
Chapter 6

Control

Robot behaviors are often expressed with high-level abstract terms, such as “move
to a point” or “follow a path”. These behaviors must be accomplished using low-
level voltage signals, but the mapping between the high-level behaviors and the
low-level signals is often nonobvious, which brings about the need for a controller.
Given a high-level signal indicating what the robot should accomplish (the input),
the controller computes voltage signals for the motors (the output) to try to achieve
the desired behavior. In this chapter, we will study different types of controllers
and learn how we can use them to realize behaviors that we want a robot to have.

6.1 Principles of Control Design

When designing a controller for a robotic system, the primary considerations are
what the inputs to the controller should be, and how those inputs should map onto
motor voltages. At the same time, we should consider how complicated we want
the system to be. Does our application allow for more simplicity, or should we add
more inputs in order to control the system in more intricate ways?

Let us begin by considering a simple case of binary input. Suppose that we have
a stationary robot whose only purpose is to monitor when the family cat enters or
leaves the house via the cat door. Two signs are located on either side of the robot:
one that says “In”, and another that says “Out”. The robot has a one-DoF revolute
arm that it uses to point at the signs. Each of the signs is located at one of the arm’s
two joint limits, such that when the arm hits a joint limit, it is pointing at a sign.

We could write a very basic controller for this robot that behaves as follows:

• When the cat is observed entering the house, the controller drives the arm at
maximum velocity toward the “In” sign, until the joint limit is reached.

142



6.1. PRINCIPLES OF CONTROL DESIGN 143

• When the cat is observed leaving the house, the controller drives the arm at
maximum velocity toward the “Out” sign, until the joint limit is reached.

We call this type of controller a bang-bang controller because it switches abruptly
between binary states. Another name for bang-bang controller is on-off controller
because frequently, the binary states being switched between are “on” and “off’.
(For example, consider a heating system that turns on when the temperature drops
below 72 degrees and turns off when the temperature reaches 72 degrees.)

Bang-bang controllers have the advantage of being easy to implement, but it is
clear that they have several disadvantages. In the context of this example, consider
that suddenly applying maximum voltage to the motor and driving it until it hits
a physical stop will cause wear and tear on the robot. Moreover, suppose that the
cat decides to stand in its cat door, halfway in and halfway out of the house, and
the robot’s perception of the cat’s action repeatedly oscillates between entering and
leaving. If this happens, the robot arm may swing back and forth rapidly between
the two signs, causing further wear and tear and overall undesirable behavior.

To design controllers that are more useful for real-world robotics applications,
we will need to leverage inputs that have more than two possible states. We will
consider some of these input types and examples controllers in the following list.
Note that each kind of input is considered in isolation in the examples, but quite
often we will design controllers that use a mix of input types, such as a hybrid
force/position controller. Also note that the list is organized such that for each input
type, the further down it appears on the list, the farther away it is from the actual
output, and thus the harder the control problem. One of the main factors influencing
the difficulty of the problem is kinematic constraints on motion. Both holonomic
and nonholonomic constraints can prevent motion in forbidden directions, thus
impacting velocity control. Even though nonholonomic constraints do not integrate
into a position constraint, these constraints can still complicate the job of a position
controller because it must overcome the robot’s nonholonomic constraints.

• Force. Suppose we have an industrial robot arm that finishes metal objects
by lowering a polishing wheel onto them as they go by on a conveyor belt.
For this application, we may choose to use force control by specifying the
desired amount of force we would like the robot to apply while polishing.
The controller drives the polishing wheel downward with this much force for
a set amount of time and then raises the wheel back to the initial position.
• Velocity. Consider an industrial robot arm that traverses back and forth on

a straight segment of linear tracks. The robot picks up a payload from one
end of the tracks, moves to the other end, drops the payload off, and then
moves back to its initial position. The weight of the payload is assumed to
always be the same. Suppose that we would like to specify a speed that the



144 CHAPTER 6. CONTROL

robot should travel at for the duration of the round trip, in which case we
may wish to use velocity control. The controller uses the velocity input as
well as known constants (such as the length of the track, the weight of the
robot, and the weight of the payload) to compute the motor speeds necessary
to achieve the desired velocity, both for the trip with the payload and the one
without, and sends the corresponding voltage signals to the motors.
• Position. Suppose we have a quadcopter that needs to autonomously visit a

series of waypoints as it inspects a bridge for structural damage following
an earthquake. We would likely use position control for this problem. The
controller takes in a sequence of waypoints (which are positions) as input,
including an initial waypoint that is the current position of the robot and a
final waypoint that is the goal position. Then the controller determines the
voltage signals needed to move the quadcopter from one waypoint to the
next waypoint in the sequence and drives the motors with those signals.
• Pose. Suppose we are tasked with writing a controller to make an autonomous

car parallel park. To complete this task, we would likely choose to use pose
control (that is, control of both position and orientation) since the initial and
final orientation of the car matter. The controller takes in both the current
pose of the car and the desired end pose, computes the sequence of motor
voltages required to move the car to the end pose (taking into account the
constraints of the wheels), and then drives the motors accordingly.

