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ABSTRACT

Modern robots have to interact with their environment, search for
objects, and move them around. Yet, for a robot to pick up an object,
it needs to identify the object’s orientation and locate it to within
centimeter-scale accuracy. Existing systems that provide such in-
formation are either very expensive (e.g., the VICON motion cap-
ture system valued at hundreds of thousands of dollars) and/or suf-
fer from occlusion and narrow field of view (e.g., computer vision
approaches).

This paper presents RF-Compass, an RFID-based system for
robot navigation and object manipulation. RFIDs are low-cost and
work in non-line-of-sight scenarios, allowing them to address the
limitations of existing solutions. Given an RFID-tagged object, RF-
Compass accurately navigates a robot equipped with RFIDs toward
the object. Further, it locates the center of the object to within a few
centimeters and identifies its orientation so that the robot may pick
it up. RF-Compass’s key innovation is an iterative algorithm for-
mulated as a convex optimization problem. The algorithm uses the
RFID signals to partition the space and keeps refining the partitions
based on the robot’s consecutive moves. We have implemented RF-
Compass using USRP software radios and evaluated it with com-
mercial RFIDs and a KUKA youBot robot. For the task of furniture
assembly, RF-Compass can locate furniture parts to a median of
1.28 cm, and identify their orientation to a median of 3.3 degrees.

Categories and Subject Descriptors C.2 [Computer Sys-

tems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance, Theory

Keywords Robot Mobile Manipulation, RFID, RF Localization,
Optimization

1. INTRODUCTION

Today’s robots routinely replace human labor in assembly
tasks [34, 43]. However, the substantial cost and complexity in-
volved restrict their use to large factories with high-volume pro-
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duction lines. There, the robots are typically bolted to a bench at
a known location, and one type of parts is repeatedly presented to
them, one item at a time with a fixed positioning and orientation.
Such highly specialized assembly robots are cost-effective only in
the presence of economies of scale. This leaves small to medium
size factories and manufacturers unable to leverage robot opera-
tions to automate their production. Hence, it has been of a great
interest in both the robotics academic community and industry to
enable robots to perform more flexible and complex tasks, such as
assembling products [26], fetching and delivering items [7], and
collaborating with other robots [31]. For example, it is desirable to
have a robot automatically fetch the various components of IKEA
furniture and assemble them. In contrast to robots on large-volume
assembly lines, such a robot could be deployed to assemble differ-
ent types of furniture in a store.

Such more capable, adaptive robots must interact with their en-
vironment in the presence of uncertainty. They need to search for a
desired object, pick it up, and move it around. These tasks require
locating the object to centimeter-scale accuracy and identifying its
orientation to within a few degrees so that the robot may grasp
it. Currently, these functions rely on technologies that are expen-
sive and/or error-prone. For instance, recent research demonstrating
robots assembling an IKEA table [31] relies on the infrared VICON
motion capture system, which costs hundreds of thousands of dol-
lars [47]. Other solutions based on computer vision [52] and depth-
imaging [38] require learning visual models of the desired objects
and can fail in distinguishing visually similar objects or partially
occluded objects [52]. Further, all existing technologies, whether
infrared or vision-based, fail in the absence of a line-of-sight to the
object, e.g., furniture part covered by other parts.

In comparison to infrared and vision-based approaches, emerg-
ing RF-based localization systems [50, 41, 6] offer an appealing
alternative, with the advantages of being cost-effective and applica-
ble to occluded and non-line-of-sight objects. Further, the wireless
signal can encode the object ID, enabling the robot to easily iden-
tify a desired object without complex machine learning algorithms
based on object shape and color. There are two main challenges,
however, in using RF localization in robot navigation and object
manipulation tasks. First, although many robots today already have
WiFi connectivity, it is impractical to also place WiFi nodes on ev-
ery object the robot needs to interact with. Second, the accuracy
achieved by current RF localization techniques is not sufficient for
object manipulation and grasping. For example, fetching the correct
IKEA table leg without knowing its placement in the environment a
priori requires an accuracy of position and orientation on the order
of a few centimeters and degrees, respectively.
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Figure 1—Illustration of RF-Compass’s partitioning algorithm: By comparing the distances from the red RFID to a pair of blue RFIDs on
the robot, we can partition the space into two regions, one of which contains the furniture part. Overlaying these partitions narrows down the
candidate region. Further, the motion of the robot naturally leads to different ways of partitioning the space, which when combined iteratively
refine the candidate region as the robot navigates.

This paper introduces RF-Compass, an RFID-based system that
navigates and adjusts the actions of the robot to centimeter accu-
racy. In RF-Compass, ultra-low power, low cost RFIDs are placed
on both the robot and the objects it needs to work on. In contrast
to WiFi nodes, RFIDs (5–10 cents each) can be easily embedded
into physical objects, as articulated in the vision of the Internet of
Things [3]. In fact, many industries are already rapidly deploying
RFIDs on their products as a replacement to barcodes, which do not
work in non-line-of-sight settings [19, 18, 46].

RF-Compass’s key innovation is a new algorithm capable of
leveraging the robot’s consecutive moves to iteratively refine its lo-
cation and orientation estimates. Our algorithm uses pairwise com-
parison of RFID signals to partition the space into regions according
to their distances to the desired object. Suppose we have four tags
on the robot and one tag on the object as in Fig. 1(a). By comparing
whether the object is closer to tag 1 than to tag 2, we can partition
the space into two regions; one of them contains the desired object,
as shown in Fig. 1(b). We can repeat this process to check if tag 3
or tag 4 is closer to the RFID on the object. This will generate a
second partition, which when laid on top of the first partition, adds
specificity to the solution, as in Fig. 1(c) and then 1(d). Mathemat-
ically, each relation between a pair of tags on the robot and the tag
on the object translates into a linear constraint. We can incorpo-
rate these constraints into an optimization problem that bounds the
region where the object is located.

Comparing its distances to a few RFIDs on the robot may not
bound the object into a centimeter-scale region. The strength of the
algorithm comes from that every move of the robot gives us new
partitions, which we can lay over the old partitions to obtain a finer
region for the desired object. As the robot gets close, it can maneu-
ver its arm above the object to calibrate the size of the region to
the desired accuracy. Furthermore, by having more than one RFID
on the object itself, we can apply the same partitioning algorithm
to each of the tags on the object to discover the orientation of the
object and pinpoint its center.

An important feature of this algorithm is robustness to potential
errors in estimating the RFIDs’ pairwise distances. Specifically, the
optimization returns the region that is consistent with the maximum
number of pairwise constraints and ignores inconsistent constraints.
Correct pairwise distances are consistent with each other because
they all reflect the actual layout of the RFIDs. In contrast, errors are

typically random and inconsistent with each other, and hence can
be overcome by optimizing for consistency.

Summary of Results: We built a prototype of RF-Compass us-
ing software radios and commercial UHF RFIDs. We integrated the
system with ROS, the Robot Operating System [40] which has sup-
port for robot navigation and path planning. We used our prototype
to navigate a KUKA youBot robot [32] and direct its actions in
grasping an IKEA table leg in both line-of-sight and occluded sce-
narios. We compared RF-Compass with the VICON motion cap-
ture system used in past work on robot furniture assembly [31].
VICON is a highly accurate system that provides millimeter posi-
tioning information [47], but costs hundreds of thousands of dollars
and works only in instrumented rooms where the whole ceiling is
fitted with infrared cameras and the robot and objects are equipped
with intrusive infrared-reflective markers.

Our experiments lead to the following findings:

• Across experiments, the length of the path traversed by an RF-
Compass-guided robot to reach the object (an IKEA table leg)
is on average only 6% longer than the optimal path, and at most
16% longer than the optimal path.

• Using two RFIDs on the object, RF-Compass’s median accuracy
of estimating the center position and orientation is 2.76 cm and
5.77◦. Increasing the number of RFIDs on the object to four, RF-
Compass can pinpoint its center and orientation to a median of
1.28 cm and 3.3◦. These results enable commercial robots with
a variety of hand gripper sizes to grasp an object, while leaving
a sufficient margin for error, which we validated via trace-driven
simulations.

