A heuristic Hpqq must return a list of actions A for which the symbolic part of state q
satisfies the symbolic part of the precondition of each a P A. Hpqq may optionally sort
A by Prioritypaq for each a P A.

Many heuristics and other methods of action suggestion satisfy this interface. In our
proof of concept implementation, we use the “helpful actions” heuristic from the FF
planner [18], chosen for its simplicity. The heuristic provides long-horizon symbolic
planning guidance; the quality of this guidance depends on the particular heuristic chosen.
The meaning of Priority depends on the particular heuristic; intuitively, it estimates
how important the action is to the overall solution.

We make no further assumptions on the heuristic. This means that we cannot assume
the heuristic has any knowledge of the geometry of the scene, the kinematics of the
robot, or any other factors that inform the physical feasibility of a symbolic action. This
information is critical for solving TMP problems efficiently. As such, we define the
scaled priority of a symbolic action to be:

Ppaq “
Prioritypaq

1` Failpaq ` γ ˚ Successpaq

where Prioritypaq is the heuristic priority of action a, 1 ď γ P R is a constant
scaling factor, and Failpaq and Successpaq are counts of the number of attempts
to use a that have failed (i.e. we could not find a state satisfying the precondition, or
the state satisfying the precondition was not added to the planner’s data structure) and
succeeded (i.e. we found a state satisfying the action precondition and added it to the
planner’s data structure), respectively. Intuitively, if an action keeps failing, it is less
likely to be part of a valid plan and should be deprioritized; if an action succeeds, then it
should also be deprioritized to avoid using the same actions redundantly.

3.5 Composite Space Sampling

We combine the tools from the previous sections into a sampling algorithm, shown in
Algorithm 1. Any sampling-based motion planner can use this algorithm as its sampler
to solve TMP problems in composite space (with the caveat that bidirectional planners
require further adaptation to plan in composite space, where “distance” is directional).

We use the heuristic of Section 3.4 to choose useful actions to attempt and use
ε-weakening to efficiently sample in the precondition regions for these actions. At a high
level, our algorithm treats these precondition regions as sub-goals for a sampling-based
motion planner. By planning between sub-goals in sequence, we are able to construct
a chain of motion plans which corresponds to a complete TMP solution. The call to
the heuristic on Line 18 of Algorithm 1 has one important subtlety: we request viable
actions from the heuristic for a particular symbolic state only after we have reached it;
as such, we avoid unnecessary task-planning effort by never forcing the heuristic to do
work for an impossible symbolic state.

3Using a biased coin ensures that we sometimes grow the planning structure “normally” within
single symbolic configurations. β may be thought of as trading off between the motion planning
problem and the symbolic planning problem.

8 Thomason and Knepper

Algorithm 1: Composite Space Sampling
Data: Task specification, scene description, predicate semantics implementations
Sampler Context :For c P C and u P U : a log of symbolic actions (if any) taken in c; a

set of metadata associated with u including valid object poses, etc.
Output :Sampled state in C

1 // Flip a coin which returns True with probability β3

2 if BiasedCoin() is True then
3 return NormalSample()
4 else
5 return HeuristicSample()
6 end
7 function NormalSample()
8 u Ð UniformRandompUq; // Symbolic state
9 p Ð UniformRandompValidPosespuqq; // Known valid pose

10 r Ð UniformRandompCRobotq; // Robot configuration
11 return MakeConfiguration(r, p, u); // Form composite config

12 end
13 function HeuristicSample()
14 repeat
15 c1

Ð NormalSample();
16 // Choose a valid action for the sampled symbolic

state: First, get the set of actions.
17 // This corresponds to Hpqq of Definition 4
18 h Ð PrioritizedActionspc1

q;
19 // Sample an action according to its scaled priority
20 a Ð PrioritySamplephq;
21 f Ð Preconditionpaq;
22 // Solve for a precondition-satisfying state using a

black-box optimizer
23 c Ð Solvepc1, fq;
24 until Satisfies(c,Preconditionpaq);
25 UpdateInfo(c.u,GetPosespcq); // Add to c.u viable pose set
26 UpdateLog(c, a); // Log use of a at c for plan execution
27 return c;
28 end

The calls UpdateInfo and UpdateLog update planner metadata. UpdateLog
logs associations between configurations and symbolic actions. This log is used to
instruct the robot to run the controller for a specific symbolic action at the correct state
when executing a plan. UpdateInfo updates a planner data structure tracking the valid
object pose sets associated with a symbolic state as well as symbolic state connectivity.
This information is used during sampling and distance computation.