Before we can build any of these controllers, we need to make another important
design decision: whether the controller will be open-loop or closed-loop. Fig. 6.1
gives a diagram for both designs. The difference is that in open-loop design, the
output of the system does not factor into the decisions that the controller makes,
whereas it does in closed-loop design. Another name for closed-loop control is
feedback control because the system output that the controller incorporates into its
decision-making is called feedback and is measured by some appropriate sensor.

Let us return to the velocity control example to illustrate the difference between
the two controller designs. If the controller is open-loop, then the actual velocity
of the robot during the round trip is not considered by the controller; it is assumed
to be correct based on the initial calculations. Of course, it may not be correct if
there is a disturbance that impacts how the system performs. For example, if the
payload is much lighter than the controller believes it to be, then the robot will end
up moving too fast. An open-loop controller cannot correct this. In contrast, if
the controller is closed-loop, the actual velocity of the robot will be measured and
passed as input to the controller, which allows for compensation of disturbances.
In the case of a payload that is too light, the controller will detect that the robot is
moving too fast and can slow it down until the desired velocity is reached.



6.1. PRINCIPLES OF CONTROL DESIGN 145

(a) Open-loop design

(b) Closed-loop design

Figure 6.1: Block diagrams illustrating the architecture of (a) an open-loop system and (b)
a closed-loop system. Note that all of the signals (depicted by arrows) can be affected by
noise or disturbances. For example, the control signal could be affected by a disturbance
that adversely affects the system output, or readings from the sensor in (b) could be noisy.

Closed-loop controllers do have their share of drawbacks, however. Since they
incorporate feedback into their decision-making, they must be designed with more
sophisticated control logic, which in general makes them more difficult to build.
Moreover, the requirement of additional sensing capabilities adds to the monetary
and computational cost of the system. Another issue to consider is that if a closed-
loop controller cannot handle all disturbances and noise in an appropriate manner,
it may actually exacerbate a problem rather than mitigate it. To illustrate this point
further, consider the previous example of a position controller for a quadcopter,
and suppose that we use a closed-loop controller that takes in the actual position
of the quadcopter as feedback. Now suppose that after executing a plan to fly from
waypoint A to waypoint B, the closed-loop controller determines that the actual
position of the quadcopter is too far away from waypoint B to be satisfactory, and



146 CHAPTER 6. CONTROL

in an attempt to fix this, the controller overcorrects, resulting in the quadcopter still
being too far away. Without careful programming, the controller may make the
quadcopter repeatedly overshoot the waypoint and not make any forward progress.
An open-loop controller cannot have this problem because it does not use feedback.

Given all of these trade-offs between open-loop and closed-loop design, it is
important that we carefully consider what kind of disturbances might affect the
system, and how we should (or should not) deal with them. If the disturbances
are largely predictable and can be countered with good calibration and a structured
environment, then we would likely prefer open-loop design. In contrast, if the tasks
the robot is doing and the environment it is operating in can lead to a significant
amount of error or high uncertainty, we would prefer closed-loop design in order to
reduce the effect of error and achieve the behaviors we would like the robot to have.
Take a few minutes now to reread the four controller examples given above and
ask yourself whether you would choose open-loop or closed-loop design for each
controller, and why. Be sure to consider both the advantages and disadvantages of
your choices.

6.2 PID Control

Now that we have distinguished between open-loop design and closed-loop design,
we will describe one of the most commonly used closed-loop control mechanisms:
the PID controller. PID stands for proportional-integral-derivative. The basic idea
is that a PID controller uses the present error, the past error, and a prediction of the
future error in order to determine an appropriate control signal to reduce the error.
Mathematically, the general form of a PID controller can be defined as

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
, (6.1)

where

e(t) = r(t)− y(t) (6.2)

is the error in the output, defined as the difference between the desired output r
and the measured output y. We see that the control signal u(t) is the sum of three
terms:

• the P-term, which is proportional to the error,
• the I-term, which is proportional to the integral of the error, and
• the D-term, which is proportional to the derivative of the error.



6.3. PATH-FOLLOWING CONTROL 147

Each of these terms has a nonnegative coefficient: Kp, Ki, and Kd, respectively.
The latter two coefficients are often written as

Ki =
Kp

Ti
and Kd = KpTd, (6.3)

because Ti, the integration time, and Td, the derivative time, both have physical
meaning. Then we can set K = Kp and rewrite (6.1) as

u(t) = K

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)
. (6.4)

We call K the proportional gain. As we will later see, it is necessary to tune a PID
controller in order to determine what constant we should use for the the gain. If K
is too high, then the controller may become unstable. Conversely, if K is too low,
then the controller may not respond strongly enough to error.

It is important to note that not all PID controllers use all three terms. If one
or more of the terms are zeroed out, then we refer to that controller with only the
letters of the terms that are used. More specifically, there are controllers which use

• PD control, where Ti =∞,

• PI control, where Td = 0, and

• P control, where both Ti =∞ and Td = 0.