• The VICON infrared system cannot locate the furniture part in
occluded settings (e.g., the part is under a chair). Hence, it fails
to navigate the robot in these cases. In contrast, RF-Compass’s
performance is consistent in both line-of-sight and non-line-of-
sight.

Contributions: This paper makes the following contributions:

• RF-Compass is the first RF localization system that supports
robot object manipulation and grasping. It enables robots to
leverage RF signals to locate an object to within a few centime-
ters and identify its orientation to within a few degrees so that the
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robot may grasp it. As such, RF-Compass bridges robotics with
RF localization and solves a real problem for the robotics com-
munity, who needs localization solutions that are highly accurate,
cost-effective, and capable of dealing with occlusion.

• RF-Compass introduces a new RF localization algorithm formu-
lated as a space partitioning optimization problem. The new algo-
rithm has three features: 1) it can leverage the robot’s consecutive
moves to refine the accuracy of its estimates; 2) it is robust to po-
tential errors in pairwise comparisons of RFID distances; and 3)
it estimates the object’s orientation in addition to its location.

• Finally, RF-Compass is implemented and evaluated in a testbed
of RFIDs and robots, demonstrating the practicality of the design.

2. RELATED WORK

Enabling robots to navigate to objects in their environment and
grasp them is a fundamental problem in robotics, commonly re-
ferred to as mobile manipulation. In this context, RF-Compass fa-
cilitates two operations: object detection and centimeter-scale local-
ization. Past works that address these problems may be divided into
two categories. The first category requires significant instrumenta-
tion of the environment. In particular, the VICON motion capture
system [47], widely used in robotics [31, 35], requires the deploy-
ment of many infrared cameras (costing hundreds of thousands of
dollars) on the ceiling of the room of operation. It also requires
adding intrusive infrared-reflective markers to the objects as well
as the robot. The output of this system, however, is highly accurate
to the millimeter scale.

The second category of work requires no major modification
of the environment and mainly relies on optical cameras [42, 13]
or depth imaging (e.g., Kinect, LIDAR) [38, 12]. These systems
must solve the object detection problem using machine vision al-
gorithms. Thus, they typically require prior training to recognize
specific objects [42, 38]. When successful at detecting an object,
they can locate it with an error of a few centimeters to tens of cen-
timeters, depending on the amount of clutter and the system capa-
bility [28, 15]. The challenge in these systems is that variations in
background, lighting, scene structure, and object orientation exac-
erbate an already difficult computer vision problem, and can cause
these systems to miss the desired object [21, 15].

In comparison to the above systems, RF-Compass is relatively
cheap and does not require heavy instrumentation of the environ-
ment. It naturally solves the object detection problem by leveraging
the unique EPC [16] IDs of the deployed RFIDs, and hence elim-
inates the need for complex computer vision software. Also, since
RF signals propagate in non-line-of-sight, it can address the oc-
clusion problem which is common to all of the above approaches,
including VICON.

Prior papers have used RF signals, both WiFi and RFID, for lo-
calization and robot navigation [6, 22, 29, 30, 5, 45, 14, 41, 50, 27]
but not for grasping objects. The typical accuracy of these systems
is a fraction of a meter to a few meters. Although they are adequate
for fuzzier localization tasks like detecting which room a robot is
in, they cannot support high-precision tasks like object grasping and
manipulation.

Several past proposals can achieve higher localization accuracy
at the cost of covering the whole floor with a dense, surveyed grid
of RFID tags that are spaced at a few to tens of centimeters [39,
23, 44, 11, 49]. Among these proposals, the closest to our work is
PinIt [49], which employs dynamic time warping (DTW) to com-
pare RF signals in order to map a tagged object to its nearest neigh-
bor among the deployed reference RFIDs. RF-Compass builds on
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Figure 2—System Architecture: A task planning system directs
the robot to perform various actions in order to accomplish a higher-
level goal, such as fetching all parts of a piece of furniture and as-
sembling it. RF-Compass interfaces with the task planning system
to estimate the location of individual parts needed by the system.

this past work but differs from all proposals in this category along
four major axes: First, RF-Compass does not require a deployment
of reference RFIDs in the environment. Second, RF-Compass intro-
duces a novel RF localization algorithm formulated as a space par-
titioning optimization that leverages the robot’s consecutive moves
to iteratively refine the accuracy of the optimization. Third, RF-
Compass has built-in robustness to errors in identifying the nearest
neighbor based on comparing RF signals. Finally, RF-Compass is
significantly more accurate than past work and can localize an ob-
ject to within a couple of centimeters and identify its orientation to
within a few degrees, hence enabling robotic object manipulation
and grasping.

3. OVERVIEW

RF-Compass is an RFID-based solution for enabling robots to
navigate towards an object of interest and manipulate it. Although
we present the system in the context of the furniture assembly task,
RF-Compass’s technique applies to a variety of robotic applica-
tions, including other assembly tasks, fetching and delivery, and
robot collaboration.

3.1 Scope

Robot mobile manipulation tasks, e.g., delivery and assembly,
involve multiple modules that work together to complete the task.
These modules include: 1) a task planner that has a blueprint of
a sequence of actions to be performed by the robot in order to
complete the task; 2) a navigator that controls and commands the
robot’s wheels and hand to move towards a specified destination;
and 3) an object detection and positioning system that locates the
desired object and computes its orientation so that the robot may
navigate towards it and grasp it. Each of these modules on its own
spans a research area. RF-Compass focuses on the last module, i.e.,
it provides a centimeter-scale solution for object detection and lo-
calization. It is easy to integrate with standard task planners and
navigators. For our empirical evaluation, we have leveraged the
planner and navigator functions available in ROS, the Robot Op-
erating System [40].

RF-Compass’s design assumes that one can attach UHF RFIDs to
the body and hand of the robot, as well as the objects of interest. We
believe this assumption is reasonable since UHF RFIDs are cheap
and naturally designed to be adhered to products. We also assume
that the RFIDs on the robot and the furniture parts are within the
reading range of the RFID reader. Today’s UHF RFIDs have an
operating range of around 10 m [53, 48]. Thus, the assumption is
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Figure 3—The manipulator robot: In our experiments, the
KUKA youBot has 9 UHF RFIDs deployed on its hand and base.

satisfied in common cases where the delivery and assembly task is
performed in a confined space.

3.2 System Architecture

We provide a brief overview of how RF-Compass fits within
a standard robot mobile manipulation framework, illustrating the
components in our system and their interaction. A diagram of the
system architecture is shown in Fig. 2. The input to the system is
a high-level task, such as “fetch all parts and tools needed for ta-
ble assembly”. A task planner receives this input and constructs a
sequence of actions to be performed by the robot, such as “fetch
table leg 3”. It then queries RF-Compass about a particular object
“table_leg_3”.

Given the part identifier (“table_leg_3”) from the task planner,
RF-Compass looks up in its database the RFID tags on the part
and their positions within the part itself. Then, RF-Compass queries
both the RFIDs deployed on the robot and the ones on the part.
Based on the RFID signals collected, RF-Compass estimates the
center position and the orientation of the part with respect to the
robot.

RF-Compass returns to the task planner its estimate of the part’s
relative location to the robot as a tuple (direction φ, distance D, ori-
entation θ).1 Based on this relative location, the planner calculates
the robot motion needed. The planner issues instructions to the nav-
igation and manipulation component, which commands the robot to
move accordingly.

The task planner, the navigator, and RF-Compass reside on one
computer, and communicate with the robot over a WiFi link, a setup
commonly used in modern robots [40].

4. RF-COMPASS

In RF-Compass, we deploy a set of RFIDs on the manipulator
robot. For example, for the youBot which has a base of 0.58 m by
0.38 m and an arm of length 0.65 m, we deploy a total of 9 RFIDs,
as shown in Fig. 3. We also attach several (e.g., 1–4) RFIDs to each
of the manipulated objects.