3.6 Implementation

We have implemented a proof of concept of our algorithm in C++. Fig. 1 shows our
system architecture. We use OMPL [32] for motion planning (with our custom sampler
and composite configuration space as described in Section 3) and Bullet [8] for geometric

Unified Sampling-Based Task and Motion Planning 9

“Planet” Executable

PDDL
Domain

Annotated
Trajectory

PDDL
Problem

Scene
File

Predicate
Semantics

Planner Module

Output Module

JSONPlan Annotator

Plan Serialization

Input Module

OMPL
Planner

Bullet

LuaJIT

Collision
Checking

Action
Suggestion

Lua
Evaluation

Gradient
Descent
Solver

Composite
Space

Construction

Sampler
(Alg. 1)

Motion
Validation

Initial State
PDDL
Parser

Formula
Compiler

Scene
Parser

Domain

Goal

URDF OBJ
Loading

Key

Module
product

External
Dependency

Input

Output

Module

Meta-module

Data
Flow
Uses

Scene Graph

Composite
Space Plan

Control
Flow

Fig. 1: The architecture of our proof of concept implementation. We take as input a PDDL domain
and problem, as well as a file describing the robot and workspace and Lua semantics for a subset of
the PDDL predicates. We use these inputs to construct a composite space for the problem and run
a standard OMPL [32] motion planner in this space with our sampling algorithm (Algorithm 1).
The resulting composite state plan is transformed into a JSON representation of a robot pose
trajectory annotated with optional actions (e.g. grasping) to take at each point in the trajectory.
This trajectory can be executed by a standard controller for the robot.

collision checking. We use OMPL’s implementation of RRT [27] as our sampling-
based motion planner. We use PDDL extended with keywords to signify kinematic and
geometric predicates to specify symbolic domains and Lua functions to specify predicate
semantics; Listing 1 shows an example predicate definition in Lua. We chose Lua for its
speed (via LuaJit), easy interoperability with C++, and the availability of high-quality
scientific computing libraries for automatic differentiation. In particular, we use SciLua
for automatic differentiation.

function above(x, y)
return And(Le(x.pz - y.pz, 0.15), Ge(x.pz - y.pz, 0.0))

end

Listing 1: The Lua implementation of a predicate describing one object being above another.

We specify problems as a PDDL domain and problem instance coupled with a
scene file in the format described in Lagriffoul et al. [22]. We use this format for the
geometric part of our problem specifications to make it easier to benchmark our planner
against future planners also using this format. Source code for our planner is available at
https://github.com/cornell-rpal/planet.

http://luajit.org/luajit.html
http://scilua.org/
https://github.com/cornell-rpal/planet

10 Thomason and Knepper

4 Analysis

The bias β of the coin flip used in Algorithm 1 to choose between “normal” and heuristic
sampling is tunable and may have different optimal values in different domains. Both
normal and heuristic sampling are necessary for efficient performance; heuristic sampling
is more expensive and only returns states in action precondition regions, whereas the
more efficient and completeness-preserving “normal” sampling may be unable to find
some precondition regions and thus cannot grow the tree between symbolic states.

The minimal heuristic interface defined by Definition 4 allows us to swap out one
action suggestion method for another without having to change our technique at all. For
instance, the proof of concept implementation discussed in Section 3.6 implements the
FF [18] “useful actions” heuristic, but we could equally easily use a neural network
policy trained on a particular planning domain, a more sophisticated planning graph
analysis heuristic, or even some combination of multiple heuristics or a full task planner.