In the case of P control, there will always be a steady-state error, which is defined
as limt→∞ e(t), the difference between the desired output and the measured output
in the limit as time goes to infinity. Incorporating integral action (by decreasing the
integral time Ti) leads to a reduction of the steady-state error, but it also leads to an
undesirable increase in the system’s tendency to oscillate. We can counter this by
including the derivative term, which adds damping to the system as Td increases
until reaching a certain threshold determined by the dynamics of the system.

6.3 Path-Following Control

Whereas some controllers are designed to keep a system at a stationary setpoint,
other kinds of controllers drive a system along a time-varying trajectory. An inter-
esting and useful application of trajectory-following control in robotics is to mo-
bile robots. Since many mobile robots have nonholonomic constraints, the control
problem becomes challenging due to the fact that error corrections must comply
with motion constraints.



148 CHAPTER 6. CONTROL

The route to be followed by a mobile robot can be expressed as a trajectory
parameterized by time,

pt(t) =
[
xt(t) yt(t) θt(t)

]T , (6.5)

or a path parameterized by length,

ps(s) =
[
xs(s) ys(s) θs(s)

]T . (6.6)

Translating between these functions is a matter of reparameterizing via a function
r : [0, tf ]→ [0, sf ], so that pt(t) = ps(r(t)).

6.3.1 Path-Following Error Types

Suppose we have a target trajectory for a mobile robot to follow. If we define
frame {t} at the desired instantaneous pose pt(t), then the actual robot pose ptB
represents the deviation of the robot’s state from the desired state. The deviation is
described in terms of three errors that correspond to the three rigid-body freedoms.
All three errors are interrelated since an attempt to correct one has the potential to
increase the others. Fig. 6.2 shows an illustration of the three error types, which
are as follows:

• The along-track error, δs, is the distance ahead or behind the target in the
instantaneous direction of motion. We write along-track error as δs = −xtB .
Intuitively, along-track error can be reduced simply by adjusting the robot’s
velocity.

• The cross-track error, δn, is the portion of the position error orthogonal to
the intended direction of motion. We write cross-track error as δn = −ytB .
Cross-track error is harder to correct since it requires a velocity in a direction
that is forbidden by the nonholonomic constraint, if one exists.

• The heading error, δθ, is the difference between the desired heading and
the actual heading. We write heading error as δθ = θt − θB .

Each of the three path-following errors matches the form we saw in Equation 6.2,
e(t) = r(t)− y(t).

6.3.2 Open-Loop Path Following

An open-loop path-following controller executes the command that would be re-
quired to follow the path if the mobile robot were located at the correct pose pt(t) at



6.3. PATH-FOLLOWING CONTROL 149

xG

yG

xt

yt

xB
yB

δθ

δn

δs

Figure 6.2: The three types of path-following error are cross-track error (δn), along-track
error (δs), and heading error (δθ). The three errors are interrelated since attempts to control
one variable often affect the others.

time t. We can write an open-loop controller for a robot that is naturally controlled
via angular velocity, such as a differential-drive robot:

uω,OL(t) =

[
v(t)
ω(t)

]
=

[√
ẋt(t)2 + ẏt(t)2

θ̇t(t)

]
. (6.7)

We can similarly control a mobile robot with car-like steering via curvature:

uκ,OL(t) =

[
v(t)
κ(t)

]
=

√ẋt(t)2 + ẏt(t)2

θ̇t(t)√
ẋt(t)2+ẏt(t)2

 . (6.8)

Naturally, these open-loop controllers will not correct any errors that occur during
execution due to wheel-slip or to models that map linear and angular velocity into
low-level actuator control inputs. We can therefore expect that error increases over
time proportional to the square root of distance traveled. In particular, a heading
error will tend to amplify a cross-track error over time.

6.3.3 Pure Pursuit: PD Control Method

To implement feedback control for path-following on a mobile robot, we can use
the pure pursuit algorithm. It is defined based on a correction to the open-loop
path-following controller, as

uκ,CL(t) = uκ,OL(t) + δu(t) (6.9)

= uκ,OL(t) +K

δsδn
δθ

 , (6.10)

where K is a gain matrix that is used to tune the controller. Let

K =

[
ks 0 0
0 kn kθ

]
, (6.11)



150 CHAPTER 6. CONTROL

where each of the k terms is non-negative. The pure-pursuit controller produced
by this gain matrix performs a hybrid of P- and PD-control. It uses a simple P-
controller to correct along-track error by simply speeding up or slowing down the
robot. The control on curvature κ is a PD-controller for cross-track error because
δθ is related to the derivative of δn.

The gain kθ tends to decrease the rate of reduction in cross-track error, which
is why it is a damping term. If we zero out kθ, we get a P-controller on κ, which
will tend to oscillate left and right along the path. Correcting the cross-track error
generally induces a heading error, so that by the time cross-track error becomes
zero, the heading is off and the robot misses the path entirely.