RF-Compass uses an iterative algorithm, where each iteration in-
volves the following steps:

1 Measuring relative proximity: RF-Compass queries the RFIDs
on the robot and the manipulated object. It uses the RFID signals
to learn, for each tag on the object, whether it is closer to tag i or
tag j on the robot.

1RF-Compass’s estimate of the orientation θ is only meaningful
after the part is within a short distance from the robot, which is
needed for the final steps of positioning the robot hand for grasping.

Figure 4—Robot’s and object’s coordinate systems: The robot
and the object of interest each have their own coordinate systems.
The origin of the object coordinate system is represented as (x0, y0)
in the robot’s coordinate system, and its orientation is θ. The po-
sition of an RFID tag can be expressed in the robot’s coordinate
system as (x, y), or in the object’s coordinate system as (x̂, ŷ).

2 Localization by partitioning: RF-Compass feeds this pairwise
relative proximity information as constraints to a convex opti-
mization problem that partitions the space into regions according
to the relative proximity information.

3 Refinement: The partitions are overlaid over previously learned
partitions to keep refining the resolution. The algorithm stops
when RF-Compass can identify the object’s center and orien-
tation with sufficient precision. Otherwise, the robot moves to-
wards the partition that contains the object, and the algorithm
proceeds to the next iteration.

Below we describe these steps in detail.

4.1 Measuring Relative Proximity

RF-Compass bootstraps its algorithm with questions of the form:
given a pair of RFID tags on the robot, which of the two tags is
closer to a particular RFID tag on the object? The answers to these
questions provide a list of inequalities of the form dTP

k
,TR

i
≤ dTP

k
,TR

j
,

where TR
i and TR

j are two RFIDs on the robot, TP
k is an RFID on

the object, and dTP
k

,TR
i

is the distance between tag TP
k and tag TR

i .

RF-Compass then uses these inequalities as constraints in an itera-
tive space-partitioning algorithm that estimates the location of the
desired object to within a couple of centimeters and its orientation
to within a few degrees.

The literature has multiple proposals that RF-Compass may
leverage for obtaining such bootstrapping information. They esti-
mate the relative distance between pairs of RF sources by compar-
ing the RSSI [36], angle of arrival (AoA) [37, 4], or the multipath
profile of their signals [49]. In RF-Compass, we use the approach
in [49], which has been shown to be more robust to multipath effects
and non-line-of-sight propagation. To do so, we use an antenna ar-
ray on the RFID reader to receive the RFID signals. Such an antenna
array can be implemented cheaply using a single sliding antenna
by employing the technique of synthetic aperture radar (SAR) [17,
49]. We then estimate a measure of similarity between the signals
of two RFIDs using dynamic time warping (DTW). Higher DTW-
similarity between two signals is associated with a shorter distance.

We note that RF-Compass can deal with potential errors in the
above relative proximity information. Specifically, RF-Compass
obtains a large number of pairwise comparisons in the form of
dTP

k
,TR

i
≤ dTP

k
,TR

j
, creating a highly over-constrained partitioning

problem. The valid constraints are coherent, i.e., they agree on a
common region for the tag on the object, while the outliers tend to
be random and inconsistent with each other. In §4.3.A, we explain
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Term Definition

(x0, y0) the origin of object coordinate system (center of object) expressed in robot coordinate system
θ the orientation of the object coordinate system in the robot coordinate system

TR
1 , ..., TR

N the N RFIDs deployed on the robot

(xR
1 , yR

1 ), ..., (xR
N , yR

N) positions of TR
1 , ..., TR

N expressed in the robot coordinate system

TP the RFID at the object center, whose position is (x0, y0) in the robot coordinate system

TP
1 , ..., TP

K the K RFIDs deployed on object

(x̂P
1 , ŷP

1 ), ..., (x̂P
K , ŷP

K) positions of TP
1 , ..., TP

K expressed in the object coordinate system

(xP
1 , yP

1 ), ..., (xP
K , yP

K) positions of TP
1 , ..., TP

K expressed in the robot coordinate system

dTP
k

,TR
i

Euclidean distance between RFIDs TP
k and TR

i

ε a confidence threshold used in outlier rejection

z the vector to be estimated in basic optimization with a single RFID on the object z = [x0, y0]
T

z′ the vector to be estimated in optimization using multiple RFIDs on object z′ = [x0, y0, cos θ, sin θ]T

(xnew
0 , ynew

0 ) the origin of object coordinate system expressed in the new robot coordinate system
θnew the orientation of the object coordinate system in the new robot coordinate system

(xm, ym) the origin of the new robot coordinate system expressed in the old robot coordinate system
θm the orientation of the new robot coordinate system expressed in the old robot coordinate system

Table 1—Terms used in the description of RF-Compass.

how RF-Compass performs outlier rejection by seeking the solution
that agrees with the largest number of constraints.

4.2 Localization by Space Partitioning

The relative proximity information provides constraints on the
distances between the tags on the robot and those on the object. We
feed these constraints to a convex optimization solver that locates
the object via iterative space partitioning. Before we describe the
partitioning algorithm, we discuss the coordinate systems used in
expressing locations. For reference, all terms used in our algorithm
are defined in Table 1.

4.2.A Coordinate Systems

RF-Compass locates objects from the perspective of the robot –
i.e., it expresses locations in a Cartesian coordinate system whose
origin is at the center of the robot, and the three axes are oriented
according to the robot’s front-back, left-right, and up-down lines.
For clarity, we will omit the up-down coordinates and describe the
system in two dimensions.

RF-Compass exploits the fact that it knows the placement of the
RFIDs deployed on the robot, e.g. two RFIDs are placed on the left
and right of the robot’s hand. It likewise knows the placement of
the tags deployed on the object with respect to the object itself. For
example, IKEA may deploy two RFIDs at the two ends of the ta-
ble leg during manufacturing, and provide this information as input
to RF-Compass. Given this information, RF-Compass estimates the
position and the orientation of the object in the robot’s coordinate
system. Note that the placement of the RFIDs on the object is typ-
ically provided with respect to the object itself, such as one tag at
each end of a table leg. Thus, we need a transform to convert from
the object’s coordinate system to the robot’s coordinate system.

Fig. 4 illustrates the relation between these two coordinate sys-
tems. The origin of the object’s coordinate system is at position
(x0, y0) in the robot’s coordinate system, i.e., as perceived by the
robot. The object’s coordinate system is rotated by θ relative to the
robot’s coordinate system.

We denote the coordinates of an RFID in the robot’s coordinate
system as (x, y), and its coordinates expressed in the object’s system
as (x̂, ŷ). Given (x0, y0) and θ, one can convert between the two

coordinate systems as follows:

x = x0 + x̂ cos θ − ŷ sin θ

y = y0 + x̂ sin θ + ŷ cos θ
(1)

In RF-Compass, we define the origin of the object’s coordinate
system to be the center of the object. For any tag TP

k , k ∈ {1, ..., K}
deployed on the object, we know its position in the object’s coor-
dinate system (x̂P

k , ŷP
k ), but do not know its coordinates from the

perspective of the robot (xP
k , yP

k ). For any tag TR
i , i ∈ {1, ..., N} de-

ployed on the robot, we know its position (xi, yi) in the robot’s co-
ordinate system. Based on this set of information and the pairwise
relative proximity information discussed in §4.1, RF-Compass es-
timates the center of the object (x0, y0) and its orientation θ in the
robot’s coordinate system as explained below.