4.1 Probabilistic Completeness

Algorithm 1 preserves the probabilistic completeness of the motion planning algorithm
using it as a sampler (so long as BiasedCoin returns both True and False a non-
zero fraction β of the time and the action suggestion method eventually returns all
feasible actions for a given state). The proof is straightforward; we sketch it here:

Proof. As stated above, assume that BiasedCoin returns True with probability
0 ă β ă 1. Take H to be the action suggestion method used by Line 18 of Algorithm 1
and further assume that for any state q P C,

ď

nÑ8

Hpqq “ ViableActionspqq

where ViableActionspqq is the set of all actions which have precondition regions in
the symbolic state of q, and

Ť

nÑ8Hpqq is the union of the sets of actions suggested by
H over n invocations of H for q as n goes to84. In other words, H always eventually
suggests all viable actions for a state q P C.

Let i be the number of sampled states and S the set of samples. As i Ñ 8, also
n Ñ 8, and thus @q P S, H eventually suggests every viable action from q. Thus,
given Algorithm 1, as i Ñ 8, every viable action a for a sampled q P C will be
suggested and attempted infinitely often. Each invocation of the black-box solver starts
from a uniform random configuration; as the “cost” optimized by the solver (distance to
a precondition region) is convex, this means that as iÑ8 dispersion in the precondition
region [26] will go to zero (we effectively project from a ball around the precondition
region into the precondition region). Performing a viable action a from q introduces
symbolic states and object poses caused by applying the effect of a to q. Thus, as
i Ñ 8, we will eventually find precondition-satisfying samples arbitrarily close to

4For deterministic, stateless H, the set of actions returned will be the same on every invocation.
If H tracks the set of actions already suggested or is nondeterministic, then the set of actions
returned may differ on subsequent invocations of H for q.

Unified Sampling-Based Task and Motion Planning 11

every precondition-satisfying state, and thus we will eventually discover every “relevant”
object pose set and symbolic state.

Finally, as i Ñ 8, NormalSample will be invoked infinitely many times. As
NormalSample amounts to uniform random sampling of robot configurations and
known object pose sets and symbolic states, and as we have established, every object
pose set and symbolic state which could be part of a solution to the TMP problem
will eventually be discovered, it follows that NormalSample will eventually sample
within a ε-neighborhood of every state which could be a part of a solution to the TMP
problem. Hence, if the planning algorithm using the sampler defined by Algorithm 1 is
probabilistically complete using a “normal” sampler alone, it will remain probabilistically
complete when solving TMP problems using Algorithm 1 as its sampler.

5 Evaluation

We evaluate our proof of concept implementation on two benchmark problems from
the set proposed by Lagriffoul et al. [22]. We modify the “clutter sorting” problem by
adding our required annotations of kinematic and discrete predicates and providing
an implementation of the predicate semantics. We show results on this variant of the
problem as well as a variant with the red blocks removed from the scene. We include this
second variant to show that our system can handle obstacles like the red blocks when
they are present and also improve its performance in their absence.

We have chosen to use the problem format proposed by Lagriffoul et al. [22] for our
evaluation in an effort to make it easier to evaluate future TMP systems against ours
(i.e. by using what is intended as a standard specification format and set of benchmark
problems for the field).

5.1 Scenario Description

Our variant of the clutter problem of Lagriffoul et al. [22] involves sorting two groups
of blocks into specific zones located out of robot reach from each other. This problem
demonstrates scalability with the number of objects in the scene as well as the capability
to handle infeasible task actions in a large task space. The problem, shown in Fig. 2,
specifies a Willow Garage PR2 robot and places the blocks on a set of four tables.

5.2 Experimental Results

We have run our implementation on clutter problem instances ranging in size (the number
of objects to be moved) from one to eight, for ten trials of each instance size. The objects
to be moved are split evenly among blue and green blocks; if the total number is odd,
there is one more blue block than green block. There are always either zero (the blue line
in Figs. 3a and 3b) or fourteen (the orange line in Figs. 3a and 3b) red blocks present
in the environment. Figure 3a shows the number of states in the solution, and Fig. 3b
shows the planning time in seconds. We plot the mean time for each instance size. The
error bars show one standard deviation from each mean.

