A Flexible Sampling-Based Approach to Task and
Motion Planning

Wil Thomason
Department of Computer Science
Cornell University
Email: wbthomason@cs.cornell.edu

I. INTRODUCTION

Generalized robot autonomy requires robots to plan solu-
tions for complex and varied tasks involving interaction with
the physical world. Traditionally, the (continuous) geometric
and (discrete) symbolic aspects of the problem are studied
independently; motion planners solve geometric problems,
whereas task planners solve symbolic problems. Integrated
Task and Motion Planning (TAMP) seeks to unify the
planning problem using information from each component to
ease the solution of the other.

Most TAMP approaches focus on information flow between
task and motion planners; the majority of these approaches
integrate the motion planning layer into the task planning
layer as a source of constraints and/or a validator for task
plans [1, 2, 5, 8]. Validating task plans with a motion planner
may require repeated expensive executions of both planners.
Getting constraints from the motion planner is more efficient
but is often limited by the manual selection of a restricted
subset of motion constraints to integrate in the task layer. Both
of these issues affect not only the efficacy of a planner but also
its robustness — planning for or responding to action failures
and uncertainty is difficult if doing so is computationally heavy
or if the system does not capture all reasons for action failure.

We present a novel approach to TAMP that fully embeds a
symbolic abstraction of a planning problem into the continu-
ous representation of the problem. This fused representation
allows a single sampling-based motion planner to solve both
problems simultaneously and efficiently in a single invocation
while implicitly capturing all geometric/kinematic constraints
on actions. To make this process efficient, we contribute
methods for: 1) a continuous semantics for logical formulae in
configuration space, 2) a factorization of the sampling problem
to mitigate a dimensional explosion, and 3) the use of standard
task planning heuristics as sampling biases. Our approach
lends itself to efficient replanning in the face of failure, which
we discuss as a possible extension to the technique.

II. APPROACH

Two ideas form the core of our approach: the composite
configuration space and the notion of “unsatisfaction” se-
mantics for Boolean predicates.
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A. Composite Space

The composite configuration space is a simple idea general-
izing the concept of modes from the hybrid systems planning
literature as well as the manipulation graph concept from
traditional manipulation literature.

Definition 1 (Composite Space). Take Cr to be the configu-
ration space of a robot R, O to be a set of manipulable objects,
and B to be the set of ground Boolean atoms in a symbolic
planning domain. Then the composite space corresponding to
the environment and domain is

C=Cpr X SE(3) X Zy
o B

That is, the Cartesian product of the ordinary robot configura-

tion space with a copy of SE(3) for each movable object and

a Boolean domain for each ground atom.

The advantages of planning in composite space are that:
1) we can use an ordinary motion planning algorithm to
solve both the symbolic and geometric parts of the problem
simultaneously, 2) the composite space implicitly encodes
all kinematic, geometric, and symbolic constraints on the
problem, and 3) exploring symbolic and geometric states in
tandem helps both parts of the problem guide the search of the
other. The composite space can be conceptualized as a copy of
continuous space for each setting (total assignment of values)
of the symbolic state in the domain. Symbolic actions “move”
between these copies. The planning problem is then that of
finding valid paths between states where symbolic actions can
be taken. This idea is similar to that of “modes” used by
e.g. Hauser and Latombe [3] and Vega-Brown and Roy [9]; our
composite space can represent both contact points and purely
symbolic states inducing changes to the manifold of feasible
configurations. Each copy is geometrically independent of
each other copy; thus we can factor the configuration space
by settings of the symbolic state dimensions and consider
only those settings which we reach directly in the course
of planning by applying symbolic actions from the initial
symbolic state.