4.2.B Convex Optimization for a Single Robot Position and a

Single Tag on the Object

Although our algorithm is iterative, this section considers a single
iteration with a fixed robot location. We focus our discussion on the
basic case where one RFID TP is deployed at the center of the object
and N RFIDs TR

1 , ..., TR
N are deployed at (x1, y1), ..., (xN , yN) on the

robot.
Recall that dTP ,TR

i
is the Euclidean distance between object tag TP

and robot tag TR
i . RF-Compass uses the relative proximity informa-

tion from §4.1:

dTP ,TR
i
≤ dTP ,TR

j

(x0 − xi)
2 + (y0 − yi)

2 ≤ (x0 − xj)
2 + (y0 − yj)

2

[2(xj − xi) 2(yj − yi)] ·

[

x0

y0

]

≤ x
2
j + y

2
j − x

2
i − y

2
i (2)

The right side of the inequality and the row vector on its left side are
both known, since we know the placement of the tags on the robot.
The unknown variables are [x0, y0]

T , which RF-Compass aims to
estimate.

Given N tags on the robot, we have
N(N−1)

2
equations similar to

Eq. 2, which form a matrix inequality

Az ≤ b, (3)

where z = [x0, y0]
T . A is a matrix of size

N(N−1)
2

× 2, each row of

which is
[

2(xj − xi) 2(yj − yi)
]

for different pairs of i and j. b is a
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VICON

Markers

Figure 5—Robot arm and object: The figure shows the robot arm
and hand equipped with RFIDs marked in blue, and the IKEA table
leg with RFIDs marked in red. The silver balls on the robot and
the table leg are the VICON infrared-reflective markers (VICON is
used as a baseline).

column vector, where each element is x2
j + y2

j − x2
i − y2

i for different
pairs of i and j.

Eq. 3 defines a linear feasibility problem, which can be rewritten
in the following convex optimization formulation:2

minimize
z

0

subject to Az ≤ b
(4)

Many efficient methods exist to solve for z given A and b. In
our implementation, we use a solver based on the interior-point
method [20]. The solver uses logarithmic barrier functions to ap-
proximate linear inequality constraints and returns the center of
the feasible region. In this basic formulation, RF-Compass can use
the returned z = [x0, y0]

T to navigate the robot in the direction of
φ = arctan y0

x0
. At the end of each iteration, RF-Compass has an es-

timate of the distance to the object D =
√

x2
0 + y2

0. The robot con-
servatively moves by D

2
in each iteration, until the object is within

its reach, which can be decided by comparing the average distance
between the robot tags themselves and their distances to the object
tag.

4.2.C Generalizing to Multiple Tags on the Object

Aside from navigating towards the object, the robot also needs to
know the exact center position and the orientation of the object so
as to perform manipulation tasks such as grasping a particular part
of the object. In order to estimate the orientation and pinpoint the
center, we deploy K > 1 RFIDs TP

1 , ..., TP
K at (x̂P

1 , ŷP
1 ), ..., (x̂P

K , ŷP
K)

on the object. In our evaluation, we experiment with K = 2 to 4
tags in estimating the object orientation.

Since the long arm of the robot extends outside its base as Fig. 5
shows, once the object is within 0.6 m of the robot’s body center,
the tags installed on the robot’s hand and the ones on its base will
start to appear at different sides of the object. Fig. 6(a) shows the
topology of the same RFIDs as in Fig. 5 when viewed from above,
where TR

1 and TR
2 are the two tags next to the robot’s hand and TR

3

and TR
4 are two tags at the front of its base. The IKEA table leg has

two RFIDs deployed at its two ends.
Taking the object tag TP

1 alone, we can determine that it is in the
white partition in Fig. 6(a), using the basic optimization in 4.2.B.

2It is standard to formulate a feasibility problem as an optimization
by specifying a constant objective function [8].

Similarly, taking TP
2 , we can identify that it is in the white partition

in Fig. 6(b). Overlaying the two figures together produces Fig. 6(c).
Since we know the dimensions of the IKEA table leg and that TP

1

and TP
2 are at the two ends of it, we can leverage the relationship

between the two tags to jointly solve an optimization problem. In
Fig. 6(c), imposing the constraints based on the distance between
TP

1 and TP
2 allows us to better confine the orientation and center

position of the object. Next we explain how to incorporate such
constraints into our optimization problem.

Using the coordinate transform in Eq. 1, we have

x
P
k = x0 + x̂

P
k cos θ − ŷ

P
k sin θ

y
P
k = y0 + x̂

P
k sin θ + ŷ

P
k cos θ

(5)

For each tag on the object TP
k , RF-Compass evaluates its relative

proximity to each pair of robot tags TR
i and TR

j :

dTP
k

,TR
i
≤ dTP

k
,TR

j

(xP
k − xi)

2 + (yP
k − yi)

2 ≤ (xP
k − xj)

2 + (yP
k − yj)

2

Replacing xP
k and yP

k using Eq. 5 leads to:






2(xj − xi)
2(yj − yi)

2(xj − xi)x̂
P
k + 2(yj − yi)ŷ

P
k

2(yj − yi)x̂
P
k − 2(xj − xi)ŷ

P
k







T 





x0

y0

cos θ
sin θ






≤ x

2
j + y

2
j − x

2
i − y

2
i (6)

Note that we know all elements in the row vector on the leftmost in
Eq. 6, since the placement of the robot tags is known and the place-
ment of the tags on the object with respect to the object’s center is
known. Similarly, we also know the right side of the inequality. The
unknown variables are now x0, y0 and θ, the center position and the
orientation of the object in the robot’s coordinate system.

Given K tags on the object and N on the robot, we have
KN(N−1)

2

equations as Eq. 6, which form a matrix inequality:

A
′

z
′ ≤ b, (7)

where z′ = [x0, y0, cos θ, sin θ]T . A′ is a matrix of size
KN(N−1)

2
× 4,

each row of which is the row vector in Eq. 6 for different k, i, and j.
b is the same column vector as in the basic formulation before.

A′ and b are known to RF-Compass. If we consider cos θ and
sin θ as two variables, then Eq. 3 defines a feasibility problem linear
in z′. In order to leverage the relationship between various tags on
the object, we introduce another constraint cos2 θ + sin2 θ ≤ 1,3

and the formulation becomes:

minimize
z′

0

subject to A
′

z
′ ≤ b

‖z
′(3)‖2 + ‖z

′(4)‖2 ≤ 1

(8)

Eq. 8 is still a convex optimization problem and can be solved
using the same interior-point method as before. In fact, when the
robot is fairly far away from the tag, Eq. 8 reduces to the basic
formulation in Eq. 4. This is because all the tags on the object will
lie in one partition defined by the robot tags. As a result, the interior-
point method will estimate their positions to be the same, and hence
the orientation of the object θ cannot be decided. In other words, the
cos θ and sin θ estimated in z′ via Eq. 8 are not meaningful when
the object is far away. Once the object is within a certain distance to
the robot, different tags on the object will lie in different regions. In
this case, the joint optimization based on their relationship will lead
to a solution that best fits the position and orientation of the object.

3Note that we cannot impose the constraint as cos2 θ + sin2 θ = 1,
because such an equality is non-convex.
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(a) Partition for TP
1 (b) Partition for TP

2

 
 

 
 

 

 

 

 

(c) Constraining the center and orientation

Figure 6—Utilizing multiple tags on object: (a) and (b) show the partitions obtained by individually locating TP
1 and TP

2 using the basic
optimization in Eq. 4. Leveraging the knowledge about the relationship between their positions, RF-Compass formulates a joint convex
optimization problem, pinpointing the orientation and center position of the object.

4.3 Iterative Refining and Outlier Rejection

RF-Compass leverages the motion of the robot to iteratively re-
fine the resolution of partitioning. Specifically, each motion of the
robot (e.g., moving its base or adjusting its hand) is an iteration.
Each location of the robot will result in a different set of partitions.
By overlaying these partitions, we can obtain a larger number of
smaller regions, i.e., a higher resolution of the space.