In general, corrections on cross-track error and heading error tend to counteract
one another. As the robot moves closer to the path, cross-track error shrinks, and
the heading error dominates more. As a consequence, the controller will begin to
drive the robot more parallel to the path. The emergent effect of the pure pursuit
controller is that at any moment in time, it seeks to reacquire the path smoothly at
some future point in time and at a forward position along the path.

6.3.4 Pure Pursuit: Geometric Method

A geometric intuition about the pure pursuit controller (depicted in Fig. 6.3) may
be helpful for its implementation. This model uses receding horizon control, in
which the controller maintains an explicit target at some fixed lookahead time (or
distance) along the path. As the robot moves, the target recedes so that its relative
interval of time (or distance) along the path remains constant.

At each iteration of the controller, the robot computes a corrective path that will
intersect the desired path at the horizon target. The form used for this corrective
path is a constant-curvature arc, which is uniquely specified by the robot’s current
position and heading (because it can instantaneously move only straight ahead)
as well as the final target point. The curvature of that arc may change with each
iteration to reflect the shape of curve necessary to intersect the path at the horizon.

With each iteration, the robot executes a constant velocity and curvature for
a short duration of time. The subsequent changes in curvature lead to a nearly
smooth traversal that reacquires the path.

We can compute the required instantaneous curvature. Consider the geometric
layout of the problem, as depicted in Fig. 6.4. We fit a constant-curvature arc such
that it is tangent to the current position and orientation of the robot and intersects
the horizon point on the path. By computing the coordinates of the horizon in the



6.3. PATH-FOLLOWING CONTROL 151

xG

yG

xt

yt
xB

yB

Figure 6.3: A pure pursuit controller can be implemented using a receding horizon (initially
the red segment). Under this implementation, a constant-curvature arc is fitted between the
current pose of the robot and the horizon point on the path. Each arc connects a small dot
at the robot’s current pose to a large dot at the current horizon.

xB

yB

H=(xH,yH)

C=(0,r)

OB=(0,0)

r

r

Figure 6.4: To compute the curvature of the arc that is needed to reacquire the path at
the (receding) horizon, find a circle that intersects both the current position of the robot
and the horizon point on the path, and which is tangent to the current direction of motion
of the robot. As shown, the figure depicts a “negative” radius because clockwise motion
decreases heading and is thus a negative curvature.



152 CHAPTER 6. CONTROL

body frame (xBH , y
B
H), we can solve for the radius of that path as

r2 = (xBH)2 + (r − yBH)2

= (xBH)2 + r2 − 2ryBH + (yBH)2

2ryBH = (xBH)2 + (yBH)2

r =
(xBH)2 + (yBH)2

2yBH
.

Finally, because the radius is the reciprocal of curvature,

κ =
2yBH

(xBH)2 + (yBH)2
.

By recomputing and executing this curvature in a loop, the robot will tend to
smoothly approach and follow the path. Note that unlike the PD method of pure
pursuit, geometric pure pursuit replaces the open-loop controller rather than adding
an additional term to it.

6.3.5 Further Reading

For more information on path-following algorithms, see Kelly [2].

6.4 Controller Performance and Tuning

To make a controller perform as desired, we need to tune its various parameters,
which we often call gains when they do not have a physical meaning. Tuning these
parameters appropriately requires understanding the impact that each parameter
has on the performance of the controller. In this section, we will see how controller
performance affects system performance and then discuss methods for tuning PID
controllers and path-following controllers to achieve desirable behaviors.

6.4.1 Characterizing Performance

For any given system, there is not a single correct way to tune its controller. Rather,
the tuning choices represent a set of tradeoffs, which manifest themselves in how
the controller performs. We will highlight several of these tradeoffs below.

Convergence to the Setpoint

One tradeoff of control systems is the damping ratio, denoted by ζ, which measures
the performance of the controller combined alongside the system being controlled.



6.4. CONTROLLER PERFORMANCE AND TUNING 153

The damping ratio influences how and whether the system will reach the setpoint.
We consider four cases below.

• If ζ = 0, then the system is undamped and will oscillate forever. Since there
is no damping, such a system corresponds to P (pure proportional) control
with a large Kp term.

• If 0 < ζ < 1, then the system is underdamped and will oscillate for many
cycles, eventually stabilizing to a steady state. In the case of PID control, an
underdamped system corresponds to a PD controller in which the Kd term
is too small relative to the Kp term.

• If ζ > 1, then the system is overdamped and will approach the setpoint very
slowly but without any oscillation. In the case of PID control, an overdamped
system corresponds to a PD controller in which the Kd term is too large
relative to the Kp term.

• If ζ = 1, then the system is critically damped and will quickly converge to
the setpoint without oscillating and remain there. We can model this situation
using a PID controller where the Kp and Kd terms are appropriately chosen
with respect to one another.

Resistance to Setpoint Deviation

Another important tradeoff to consider is how resistant the system is to deviation
from the setpoint. We distinguish between two types of systems: those that strongly
resist deviation, and those that do not.