12 Thomason and Knepper

Fig. 2: Our simulation environment for the benchmark problem discussed in Section 5.1. The PR2
must find a plan to move the green blocks to the table with the green circle and the blue blocks to
the table with the blue circle.

Fairly benchmarking TMP planners is challenging. In addition to the usual problems
with reporting wall-clock time (different computer speeds, implementation languages,
levels of engineering “polish” and optimization), the results of raw performance com-
parisons depend heavily on choices made in the problem specification. For example,
the specification makes choices about whether variables should be discretized or left
in the continuum, how the semantics of the problem are implemented as predicates,
and even what state is relevant to the problem. These factors (and more) may affect the
performance of different TMP planners in different ways. Further, wall clock time may
not capture precomputation or other planning effort conducted offline; our technique
specifically avoids this sort of offline work. This field is still maturing, and it has taken
only first steps at standarizing the TMP problem [22]. The community still does not have
consensus on a good set of performance metrics to compare TMP planners. For instance,
how do generality and flexibility trade off against speed? How does the complexity
of writing specifications weigh in? We nevertheless report wall-clock time despite its
problems because it remains a widely accepted metric in the community.

Our implementation performs competitively with the state of the art; our evaluation
problem is similar to that of Dantam et al. [9] and requires a similar planning time for the
same object counts (note that our planning time includes both motion and task planning,
whereas the planning time reported by Dantam et al. [9] is only for motion planning).

The average plan size in number of states scales linearly with the number of objects.
For the clutter problem, the minimum number of states in a solution plan also scales
linearly with the number of objects — if an object is added to the problem with a random
position, then in expectation a constant number of states must be added to handle moving
that object. This shows that while the plans our implementation produces are not optimal
in length, they are only suboptimal by a “constant” factor (technically, by a random
variable independent of problem instance size).

Unified Sampling-Based Task and Motion Planning 13

(a) (b)

Fig. 3: Performance results on the “Clutter” problem

Our planning time increases exponentially as object count increases. This is not
uncommon in TMP planners solving similar problems, due to the combinatorial nature
of the task space. This poor performance may be exacerbated by the particular heuristic
we chose for our implementation. This heuristic [18] is naive and has no knowledge
of global plan feasibility or motion feasibility. As such, as object count increases, if
this heuristic cannot rank the priorities of the larger set of actions viable in a given
state, then our planner will tend to explore the actions broadly rather than following a
globally-aware sequence of actions. A more sophisticated heuristic to guide the action
search could correct this deficiency. It is also worth noting the large variance in planning
times for the larger problem instances. Much of this variance can be attributed to our use
of RRT, which has high variance in performance (we do not use random restarts).

We also ran our planner on a variant of the “Kitchen” problem from Lagriffoul et al.
[22] (we remove the radishes, which are intended to make manipulation actions more
difficult). We can solve the provided instance of this problem in an average of 304.6
seconds over five trials. We were unable to solve the full kitchen problem in reasonable
time, necessitating this simplification. We believe that our naive heuristic is unable to
give useful priority values for actions in the large task space of the full kitchen problem:
by investigating a histogram of the symbolic states our planner visits, we see that it
makes significant progress (i.e. it visits symbolic states which accomplish subgoals of the
full problem), but explores too broadly — that is, it doesn’t commit to a single task plan
and see it through to completion, but explores many possible task plans. We believe that
using a different heuristic, in particular a heuristic with some notion of global progress
toward the goal, would mitigate this problem.

The broad exploration exhibited by our implementation is a potential blessing. By
exploring task plans in parallel, the planner avoids overcommitting to a single plan and is
robust to task plan branches becoming nonviable without needing to backtrack. For this
same reason, we believe that our technique would also be useful in a nondeterminstic
execution context, unlike the current deterministic assumption. Upon action failure,
we can reuse the planning data structure our technique has grown during the original
planning phase to pick up replanning without needing to start over from the initial state.