Translating this idea into an iterative algorithm, we formulate a
larger convex optimization problem by integrating the constraints
derived from several consecutive moves of the robot. Note, how-
ever, that as the robot moves, its own coordinate system changes.
Since RF-Compass knows the motion of the robot, we can trans-
form the different coordinate systems in different iterations to a
unified one. Yet, due to minor wheel slips of the robot, odometry
error accumulates as the robot moves more and more, which means
the coordinate transforms will be less and less accurate. Hence, RF-
Compass only combines the partitioning constraints created in three
consecutive motions of the robot and across at most 2 m.

Without loss of generality we describe how to formulate a larger
convex optimization problem by integrating over two iterations, i.e,
two consecutive locations of the robot. Let us still use Eq. 6 to rep-
resent the linear constraints created at the first location. Now let us
consider the linear constraints at the second location:







2(xj − xi)
2(yj − yi)

2(xj − xi)x̂
P
k + 2(yj − yi)ŷ

P
k

2(yj − yi)x̂
P
k − 2(xj − xi)ŷ

P
k







T 





xnew
0

ynew
0

cos θnew

sin θnew






≤ x

2
j + y

2
j − x

2
i − y

2
i

Since the robot has moved, the position and the orienta-
tion of the object with respect to the robot has changed:
z′new = [xnew

0 , ynew
0 , cos θnew, sin θnew]T is different from z′ =

[x0, y0, cos θ, sin θ]T . However, the placement of the RFIDs on the
robot with respect to the robot itself does not change; nor does the
placement of the RFIDs on the object with respect to the center of
the object. As a result, the right side of the inequality and the row
vector on the leftmost are known, and can be calculated similarly
as at the first location: A′newz′new ≤ bnew.4

We use xm, ym and θm to denote the origin and orientation of the
coordinate system at the second robot location in the first coordi-
nate system, i.e., the one defined in the first iteration. RF-Compass
knows xm, ym and θm because we know the exact movement the
robot performed. We can derive the following equation using the

4Note that A′new, bnew are different from A′, b because the relative
proximity information changes as the robot moves.

coordinate transform in Eq. 1:

z
′ = U · z

′new + V, (9)

where

U =









cos θm − sin θm 0 0
sin θm cos θm 0 0

0 0 cos θm − sin θm

0 0 sin θm cos θm









(10)

and

V = [xm, ym, 0, 0]T (11)

Since we have z′new = U−1 · (z′ − V), we can rewrite A′newz′new ≤
bnew as

A
′new

U
−1 · (z′ − V) ≤ b

new
(12)

A′new, U, V and bnew are known, hence by now we have transformed
the partitions created in the second iteration into linear constraints
in the first iteration’s coordinate system, with the same variable z′.
Thus, we can combine these linear constraints with the ones in the
first iteration and solve them jointly. The resulting optimization has
the same form as Eq. 7 except with more rows, and can be solved
similarly.

Feasibility problems in the form of Eq. 12 are solved using lin-
ear programming and have a complexity of O(rn2.5), where n is
the number of linear constraints and r is the rank of the matrix
A′newU−1 [51]. In our implementation, we use the CVX [20] MAT-
LAB package to solve the convex optimization problem. While it
is possible to reduce the running time by optimizing the code, the
MATLAB code on a 64-bit laptop with Intel Core i5 processor takes
on average 0.6 seconds, which is insignificant compared to the me-
chanical process of moving the robot.

4.3.A Outlier Rejection

The RF propagation environment can result in outliers in RF-
Compass’s relative proximity measurements, i.e., the optimization
takes the constraint dTP

k
,TR

i
≤ dTP

k
,TR

j
while tag TP

k is in fact closer to

tag TR
j than to tag TR

i . RF-Compass’s outlier rejection works as be-
low. On a high level, since the iterative algorithm is formulated as
an over-constrained system with a large number of relative proxim-
ity constraints, the optimization problem will turn out to be infeasi-
ble due to the outliers. However, the majority of the relative prox-
imity constraints are correct and will coherently converge. Thus,
we can leverage this to reject the inconsistent outliers by seeking a
solution that agrees with most of the constraints.
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(a) Center position accuracy (b) Orientation accuracy

Figure 7—Iterative refining by combining multiple moves of

robot: This figure shows the median, 10th, and 90th percentile accu-
racy of RF-Compass’s joint optimization, as we vary the number of
robot moves combined. The median accuracy is around 4 cm when
using a single location of the robot to partition the space. The ac-
curacy quickly improves to within a fraction of a centimeter as the
algorithm overlays the partitions obtained from consecutive moves
of the robot.

In particular, since outliers are more likely to occur when the pair
of distances being compared have a small difference, RF-Compass
sets a predefined threshold ε and decides that tag TP

k is closer to tag
TR

i than to TR
j only if mTP

k
,TR

i
≤ (1 − ε) · mTP

k
,TR

j
, where mTP

k
,TR

i
is the

DTW distances measured between tags TP
k and TR

i [49]. The larger
ε is, the more constraints we are ruling out from the optimization,
and the more confident RF-Compass is about the remaining con-
straints. RF-Compass initializes the confidence threshold ε = 0,
and increases it by 0.05 each time if the optimization problem is in-
feasible, until finding a solution. In our experiments, with 9 RFIDs
on the robot and 2–4 RFIDs on the object, typically increasing ε

to 0.05 or 0.1 is sufficient to solve the optimization and reject the
outliers.

Using the above techniques to refine the estimation and reject
outliers, RF-Compass directs the robot step by step to reach the
object of interest and grasp it. RF-Compass decides that the robot’s
hand is well-positioned for grasping the object, when the proximity
metric between the tags installed on the left and right of the hand
and their counterparts on the object is below a threshold. At this
point, RF-Compass’s iterative partitioning algorithm terminates and
lets the robot grasp the object.

4.4 Simulation Results

To understand the resolution that can be achieved using our op-
timization formulation of the partitioning algorithm, we perform a
simulation with six RFIDs on the robot including the two next to
its hand as in Fig. 5, and two RFIDs on the object. We focus on
the accuracy of estimating the center position and the orientation of
the object in the final steps of the algorithm. Hence, we assume the
object is already within reach, e.g., 25 cm of the robot’s hand, and
check whether the algorithm can pinpoint the object’s location to
within a few centimeters and its orientation to within a few degrees,
so that the robot may grasp it. In each trial, we randomly generate a
location and orientation for the object. We derive the relative prox-
imity constraints based on the positions of the RFIDs on the robot
and the RFIDs on the object.

Impact of combining partitions across consecutive moves of the

robot: We investigate the impact of iterative refinement on the per-
formance of RF-Compass. We plot in Fig. 7 the center position and
orientation accuracy of the iterative partitioning algorithm when it
utilizes different numbers of consecutive robot moves to form the
joint optimization. Fig. 7 shows the median accuracy as well as the
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Figure 8—Simulation results for the partitioning algorithm
with 10% errors in the relative proximity information: Despite
that 10% of the distance constraints are flipped randomly, the parti-
tioning algorithm still achieves a centimeter scale location accuracy
and can identify the orientation to within a few degrees.

10th and 90th percentiles (error bars) for 1000 runs. As we can see,
the error of the center position estimate rapidly decreases as the
number of combined robot moves increases. The median position
accuracy is around 4 cm when using a single location of the robot,
and quickly improves to within a fraction of a centimeter as we
overlay the partitions obtained from multiple moves of the robot.
This behavior is expected because every time we add a new loca-
tion of the robot (i.e., a new iteration), the granularity of partitioning
becomes finer. Similarly, the orientation accuracy also quickly im-
proves as we combine partitions obtained from consecutive moves
of the robot.

We note however that the simulation assumes no noise in odom-
etry measurements. In practice, odometry errors accumulate as the
robot moves. In order to limit this effect on the performance of RF-
Compass’s iterative algorithm, we only combine up to three moves
of the robot.

Robustness to potential errors in relative proximity constraints:

We investigate RF-Compass’s outlier rejection. We flip 10% of the
relative proximity constraints so that they are wrong. We then run
the partitioning algorithm identifying the region that is consistent
with the maximum number of pairwise constraints and plot in Fig. 8
the CDFs of the error in estimating the center and the orientation of
the object. The CDFs are taken over 1000 runs.