• A stiff system resists deviation from the setpoint and can be characterized
by a high Kp term. When a stiff system is at the setpoint, it takes a great
deal of effort to remove it from the setpoint. If sufficient effort is applied,
the system may oscillate at a high frequency (higher than the characteristic
frequency of the uncontrolled system). Stiff systems are preferred when
the system needs to be very precise (such as an industrial manipulator arm
that performs welding tasks) because stiffness resists disturbances that would
reduce precision. The major disadvantage of a stiff system is that it is likely
to cause harm or damage if it comes into contact with an object.

• A compliant system is much more tolerant of not being at the setpoint and
can be characterized by a small Kp term. If allowed to oscillate, the sys-
tem will do so close to its characteristic or resonant frequency. Compliant
systems are generally preferred in situations where contact is involved, in



154 CHAPTER 6. CONTROL

particular contact with humans. In addition, compliance is useful in situ-
ations such as grasping an object whose precise geometry is unknown; the
hand can attempt to grasp a smaller target inside of the true object and rely on
compliance to gently squeeze the object without causing damage. However,
since they deviate from the setpoint without much effort, compliant systems
often suffer from imprecision.

Ability to Overcome Forces

When tuning a controller, we need to consider what external forces will affect the
system being controlled. For example, suppose that the system is a manipulator
arm that needs to slide parts against each other in order to perform assembly tasks.
If there is high static friction between the parts, then it likely will require more force
to begin sliding one of the parts from a resting position than to continue sliding it
once it is moving. In this case, we may choose to use a higher integral gain since
integral control can build up over time and help get the part moving. In contrast,
if both the static friction and sliding friction are high, the system would be better
controlled by increasing the proportional and derivative gains. In general, integral
control is considered somewhat dangerous due to the fact that it can build up and
spontaneously release a lot of energy into the system being controlled. For many
applications, it is better to minimize or avoid the use of the integral gain for safety.

6.4.2 Tuning PID Controllers

There are a variety of methods used for tuning PID controllers, and no one method
is guaranteed to produce an optimal tuning for all controlled systems. But for many
applications in robots, a good starting point is the Ziegler-Nichols tuning method,
which involves the following steps:

1. Set all gains to zero.
2. Increase the Kp gain a small amount.
3. Wait for the system to restabilize.
4. Repeat steps 2–3 until the system has stable and consistent oscillations.
5. Define a new gain Ku, the ultimate gain, and set it equal to the current Kp.
6. Measure the current oscillation period and call it Tu.
7. Set Kp = 0.6Ku.
8. Set Ti = Tu/2.
9. Set Td = Tu/8.

The constant factors in steps 7–9 seem arbitrary, but they were arrived at through
experimentation. Ziegler and Nichols hand-tuned PID controllers for a variety of



6.4. CONTROLLER PERFORMANCE AND TUNING 155

systems until they achieved the desired performance. They then looked for a small
set of parameters that would explain the patterns they saw, which were Ku and Tu.

In hand-tuning their PID controllers, the desired performance that Ziegler and
Nichols sought was a quarter amplitude decay ratio. What this means is that the
controller is designed to be underdamped — it overshoots the setpoint several times
before converging — but the amplitude of each overshoot is one-quarter of the pre-
vious overshoot. As previously stated, this tuning is not guaranteed to be optimal,
but it is often a satisfactory initial estimate of a more optimal tuning.

6.4.3 Tuning Path-Following Controllers

Recall from Section 6.3 that the pure-pursuit algorithm for path-following can be
implemented either with PD control or geometrically with receding horizon con-
trol. Since these two methods have a different set of parameters, they have different
tuning procedures, which we describe below.

Tuning PD Pure Pursuit

The PD-control form of pure pursuit can be tuned like any PD controller according
to the Ziegler-Nichols method. During tuning, the robot should follow a long,
straight-line, constant-velocity path. That way, the target frame moves in an orderly
and predictable fashion along the path. Consequently, any changes in the three
errors are induced by the behavior of the controller alone.

The first step is to tune the PD controller for cross-track error. To do this, we
can use the Ziegler-Nichols method while ignoring the I-gain Ki. We let Kp = kn
andKd = kθ and then set those two gains according to the Ziegler-Nichols method.

The second step is to tune a P controller for the along-track error. We again
can employ the basic Ziegler-Nichols method while ignoring both the I-gain and
the D-gain. We let Kp = ks and then use Ziegler-Nichols to set the gain.

Since the Ziegler-Nichols method as described in these notes intends for you to
be tuning a full PID controller, omitting one or two gains may result in suboptimal
performance. Variations to the method have been proposed that suggest alternate
tuning formulas, but we do not cover those here. After tuning with Ziegler-Nichols,
one can fine-tune the controller’s performance by hand, although doing this is most
intuitive with simple controllers like P-only and PD controllers.

After the straight-path tuning is complete, the resulting controller should also
work on curvy paths due to its inclusion of the open-loop path-following term uOL.