14 Thomason and Knepper

6 Conclusion

This paper contributes a novel, efficient approach to solving integrated task and motion
planning problems. Our approach breaks the Gordian knot of TMP by simultaneously
searching for a task solution and motion solution in a composite space of symbolic and
geometric state. We are able to do so efficiently by using a novel continuous semantics for
symbolic predicates describing how “unsatisfied” they are at a given state to search for
states which satisfy the preconditions of symbolic actions. Further, our approach is both
general and flexible — we can reuse definitions of predicate semantics across domains,
search for solutions with different properties by changing predicate semantics, take
advantage of action suggestion methods tailored to problem domains without changing
our heuristic interface, and make use of any sampling-based planning algorithm simply
by using our sampling algorithm.

We present our algorithm and results based on analysis and experimentation with
a proof of concept implementation of our sampling algorithm on established bench-
marks [22] and show that we perform competitively and can solve realistic problems.

6.1 Limitations

Our technique makes a number of assumptions which may limit its applicability. Al-
though our technique could theoretically be expanded to a multi-robot context, we
assume the presence of only a single robot. We also do not consider dynamic constraints
and assume a quasi-static, deterministic, fully-observable environment. Additionally,
our technique makes no independent guarantees of optimality and is reliant on whatever
solution optimization the particular planning algorithm using our sampler provides.

6.2 Future Work

Our technique has the potential to be embarassingly parallel — multiple instances of our
sampler can operate largely independently in parallel, and this parallel potential could
be improved by creating independent samplers for each explored symbolic state.

We also hope that our technique’s agnosticism to the specific heuristic and sampling-
based planning algorithm used will permit investigation of the fundamental relationship
between task planning and motion planning to gain insight into techniques for faster,
more robust, flexible TMP solving.

References

[1] R. Alami, T. Siméon, and J.-P. Laumond. “A Geometrical Approach to Planning Manip-
ulation Tasks”. In: Proceedings International Symposium on Robotics Research. 1989,
pp. 113–119.

[2] Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Manipula-
tion with Multiple Action Types”. In: International Symposium on Experimental Robotics
(ISER). Vol. 88. Springer International Publishing, 2013, pp. 531–545.

https://hal.archives-ouvertes.fr/hal-01309950/document
https://hal.archives-ouvertes.fr/hal-01309950/document
http://link.springer.com/10.1007/978-3-319-00065-7_36
http://link.springer.com/10.1007/978-3-319-00065-7_36

Unified Sampling-Based Task and Motion Planning 15

[3] Jennifer Barry, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “A Hierarchical Approach
to Manipulation with Diverse Actions”. In: 2013 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2013, pp. 1799–1806.

[4] Dmitry Berenson, Siddhartha S. Srinivasa, and James Kuffner. “Task Space Regions: A
Framework for Pose-Constrained Manipulation Planning”. In: International Journal of
Robotics Research 30.12 (2011), pp. 1435–1460.

[5] M.S. Branicky, M.M. Curtiss, J.A. Levine, and S.B. Morgan. “RRTs for Nonlinear, Discrete,
and Hybrid Planning and Control”. In: 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475). Vol. 1. IEEE, 2003, pp. 657–663.

[6] Daniel Burfoot, Joelle Pineau, and Gregory Dudek. “RRT-Plan: A Randomized Algorithm
for STRIPS Planning”. In: Proceedings of the Sixteenth International Conference on
International Conference on Automated Planning and Scheduling. ICAPS’06. AAAI Press,
2006, pp. 362–365.

[7] Stéphane Cambon, Rachid Alami, and Fabien Gravot. “A Hybrid Approach to Intricate
Motion, Manipulation and Task Planning”. In: International Journal of Robotics Research
28.1 (Jan. 1, 2009), pp. 104–126.

[8] Erwin Coumans et al. Bullet Physics Library. 2013.
[9] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. “Incre-

mental Task and Motion Planning: A Constraint-Based Approach”. In: Robotics: Science
and Systems XII. 2016.