Fig. 8(a) and 8(b) show that the median error in center position is
0.96 cm, and its 90th percentile is 2.5 cm. The median error in ori-
entation estimation is only 3.1◦ and its 90th percentile is 10◦. These
results verify that the partitioning algorithm is both accurate, and
robust to potential errors in the relative proximity information. This
robustness is due to that we are dealing with an over-constrained op-
timization. Errors tend to make the optimization infeasible, whereas
all of the correct constraints have a consistent solution. Hence, elim-
inating the constraints that make the optimization infeasible tends
to eliminate the errors.

5. IMPLEMENTATION

We built a prototype of RF-Compass using USRP software ra-
dios [25] and the Alien Squiggle RFIDs [2]. We used the prototype
to direct the actions of a KUKA youBot [32] in reaching and grasp-
ing furniture parts, as detailed below.

Robot and Manipulated Objects: We use a KUKA youBot robot,
which has four separately-controlled wheels and is capable of mov-
ing with arbitrary linear and angular velocity up to approximately
80 cm/sec and 1 rad/sec. The robot has a manipulator arm, which
consists a serial chain of five links 65.5 cm in total length and
five joints. The combination of the arm and the wheels is capa-
ble of performing essentially arbitrary motions in all dimensions.
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Figure 9—Antenna and commercial UHF RFID used in exper-
iments: (a) We move the VERT900 6-inch vertical antenna in a
straight line to emulate a linear antenna array. (b) the Alien Squig-
gle General Purpose UHF RFID Tags. The sizes of (a) and (b) are
not proportional to the real sizes of the devices.

The arm can lift a payload of 0.5 kg, which is sufficient to assem-
ble many products from IKEA. The youBot hand’s maximum aper-
ture (finger tip-to-tip distance) is 7.5 cm. In these experiments, the
robot’s goal is to grasp table legs measuring 5 cm wide, leaving a
2.5 cm margin of error tolerance.5 The furniture parts are the legs
of the IKEA Lack table [24]. The dimensions of the table legs are
40 cm×5 cm×5 cm.

RFIDs: We deploy the Alien Squiggle RFIDs [2] on both the robot
and the furniture part. The Alien Squiggle Inlay shown in Fig. 9(b)
is a commercial off-the-shelf passive UHF RFID widely used in
supply chains, logistics and asset tracking operations. Each tag
costs 5–10 cents. 9 RFIDs are placed on the robot and 1–4 RFIDs
are placed on the table leg. Note that each RFID has a unique 96-
bit EPC ID [16], and as a result we can easily distinguish different
objects in a pile based on the unique IDs of the RFIDs attached to
them.

RFID Reader and Antenna Array: We adopt a USRP implemen-
tation of an EPC Gen-2 RFID reader developed in [9] to query the
RFIDs. We use RFX900 daughterboards and Cushcraft 900 MHz
RFID reader antennas [33], and run all experiments at a carrier fre-
quency of 920 MHz.

As mentioned in §4.1, we extract relative proximity information
using the approach in [49]. Similarly to the work in that paper, we
implement an antenna array on the RFID reader by using a sin-
gle sliding antenna and post-processing the received signal with
the SAR algorithm [17]. Specifically, one option for building an
antenna array is to use multiple USRPs, synchronize them via an
external clock, and have each of them act as one antenna in the
array. This approach, however, will unnecessarily limit the array
to a handful of antenna elements. Alternatively, and since we are
working with robots, we can leverage motion to build an array with
many antenna elements using a technique known as SAR (Synthetic
Aperture Radar) [17, 49, 1]. To implement SAR, we mount a USRP
RFID reader equipped with an omni-directional VERT900 antenna
(shown in Fig. 9(a)) on a second robot, which moves with a constant
speed in a straight line. As it moves, the antenna acts as if it were
a different antenna situated at that point in space. Thus, this mov-
ing receive antenna emulates in time an array of antennas spaced
along a line. One can then process the signal received by the mov-
ing antenna at different points in time as if it were the output of a
spatial array of antennas, and apply standard antenna array equa-
tions (see [49] for more details on SAR).

The reader repeatedly queries the tags and uses the moving an-
tenna to collect the response signals. We use these signals to extract

5In comparison, Baxter [42], like most commercial robots designed
for manipulating objects, has more joints (seven), longer arms
(104 cm), larger hands (>15 cm) and higher payload (2.3 kg) than
the youBot, and thus can pick up a wider variety of objects.

Figure 10—Ratio between the length of path traversed by the
robot and the length of optimal path in line-of-sight: When di-
rected by RF-Compass, the path traversed by the robot is on average
only 6% longer than the optimal path, and at most 16% longer.

pairwise relative proximity information as explained in §4.1, which
is fed to the partitioning algorithm.

Navigation and Manipulation: ROS [40] provides software stacks
for navigation and manipulation. The navigation stack delivers real-
time obstacle avoidance and the object manipulation stack provides
control of a manipulator arm for picking up and moving objects.

Baseline: In [31], the VICON motion capture system is used to
demonstrate letting a youBot fetch and deliver the same type of
IKEA table legs. Thus, we use VICON as a baseline. We place
both the robot and the table legs inside the VICON room and vary
their initial distance in a range of 2–6 meters. The choice of the
range is mainly dictated by the size of our VICON deployment
where the maximum area reliably covered by the infrared cameras
is 6×5 m2.6 VICON requires placing infrared-reflective markers on
both the robot and the object of interest. Thus, we place 10 such
markers on the robot and 4 markers on the table leg.

6. EVALUATION

RF-Compass is applicable to many mobile manipulation tasks,
such as tool delivery, collecting wastes, collaborating with other
robots, etc. Here, we evaluate it in a task related to furniture assem-
bly. Specifically, the IKEA furniture assembly application in [31]
involves robot collaboration where the delivery robots retrieve var-
ious furniture parts and hand them off to the assembly robots for
installation. In our evaluation, we focus on the job of the delivery
robot.

We study RF-Compass’s performance in three phases:

• Navigation: In this phase, RF-Compass should detect the needed
part and navigate the delivery robot towards it. By the end of this
phase, the object is within the reach of the robot’s hand. RF-
Compass can determine that the furniture part is within reach
when the RFIDs next to the robot’s hand are closer to the RFIDs
on the part than to the RFIDs at the end of the robot’s base, as
described in §4.1. For this phase, we evaluate the length of the
navigation path traversed by the robot.

• Localization: The second phase is preparation for manipulation.
For this phase, we evaluate whether RF-Compass can accurately
identify the center of the part and its orientation to enable the
robot to grasp it.

• Object Manipulation: The third phase is grasping. We evaluate
the impact of RF-Compass’s accuracy on the number of trials the
robot needs before it can successfully grasp the part.

6This deployment of VICON costs a few hundred thousand dollars.
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Figure 11—Ratio between the length of path taken by the robot
and the length of the optimal path in non-line-of-sight: When
directed by RF-Compass, the path traversed by the robot is on av-
erage 5% longer than the optimal path, and at most 12% longer.

6.1 Efficiency of RF-Compass in Robot Navigation

We conduct 10 experiments in line-of-sight and another 10 ex-
periments in non-line-of-sight, comparing using RF-Compass and
VICON to navigate the robot towards the part. In each experiment,
the robot and the furniture part are placed at different random initial
locations and their initial distance is in a range of 2–6 meters. We
compare the paths traversed by the robot using RF-Compass versus
using VICON, for the same sets of initial locations. RF-Compass
uses 2 RFIDs on the furniture part and 9 RFIDs on the robot, while
the VICON system uses 4 infrared-reflective markers on the furni-
ture part and 10 such markers on the robot.
Line-of-Sight Evaluation: In these experiment, we keep the em-
ulated antenna array, the furniture part, and the robot all in direct
line-of-sight of each other. We also ensure that both the robot and
the part are within the reliable detection region of the VICON mo-
tion capture system and there is no occlusion of the VICON markers
on the robot or the part.