156 CHAPTER 6. CONTROL

Tuning Geometric Pure Pursuit

In contrast to the PD-control method, the geometric method of pure pursuit is quite
simplistic because there is only one parameter to tune: h, the lookahead distance of
the horizon along the path. The downside of its simplicity is that it may not follow
a path as well as the PD-control method. The reason for this is that driving the
robot directly towards the lookahead horizon has the effect of ignoring fine details
that occur earlier than the horizon point. Therefore, geometric pure pursuit tends
to smooth out the tightest curves in the path.

The choice of lookahead h governs the responsiveness of the robot to path-
following error and represents a tradeoff, which is summarized below.

• If h is too small, then the robot will exhibit underdamped behavior: it will
quickly cancel out errors by turning sharply toward the path, possibly over-
shooting. If the robot encounters a sharp corner in the target path, it will tend
to overshoot the corner, especially if it has steering angle limits. Overall, the
robot will try to reproduce the shape of the path with high precision.

• If h is too large, then the robot will exhibit overdamped behavior: it will
be less responsive to error and will approximate the shape of the target path
more coarsely. If the robot encounters a sharp corner in the target path, it
will tend to cut the corner on the inside. Overall, the robot will reproduce
the shape of the path with lower precision. It will follow a smoothed version
of the path.

6.5 Model-Predictive Control

In Section 6.3, we learned that pure pursuit can be implemented geometrically with
receding horizon control, where at each timestep the robot computes a curvature
that will move the robot from its current position towards a horizon point receding
along the desired path of the robot. In this section, we will learn about another type
of receding horizon control called model-predictive control (MPC).

Model-predictive control is a numerical method for finding optimal control
signals parameterized in time. The “model” in model-predictive control is a nu-
merical simulation, which can incorporate both dynamics and kinematics, that is
designed to closely mimic the behavior of the real system being controlled. This
model serves as a proxy for the real system being controlled; we assume that if the
model predicts that a certain control signal is effective in simulation, then it will be
effective on the real robot too.

Model-predictive control operates three nested, iterative loops, one inside the
other (Fig. 6.5). At the outer layer, we have receding horizon control, which itera-



6.5. MODEL-PREDICTIVE CONTROL 157

tively computes a path to a point some distance into the future. Within each loop
of receding horizon control, MPC solves an optimization problem via a numerical
method that iterates over different possible control signals to find the lowest cost.
Finally, within each step of the numerical optimizer, the innermost loop numeri-
cally integrates the control signal through time to produce a candidate path.

Model-Predictive 
Control

3. Integration: step along the path

2. Optimization: simulate one control signal

1. Receding horizon: execute one path for one time step

Figure 6.5: The three nested loops of model-predictive control.

At the outermost loop, model-predictive control is a type of receding horizon
control because at each timestep it computes a control plan for a short future time
interval that “recedes” with time. In other words, at time ti, the controller plans a
control strategy for the time interval [ti, ti + ∆t], where ∆t is a fixed time horizon.
After selecting and executing a control signal for time ti, MPC then begins to
compute a control strategy for the partially-overlapping interval [ti+1, ti+1 + ∆t],
as shown in Fig. 6.6. When iteration terminates at the outer loop, it means the robot
has reached its goal.

The middle loop is solving a numerical optimization problem by searching
over the space of paths. The path shape is evaluated by an objective function for
comparison to other candidate paths. When iteration terminates at the middle level,
it means that the allotted computation time ∆t has expired. Since the algorithm
runs in real time while the robot is moving, it has an upper bound on the amount of
time it can spend exploring alternative paths.

In the innermost loop, the simulator takes as inputs a state and a control input
and integrates the state of the system some time interval in the future. Most often,
this integral is solved by an iterative approach such as Euler integration. It is this
lowest level that actually predicts where a particular control would lead. When the



158 CHAPTER 6. CONTROL

R
eceding H

orizon Iteration

t0 t1 t2 t3 t4 t5 t6 t7

Time

Figure 6.6: This figure depicts time, both simulated and executed on the real robot. The
time steps t0, t1, . . . denote time steps of receding horizon control. At a finer-grained
simulation step size, the predictive model looks ahead much deeper than the interval that
is actually executed on the robot. The lookahead enables the controller to have some
confidence that it is headed towards the goal.

inner loop terminates, it means that the integral has reached the time horizon. At
this point, the cost of the path is computed and returned to the next higher level.
Costs that the controller could consider might include the average deviation of the
robot’s state from the desired state, average motor torque, total energy required,
and the final position and orientation of the robot when reaching the horizon (since
these are predictors of future performance beyond the horizon time).