[10] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Michael Brenner, and
Bernhard Nebel. “Semantic Attachments for Domain-Independent Planning Systems”. In:
Towards Service Robots for Everyday Environments. Vol. 76. Springer Berlin Heidelberg,
2012, pp. 99–115.

[11] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3-4 (Dec. 1971),
pp. 189–208.

[12] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. “FFRob: An Effi-
cient Heuristic for Task and Motion Planning”. In: International Workshop on the Algorith-
mic Foundations of Robotics (WAFR). Springer, Cham, 2014, pp. 179–195.

[13] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. “Sampling-Based
Methods for Factored Task and Motion Planning”. In: The International Journal of Robotics
Research 37.13-14 (2018), pp. 1796–1825.

[14] Robert L Grossman, Anil Nerode, Anders P Ravn, and Hans Rischel. “Hybrid Systems”.
Vol. 736. Springer, 1993.

[15] Kris Hauser and Jean-Claude Latombe. “Integrating Task and PRM Motion Planning:
Dealing with Many Infeasible Motion Planning Queries”. In: ICAPS ’09 Workshop on
Bridging the Gap between Task and Motion Planning. ICAPS’09. 2009.

[16] Kris Hauser and Jean-Claude Latombe. “Multi-Modal Motion Planning in Non-Expansive
Spaces”. In: The International Journal of Robotics Research 29.7 (June 2010), pp. 897–915.

[17] Kris Hauser and Victor Ng-Thow-Hing. “Randomized Multi-Modal Motion Planning for a
Humanoid Robot Manipulation Task”. In: The International Journal of Robotics Research
30.6 (May 2011), pp. 678–698.

[18] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Generation
through Heuristic Search”. In: Journal of Artificial Intelligence Research 14 (2001), pp. 263–
312.

[19] Leslie Pack Kaelbling and Tomás Lozano-Pérez Tomas. “Hierarchical Task and Motion
Planning in the Now”. In: 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 1470–1477.

http://ieeexplore.ieee.org/document/6630814/
http://ieeexplore.ieee.org/document/6630814/
https://repository.cmu.edu/cgi/viewcontent.cgi?article=2024&context=robotics
https://repository.cmu.edu/cgi/viewcontent.cgi?article=2024&context=robotics
http://ieeexplore.ieee.org/document/1272639/
http://ieeexplore.ieee.org/document/1272639/
http://dl.acm.org/citation.cfm?id=3037104.3037155
http://dl.acm.org/citation.cfm?id=3037104.3037155
https://hal.laas.fr/hal-01976081/document
https://hal.laas.fr/hal-01976081/document
https://www.bulletphysics.org
http://www.roboticsproceedings.org/rss12/p02.pdf
http://www.roboticsproceedings.org/rss12/p02.pdf
http://link.springer.com/10.1007/978-3-642-25116-0_9
http://linkinghub.elsevier.com/retrieve/pii/0004370271900105
http://linkinghub.elsevier.com/retrieve/pii/0004370271900105
http://lis.csail.mit.edu/pubs/garrett-wafr14.pdf
http://lis.csail.mit.edu/pubs/garrett-wafr14.pdf
http://arxiv.org/abs/1801.00680
http://arxiv.org/abs/1801.00680
http://ai.stanford.edu/~latombe/papers/icaps-09/final.pdf
http://ai.stanford.edu/~latombe/papers/icaps-09/final.pdf
http://journals.sagepub.com/doi/10.1177/0278364909352098
http://journals.sagepub.com/doi/10.1177/0278364909352098
http://journals.sagepub.com/doi/10.1177/0278364910386985
http://journals.sagepub.com/doi/10.1177/0278364910386985
https://arxiv.org/abs/1106.0675
https://arxiv.org/abs/1106.0675
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391

16 Thomason and Knepper

[20] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars. “Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces”. In: IEEE Transactions on
Robotics and Automation 12.4 (Aug. 1996), pp. 566–580.

[21] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. “Sampling-Based Methods for Motion
Planning with Constraints”. In: Annual Review of Control, Robotics, and Autonomous
Systems 1.1 (2018), pp. 159–185.