Fig. 10 shows the CDF of the ratio between the length of the
path traversed by the robot to that of the optimal path, for both
RF-Compass and VICON. The optimal path has a length equal to
the Euclidean distance between the robot’s initial position and its
destination. In this case, the VICON system can locate both the
furniture part and the robot to millimeter accuracy, since there is
no occlusion or clutter of the infrared-reflective makers. Hence, it
always finds the optimal path. The path traversed by the robot as
directed by RF-Compass is on average 6% longer than the optimal
and at most 16% longer than the optimal path.
Non-Line-of-Sight Evaluation: In these experiments, we put up a
1.5 m×2.2 m solid wooden board supported by metal structures to
block the line-of-sight for RF-Compass’s emulated antenna array.
We also create occlusion of the furniture part by placing it under
an office chair. We further use desks, chairs, and other objects to
introduce obstructions. In each experiment, we vary the placement
of the obstructions.

Fig. 11 shows the CDF of the ratio between the length of the
path traversed by the robot to that of the optimal path. Since the
object is occluded from the sight of the infrared cameras, the VI-
CON system cannot locate it and hence fails to provide an estimate
of where the robot should move. This behavior is common in exist-
ing localization systems for object manipulation, including vision-
based systems as well as infrared systems like VICON, LIDAR, and
Kinect. In contrast, RFID signals can penetrate obstacles and reach
the RFID reader even when the object is occluded. Thus, as in the
line-of-sight experiments, with non-line-sight and occlusions, the
path in RF-Compass is close to optimal.

Figure 12—RF-Compass’s accuracy in estimating center posi-
tion: With 1 tag on the part, the error in RF-Compass’s estimation
has a median of around 4 cm. Leveraging 4 tags on the part, RF-
Compass’s median error reduces to 1.28 cm.

Figure 13—RF-Compass’s accuracy in estimating object orien-
tation: With two tags on the part, RF-Compass’s median accuracy
of the orientation estimate is around 6◦, and further decreases to
around 3◦ when 4 tags are used.

6.2 Accuracy of RF-Compass in Estimating Center Po-

sition and Orientation

Next, we evaluate RF-Compass’s performance in mobile manip-
ulation. At this stage, the object is already within the reach of the
robot, e.g., 0.25 m from its hand. Thus, we focus on the accuracy
RF-Compass can achieve in identifying the center of the part and
its orientation. We experiment with 1–4 tags deployed on the IKEA
table leg.
Center Position Accuracy: Fig. 12 shows the distance between
RF-Compass’s estimate of the center of the table leg and the ground
truth captured by the VICON system.7 With one tag at the center of
the table leg, RF-Compass’s median error in estimating the position
is 4.03 cm, with a standard deviation of 1.8 cm. The accuracy im-
proves to 2.76 cm when two tags are placed at the two ends of table
leg, and further improves to 1.28 cm when four evenly spaced tags
on the part are used in the partitioning algorithm.
Orientation Accuracy: In order to determine the orientation of an
object, at least two RFIDs need to be placed on the object. Fig. 13
shows the difference between RF-Compass’s estimate of the table
leg’s orientation and the ground truth. RF-Compass has a median
orientation error of around 6◦ when two tags on the table leg are
used. This error further decreases to around 3◦ when all four tags
are used in the optimization.

7When the robot arm is above the part, sometimes it prevents the
VICON cameras from seeing the infrared-reflective markers. To
make sure our ground truth measurement of the part is accurate, af-
ter RF-Compass’s iterative algorithm terminates, we move the robot
away without moving the part, and let VICON record its position.
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6.3 Number of Attempts in Grasping Furniture Part

Finally, we investigate the impact of RF-Compass’s accuracy on
the robot’s ability to grasp objects. Specifically, we compute the
number of attempts before the robot succeeds in grasping the leg of
the IKEA table. Given the location and orientation of the object, the
planner commands the robot to position its hand. The robot moves
and lowers its hand to grasp the part. If it fails, the robot assumes
that it accidentally bumped and moved the part, and it must there-
fore take another set of measurements and try again until it success-
fully grasps the part.

In practice, several factors affect the robot’s grasping perfor-
mance besides the accuracy of the localization system. In particular,
the gripper’s quality is highly important [10]. Grippers of different
materials trade off between ease of grasping and stability of holding
a part. Firmer surfaces provide rigid control, but may fail to pick up
the part due to inadequate friction between the grippers and the part.
The size of the gripper is another determining factor. Today’s com-
mercial manipulator robots have a typical hand size of >10 cm [42].
The KUKA youBot designed for educational and research use has
a slightly smaller hand (its gripper aperture is 7.5 cm).

In order to isolate the impact of RF-Compass on the grasping
task, we perform this evaluation using trace-driven simulations. We
simulate the IKEA leg grasping procedure by feeding to the sim-
ulator the empirical results in §6.2, which measure RF-Compass’s
error in locating the center of the table leg and identifying its orien-
tation. For each grasp attempt, we draw the position and orientation
error uniformly at random from the empirical results of our experi-
ments. We repeat the simulation for different robot hand sizes.

Fig. 14 shows the results for the case where two tags on the part
are used. Each CDF contains 1000 runs of the grasping task where
the part width is 5 cm. We vary the gripper size among 7.5 cm,
8.5 cm and 10 cm. If the robot’s gripper is 7.5 cm wide, and the
IKEA part has only two RFID tags, the robot needs to try on average
9 times to grasp the part. If the robot’s gripper is 8.5 cm wide, the
average number of trials decreases to 5. With a hand size of 10 cm,
the robot can grasp the part on the first try in over 80% of the time.

Fig. 15 shows the equivalent CDFs for the case where four tags
are deployed on the IKEA part. Now, even with a small 7.5 cm
gripper like that of the KUKA youBot, the robot can immediately
grasp the object almost 90% of the time.

In conclusion, the accuracy achieved by RF-Compass can enable
a commercial manipulator robot with a typical hand size of >10 cm
to reliably grasp the furniture part with 2 RFIDs. Robots with a
smaller gripper, e.g., a 7.5 cm wide gripper, can also be supported
if four RFID tags are placed on the target object.

7. CONCLUSION

This paper presents RF-Compass, an RFID-based system for
robot object manipulation. RF-Compass’s key innovation is an it-
erative localization algorithm that leverages the robot’s consecutive
moves to iteratively refine its estimates of the desired object’s lo-
cation and orientation. It can pinpoint the center position and the
orientation to an accuracy of a few centimeters and degrees respec-
tively, providing the necessary precision for object grasping and
manipulation using a purely RF-based solution.

By bridging robotics and advances in wireless signal processing,
RF-Compass delivers a highly accurate robot object manipulation
scheme which opens up a wide range of exciting opportunities. We
believe future systems can leverage the techniques in this paper to
enable new features in robotic applications such as picking up an
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Figure 14—CDF of the number of attempts made by the robot
before succeeding at grasping the part with 2 RFIDs: With 2
tags on the furniture part, a commercial manipulator robot with a
typical hand size of >10 cm can grasp the part successfully upon
the first try in over 80% of the cases.
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Figure 15—CDF of the number of attempts made by the robot
before succeeding at grasping the part with 4 RFIDs: With 4
tags on the furniture part, robots with a small hand 7.5 cm such as
the youBot can retrieve the part successfully upon the first try in
almost 90% of the cases.

object from a pile, grasping objects with arbitrary shapes, complex
assembly tasks, robot collaboration, and many others.

Acknowledgments: We thank Haitham Hassanieh, Nate Kushman,
Lixin Shi, Omid Abari, Zack Kabelac, Jonathan Perry, Peter Ian-
nucci, the reviewers, and our shepherd, Eric Rozner, for their in-
sightful comments. This research is supported by NSF. We thank
members of the MIT Center for Wireless Networks and Mobile
Computing: Amazon.com, Cisco, Google, Intel, Mediatek, Mi-
crosoft, ST Microelectronics, and Telefonica for their interest and
support.