Since MPC recomputes a control signal and executes it on the robot once per
∆t seconds, the control designer must decide how best to utilize the time allot-
ment. There is a fundamental tradeoff between the depth into the future, measured
in time horizon seconds, and the breadth, measured by the number of paths evalu-
ated. Halving the horizon time allows the controller to explore twice as many paths.
Another tradeoff involves the fidelity of the model. Higher fidelity models gener-
ally take longer to compute, both because they perform more sophisticated compu-
tations and also because they may more finely discretize the time when performing
integrals, thus necessitating more integration steps. Therefore, if the fidelity of the
model doubles, then either the lookahead distance or the number of paths evaluated
must be halved. A final tradeoff involves the choice of ∆t. Increasing ∆t permits
a longer computation time, which can be used to increase model fidelity, number
of paths evaluated, or the depth of the paths. However, a larger ∆t also increases
the elapsed time before the robot reacts to changes in its environment. Therefore,
a reasonably small ∆t such as 0.1 sec is typically desired for real-time, reactive
control behavior.



6.6. STABILITY 159

6.6 Stability

When designing a controller for a dynamical system, it is important that we verify
whether the controller makes the system stable or not. There are many different
types of stability within control theory, each with their own technical definition,
but the details of all these types are out of the scope of this section. We will instead
discuss what stability is at a high level, why it matters, and then show one method
for formally describing and analyzing the stability of a system.

An intuitive way to think about stability is that it measures the tendency that
the response of a dynamical system will return to an equilibrium point after the
system is disturbed. If a system is at an equilibrium point, then its dynamics are in
a stationary condition, which is one where all forces balance. More formally, we
describe the system dynamics by V̇ (x), which captures the state of how the system
evolves in time. Then a state xe is an equilibrium point of the system if V̇ (xe) = 0.
In general, dynamical systems may have zero, one, or more equilibrium points.

We will illustrate these concepts with the simple systems shown in Fig. 6.7.
Suppose that the ball shown in Fig. 6.7a is disturbed by a force. Provided that the
force does not knock it out of the half-pipe, and assuming that there is friction,
the ball will eventually come to rest at one of the many equilibrium points along
the flat bottom of the half-pipe. Now suppose that the ball shown in Fig. 6.7b is
disturbed by a force. It will roll down one of the two sides of the mountain, away
from the single equilibrium point at the peak, and if we imagine that the sides of
the mountain continue indefinitely, then the ball will roll indefinitely.

(a) A system in a stable equilibrium. (b) A system in an unstable equilibrium.

Figure 6.7: The system in (a) is resistant to disturbances, whereas the system in (b) is not.

6.6.1 Lyapunov Stability

Knowing the extent to which a system is stable is crucial because an unstable sys-
tem has the potential to be dangerous. For example, an unstable mobile robot might
tip over and crash, or a manipulator arm might swing around unpredictably. These
risks motivate the need for a formal definition and method to test the stability of
a system. In these notes, we will use Lyapunov stability, which looks at how a



160 CHAPTER 6. CONTROL

system behaves near a point of equilibrium. Before giving the technical definition
of Lyapunov stability, we will first provide some intuition.

If you have been to a science museum, there is a good chance you have seen a
coin vortex funnel, also called a “spiral wishing well”. When you put in a coin, it
rolls in a spiral orbit and slowly descends into the bottom of the funnel. The bottom
of the funnel, where the coin eventually stops, is an equilibrium point. Let h be the
height of the coin from the bottom of the funnel, and define V (h) = h0−h, so that
V (h) is everywhere positive except at the bottom. The function P = mgh gives
the potential energy of the coin, and the function K = 0.5mv2 gives the kinetic
energy1. The total energy of the coin is therefore given by P +K. When the coin
is at its initial height, K = 0 because the coin has no velocity. As the coin starts
to roll, K increases, meaning that P must decrease due to conservation of energy.
Thus, h can never be greater than h0, which implies that the coin can never escape
the funnel. We can therefore conclude that the coin is a stable system.

The coin vortex funnel and the other examples are physical systems in which
stability is measured by a balance of forces, such that the change in energy of
the system is non-positive. We saw how the function describing the energy of the
system as a function of state can be used to classify the stability of the system.

We can apply the same concept to any controlled system, even if energy does
not govern stability. Suppose we have an arbitrary dynamical system governed by
a differential equation ẋ = f(x), where x(t; a) is a solution starting from initial
condition a at time t. Abstractly, we say that the system described by the differen-
tial equation is stable if there exists a neighborhood around a described by a ball of
radius δ such that for any initial condition b within the ball, the difference between
all future states from a and b is constrained by an upper bound ε. Formally,

‖b− a‖ ≤ δ =⇒ ‖x(t; b)− x(t; a)‖ < ε for all t > 0. (6.12)

This type of stability is referred to as stability in the sense of Lyapunov. An inter-
pretation of this definition is that by starting sufficiently close to a certain initial
condition, we are guaranteed to stay close to its corresponding solution. If a solu-
tion is stable in the sense of Lyapunov but trajectories starting from different initial
conditions do not converge, then the solution is called neutrally stable. The half-
pipe in Fig. 6.7a is neutrally stable since the bottom is flat and the ball does not
always converge to a single point.