[22] Fabien Lagriffoul, Neil T. Dantam, Caelan Garrett, Aliakbar Akbari, Siddharth Srivastava,
and Lydia E. Kavraki. “Platform-Independent Benchmarks for Task and Motion Planning”.
In: IEEE Robotics and Automation Letters 3.4 (Oct. 2018), pp. 3765–3772.

[23] Fabien Lagriffoul, Dimitar Dimitrov, Julien Bidot, Alessandro Saffiotti, and Lars Karlsson.
“Efficiently Combining Task and Motion Planning Using Geometric Constraints”. In: The
International Journal of Robotics Research 33.14 (2014), pp. 1726–1747.

[24] Fabien Lagriffoul, Dimitar Dimitrov, Alessandro Saffiotti, and Lars Karlsson. “Constraint
Propagation on Interval Bounds for Dealing with Geometric Backtracking”. In: IEEE
International Conference on Intelligent Robots and Systems. 2012, pp. 957–964.

[25] S. M. LaValle. “Planning Algorithms”. Cambridge University Press, 2006.
[26] Steven M. LaValle. “From Dynamic Programming to RRTs: Algorithmic Design of Feasible

Trajectories”. In: Control Problems in Robotics. Vol. 4. Springer Berlin Heidelberg, 2003,
pp. 19–37.

[27] Steven M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech.
rep. 98-11. Iowa State University, 1998.

[28] Drew McDermott. “PDDL - The Planning Domain Definition Language”. In: AIPS Planning
Competition. 1998.

[29] Erion Plaku and Gregory D. Hager. “Sampling-Based Motion and Symbolic Action Plan-
ning with Geometric and Differential Constraints”. In: Proceedings - IEEE International
Conference on Robotics and Automation. 2010, pp. 5002–5008.

[30] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and W. Burgard. “Opti-
mal, Sampling-Based Manipulation Planning”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). May 2017, pp. 3426–3432.

[31] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. “Combined Task
and Motion Planning through an Extensible Planner-Independent Interface Layer”. In:
2014 IEEE International Conference on Robotics and Automation (ICRA). May 2014,
pp. 639–646.

[32] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Library”.
In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012), pp. 72–82.

[33] Marc Toussaint. “Logic-Geometric Programming: An Optimization-Based Approach to
Combined Task and Motion Planning”. In: International Joint Conference on Artificial
Intelligence. 2015, p. 7.

[34] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. “Differentiable Physics
and Stable Modes for Tool-Use and Manipulation Planning”. In: Robotics: Science and
Systems XIV. Robotics: Science and Systems Foundation, June 26, 2018.

[35] Cristian-Ioan Vasile, Vasumathi Raman, and Sertac Karaman. “Sampling-Based Synthe-
sis of Maximally-Satisfying Controllers for Temporal Logic Specifications”. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 3840–3847.

https://ieeexplore.ieee.org/document/508439
https://ieeexplore.ieee.org/document/508439
https://doi.org/10.1146/annurev-control-060117-105226
https://doi.org/10.1146/annurev-control-060117-105226
https://ieeexplore.ieee.org/document/8411475/
https://journals.sagepub.com/doi/full/10.1177/0278364914545811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6385972
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6385972
http://planning.cs.uiuc.edu/
http://link.springer.com/10.1007/3-540-36224-X_2
http://link.springer.com/10.1007/3-540-36224-X_2
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://ieeexplore.ieee.org/document/5509563
https://ieeexplore.ieee.org/document/5509563
https://ieeexplore.ieee.org/document/7989390
https://ieeexplore.ieee.org/document/7989390
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
http://ompl.kavrakilab.org
http://ijcai.org/Proceedings/15/Papers/274.pdf
http://ijcai.org/Proceedings/15/Papers/274.pdf
http://www.roboticsproceedings.org/rss14/p44.pdf
http://www.roboticsproceedings.org/rss14/p44.pdf
https://ieeexplore.ieee.org/abstract/document/8206235
https://ieeexplore.ieee.org/abstract/document/8206235

	A Unified Sampling-Based Approach to Integrated Task and Motion Planning