8. REFERENCES

[1] F. Adib and D. Katabi. See through walls with Wi-Fi! In
ACM SIGCOMM, 2013.

[2] Alien Technology Inc. ALN-9640 Squiggle Inlay.
www.alientechnology.com.

[3] L. Atzori, A. Iera, and G. Morabito. The internet of things: A
survey. Computer Networks, 2010.

[4] S. Azzouzi et al. New measurement results for the
localization of UHF RFID transponders using an Angle of
Arrival (AoA) approach. In IEEE RFID, 2011.

[5] P. Bahl and V. Padmanabhan. RADAR: an in-building
RF-based user location and tracking system . In IEEE

INFOCOM, 2000.
[6] J. Biswas and M. Veloso. Wifi localization and navigation for

autonomous indoor mobile robots. In IEEE ICRA, 2010.

13



[7] M. Bonert, L. Shu, and B. Benhabib. Motion planning for
multi-robot assembly systems. International Journal of

Computer Integrated Manufacturing, 2000.
[8] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, 2004.
[9] M. Buettner and D. Wetherall. A software radio-based uhf

rfid reader for phy/mac experimentation. IEEE RFID, 2011.
[10] I. Bullock, R. Ma, and A. Dollar. A hand-centric

classification of human and robot dexterous manipulation.
IEEE Trans. on Haptics, 2013.

[11] H. Chae and K. Han. Combination of RFID and vision for
mobile robot localization. In IEEE ICSSINP, 2005.

[12] G. Champleboux, S. Lavallee, R. Szeliski, and L. Brunie.
From accurate range imaging sensor calibration to accurate
model-based 3d object localization. In IEEE CVPR, 1992.

[13] R. T. Chin and C. R. Dyer. Model-based recognition in robot
vision. ACM Computing Surveys (CSUR), 1986.

[14] K. Chintalapudi, A. Padmanabha Iyer, and V. N.
Padmanabhan. Indoor localization without the pain. In ACM

MobiCom, 2010.
[15] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson.

Object recognition and full pose registration from a single
image for robotic manipulation. In IEEE ICRA, 2009.

[16] EPCglobal Inc. EPCglobal Class 1 Generation 2.
[17] J. Fitch. Synthetic aperture radar. 1988.
[18] Frost & Sullivan. Global RFID healthcare and

pharmaceutical market. Industry Report, 2011.
[19] Frost & Sullivan. Global RFID market. Industry Report,

2011.
[20] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for

disciplined convex programming. http://cvxr.com/cvx.
[21] W. E. L. Grimson and D. Huttenlocher. On the verification of

hypothesized matches in model-based recognition. Computer

Vision - ECCV, 1990.
[22] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and

M. Philipose. Mapping and localization with RFID
technology. In IEEE ICRA, 2004.

[23] S. Han, H. Lim, and J. Lee. An efficient localization scheme
for a differential-driving mobile robot based on RFID
system. IEEE Trans. Industrial Electronics, 2007.

[24] Ikea lack table. www.ikea.com/us/en/catalog/
products/20011413.

[25] E. Inc. Universal software radio peripheral. http://ettus.com.
[26] S. Jorg, J. Langwald, J. Stelter, G. Hirzinger, and C. Natale.

Flexible robot-assembly using a multi-sensory approach. In
IEEE ICRA, 2000.

[27] K. Joshi, S. Hong, and S. Katti. Pinpoint: Localizing
interfering radios. In Usenix NSDI, 2013.

[28] K. Khoshelham and S. O. Elberink. Accuracy and resolution
of kinect depth data for indoor mapping applications.
Sensors, 2012.

[29] M. Kim and N. Y. Chong. Rfid-based mobile robot guidance
to a stationary target. Mechatronics, 2007.

[30] M. Kim and N. Y. Chong. Direction sensing RFID reader for
mobile robot navigation. IEEE Trans. Automation Science

and Engineering, 2009.

[31] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus.
Ikeabot: An autonomous multi-robot coordinated furniture
assembly system. In IEEE ICRA, 2013.

[32] KUKA, youBot specification sheet. youbot-store.com/
downloads/ProductFlyer_KUKA_youBot_2pages.pdf.

[33] Laird Technologies. Crushcraft S9028PCRW RFID antenna.
[34] M. T. Mason. Creation myths: The beginnings of robotics

research. IEEE Robotics Automation Magazine, 2012.
[35] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The

GRASP multiple micro-UAV testbed. IEEE Robotics &

Automation Magazine, 2010.
[36] L. M. Ni et al. Landmarc: indoor location sensing using

active rfid. Wirel. Netw., 2004.
[37] P. Nikitin et al. Phase based spatial identification of uhf rfid

tags. In IEEE RFID, 2010.
[38] S. Nirjon and J. Stankovic. Kinsight: Localizing and tracking

household objects using depth-camera sensors. In IEEE

DCOSS, 2012.
[39] S. Park and S. Hashimoto. Autonomous mobile robot

navigation using passive RFID in indoor environment. IEEE

Trans. Industrial Electronics, 2009.
[40] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,

J. Leibs, E. Berger, R. Wheeler, and A. Ng. ROS: an
open-source robot operating system. In IEEE ICRA

Workshop on Open Source Robotics, 2009.
[41] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen.

Zee: zero-effort crowdsourcing for indoor localization. In
ACM Mobicom, 2012.

[42] Rethink robotics, Baxter specification sheet. www.
rethinkrobotics.com/files/8513/4792/6562/

ProductBrochure_WebDownload.pdf.
[43] J. Rifkin and E. Kruger. The end of work. 1996.
[44] S. Schneegans, P. Vorst, and A. Zell. Using RFID snapshots

for mobile robot self-localization. In ECMR, 2007.
[45] A. Smith et al. Tracking Moving Devices with the Cricket

Location System. In ACM MobiSys, 2004.
[46] ThingMagic. Why Use RFID. www.thingmagic.com/.
[47] VICON T-Series. www.vicon.com/products/

documents/Tseries.pdf.
[48] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and

Reliable Low-Power Backscatter Networks. In ACM

SIGCOMM, 2012.
[49] J. Wang and D. Katabi. Dude, Where’s my card? RFID

Positioning That Works with Multipath and Non-Line of
Sight. In ACM SIGCOMM, 2013.

[50] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor
location system. In Usenix NSDI, 2013.

[51] Y. Ye. Improved complexity results on solving real-number
linear feasibility problems. Math. Program., 2006.

[52] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.
ACM Comput. Surv., 2006.

[53] T. Zimmerman. Assessing the capabilities of RFID
technologies. Gartner, 2009.

14

www.ikea.com/us/en/catalog/products/20011413
www.ikea.com/us/en/catalog/products/20011413
youbot-store.com/downloads/ProductFlyer_KUKA_youBot_2pages.pdf
youbot-store.com/downloads/ProductFlyer_KUKA_youBot_2pages.pdf
www.rethinkrobotics.com/files/8513/4792/6562/ProductBrochure_WebDownload.pdf
www.rethinkrobotics.com/files/8513/4792/6562/ProductBrochure_WebDownload.pdf
www.rethinkrobotics.com/files/8513/4792/6562/ProductBrochure_WebDownload.pdf
www.vicon.com/products/documents/Tseries.pdf
www.vicon.com/products/documents/Tseries.pdf

	Introduction
	Related Work
	Overview
	Scope
	System Architecture

	RF-Compass
	Measuring Relative Proximity
	Localization by Space Partitioning
	Iterative Refining and Outlier Rejection
	Simulation Results

	Implementation
	Evaluation
	Efficiency of RF-Compass in Robot Navigation
	Accuracy of RF-Compass in Estimating Center Position and Orientation
	Number of Attempts in Grasping Furniture Part

	Conclusion
	References