A solution x(t; a) is called asymptotically stable if it is stable in the sense
of Lyapunov and any solution in the neighborhood of attractor a converges to a.
Formally,

x(t; b)→ x(t; a) as t→∞ for b sufficiently close to a. (6.13)
1m is the mass of the coin, g is the acceleration due to gravity, and v is the velocity of the coin.



6.6. STABILITY 161

This is the case where all nearby trajectories converge to the stable solution as time
goes to infinity. Specifically for planar systems, asymptotically stable equilibrium
points are commonly referred to as attractors. In the vortex funnel example, the
coin is asymptotically stable, and the bottom of the funnel is an attractor.

A solution is locally stable or locally asymptotically stable if it is stable for all
initial conditions x ∈ Br(a), where Br(a) = {x : ‖x− a‖ < r} is a ball of radius
r around a and r > 0. A system is globally stable if it is stable for all r > 0.

A solution x(t; a) is unstable if it is not stable. Formally, a solution x(t; a) is
unstable if given some ε > 0, there does not exist a δ > 0 such that if ‖b− a‖ < δ,
then ‖x(t; b)− x(t; a)‖ < ε for all t. An unstable equilibrium point of a planar
system is typically referred to as a source, if all trajectories move away from the
equilibrium point, or saddle, if some trajectories lead to the equilibrium point and
others move away. The mountain in Fig. 6.7b is an unstable system.

6.6.2 Lyapunov Stability Analysis

We are interested in proving that a given solution is stable, asymptotically stable, or
unstable. Lyapunov Stability Analysis provides a formal tool for doing so, based on
the definition of energy-like functions called the Lyapunov functions. For a given
system, you can pick any function you want, provided it has the right properties.

A Lyapunov function is a nonnegative function V : Rn → R+ that always de-
creases along system trajectories; thus its minimum is a locally stable equilibrium
point. Therefore, if we find a function with those properties for a given system, we
can prove that the system is stable. Such a function is called a Lyapunov function.
To characterize the stability of a system in the sense of Lyapunov, we make use
of the Lyapunov Stability Theorem. To formulate the theorem, we first need to go
over a few definitions:

• A continuous function V is positive definite if V (x) > 0 for all x 6= 0 and
V (0) = 0.

• A continuous function V is negative definite if V (x) < 0 for all x 6= 0 and
V (0) = 0.

• A continuous function V is positive semidefinite if V (x) ≥ 0 for all x, but
V (x) can be zero at points other than just x = 0.



162 CHAPTER 6. CONTROL

Lyapunov Stability Theorem

Let V : Rn → R+ and denote by V̇ its time derivative along trajectories of system
dynamics, as

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
f(x). (6.14)

Let also Br = Br(0) be a ball of radius r around the origin. If there exists r > 0
such that V is positive definite and V̇ is negative semidefinite for all x ∈ Br, then
x = 0 is locally stable in the sense of Lyapunov. If V is positive definite and V̇ is
negative definite in Br, then x = 0 is locally asymptotically stable.

Example 6.1 Stability analysis of a mechanical system
Consider the system of Fig. 6.8 with a block of mass m attached to a spring

of stiffness k. The block is located at position x = 0 and is subject to frictional
force of coefficient b proportional to the block’s velocity. We can write the motion
equation as

mẍ+ bẋ+ kx = 0 (6.15)

and compute the total energy of the system as

V =
1

2
mẋ2 +

1

2
kx2. (6.16)

The rate of change of the total energy of the system can then be found by differen-
tiating (6.16) with respect to time, as

V̇ = mẋẍ+ kxẋ. (6.17)

Substituting (6.15) for mẍ in (6.17), we obtain

V̇ = −bẋ2, (6.18)

which is always nonpositive since b > 0. Therefore, energy always leaves the
system unless ẋ = 0, which implies that the system will release the energy until
it comes to rest regardless of initial state. Hence, we have shown that this spring-
mass system will eventually come to rest at the equilibrium.

Further Reading

For more on stability, please see Sections 4.3 and 4.4 of Åström and Murray [1].



BIBLIOGRAPHY 163

x

k

b

m

Figure 6.8: Simple spring-mass system subject to friction.

Bibliography

[1] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Sci-
entists and Engineers. Princeton University Press, 2010.

[2] A. Kelly. Mobile Robotics: Mathematics, Models, and Methods. Cambridge
University Press, 2013.


	6 Control
	6.1 Principles of Control Design
	6.2 PID Control
	6.3 Path-Following Control
	6.3.1 Path-Following Error Types
	6.3.2 Open-Loop Path Following
	6.3.3 Pure Pursuit: PD Control Method
	6.3.4 Pure Pursuit: Geometric Method
	6.3.5 Further Reading

	6.4 Controller Performance and Tuning
	6.4.1 Characterizing Performance
	6.4.2 Tuning PID Controllers
	6.4.3 Tuning Path-Following Controllers
	Tuning PD Pure Pursuit
	Tuning Geometric Pure Pursuit


	6.5 Model-Predictive Control
	6.6 Stability
	6.6.1 Lyapunov Stability
	6.6.2 Lyapunov Stability Analysis