B. Unsatisfaction Semantics

All TAMP approaches require a “bridge” between the
symbolic and geometric parts of the problem — some way



to translate a symbolic state to a state in the real world and
vice versa. Often this bridge takes the form of a domain-
specific black box. With an eye toward generalizing this, we
introduce unsatisfaction semantics as an extensible means of
geometrically interpreting symbolic state. The basic idea is that
we can define an alternative semantics for logical operators
(e.g. <,<,>,>,=, A, V) describing, for a given state and
formula, the Euclidean distance in physical space to the closest
state where the formula holds. Given implementations of
primitive predicates (e.g. on, at, etc.) using these operators,
we can automatically derive a representation for arbitrary
logical formulae (using the operators and predicates we have
defined). While this does not entirely escape the need for some
domain-specificity, it shifts the level of specification toward the
abstract (and reusable).

Unsatisfaction semantics lets us solve (using gradient de-
scent or any other optimization approach) for states in con-
tinuous space which satisfy arbitrary logical formulae. This
presents an efficient means of locating states satisfying the
preconditions for symbolic actions.

C. A Sampler-Only Algorithm for TAMP in Composite Space

We combine these ideas to create an efficient algorithm for
solving TAMP problems. Solving TAMP problems is equiva-
lent to motion planning in C and unsatisfaction semantics can
efficiently guide a motion planner to states where symbolic
actions can be taken; all that’s missing is a means of deciding
which symbolic actions are important. We thus assume that we
are given some black-box satisfying the interface: 1) Given
a setting of symbolic values s € X Zo, the black box
returns a list of actions which may be viable given s and
2) (Optionally) the list of actions returned are ranked by
“priority” (roughly, how important the black box thinks the
actions are to the problem solution). We use the “helpful
actions” heuristic from the FF planner [4] to provide this
interface in our proof of concept implementation. Given such
a black box, our algorithm is shown in Algorithm 1. In short:
Select between uniform random sampling in composite space
and sampling directly in the precondition region for an action
the black box says is important. This has the effect of biasing
the planner toward interesting areas of composite space.

Note that our algorithm only defines a sampler and is
agnostic to (a) the planning algorithm used, (b) the specifics
of action suggestion, and (c) the semantics of the predicates.
This allows us a great degree of flexibility in exploring options
for different planning problems. We have implemented Al-
gorithm 1 in C++, choosing RRT [7] as our sampling-based
planner and the helpful actions heuristic from FF [4] as our
black-box heuristic. We find that this implementation achieves
competitive performance on benchmarks from the set proposed
in Lagriffoul et al. [6].

III. EXTENSIONS FOR ROBUSTNESS

Though our TAMP technique assumes deterministic actions
and ignores dynamics (we make the common quasi-static
assumption), it is easily extended to efficiently respond to

Algorithm 1: Composite Space Sampling
Output : Sampled state in C

1 if BiasedCoin () is True then

2 | return NormalSample ()

3 else

4 ‘ return HeuristicSample ()

5 end

6

7

8

9

function NormalSample ()

// Symbolic state

u < UniformRandom(U);

// Valid pose

10 | p<«< UniformRandom(ValidPoses(u));
11 // Robot config

12 r < UniformRandom(Crobot);

13 return MakeConfiguration (r,p,u);
14 end

15 function HeuristicSample ()

16 repeat

17 ¢ < NormalSample ();

18 h «—PrioritizedActions(c);
19 a «— PrioritySample(h);

20 f < Precondition(a);

21 ¢« Solve(d, f);

2 until Satisfies (¢,Precondition(a));

23 UpdateInfo (c.u,GetPoses(c));
24 Updatelog(c,a);

25 return c;

26 end

action failure. Responding to action failure has two main
challenges: Determining the resulting state of the world and
planning to a solution from this new state without starting over
from scratch. The predicate semantics implementations we use
can also be used to find the new logical state for a system
after an action fails by determining the continuous state and
testing it for each implemented predicate. Further, once we
have the correct post-failure state, we can continue sampling
just as before, reusing the previous sampling effort (in the form
of the motion planning tree/roadmap and information about
important actions and action precondition regions) to find a
new solution. This resumption of planning is easy because
our technique does not commit to a single task plan for a
given problem, but explores many options in parallel, making
it easier to find a plan that still works after an action has
failed. This approach to handling action failure is desirable as
it does not require any up-front cost (as would e.g. making a
branching tree of plans based on possible action failures) and
can still efficiently recover from failures if they happen.
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