
Chapter 5

Optimization

The field of optimization is vast and complex, and much of it lies beyond the scope
of this course. We will focus on the core techniques for optimization commonly en-
countered in the context of robotics. If you are interested in more on optimization,
please see the bibliography for this section — most of the resources referenced go
into much more depth than we will in these notes.

5.1 Calculus for Optimization

Many common optimization techniques are rooted in calculus. As such, we will
begin our study of optimization with a review of some concepts from this area.
We will assume basic knowledge of Calculus I through III (roughly, derivatives,
integrals, and techniques for computing both, as well as the basics of vectors and
vector-valued functions). For a more complete introduction to calculus, we recom-
mend the excellent resources available in Dawkins [1, 2, 3].

5.1.1 Partial Derivatives

Most optimization problems encountered in robotics pertain to functions of mul-
tiple variables. As such, we often need to be able to compute a derivative of one
of these functions with respect to a single variable. We have already seen partial
derivatives in earlier sections (such as in the Euler-Lagrange equations), but they
are especially critical for solving optimization problems of many kinds. We will
now briefly review the definition and computation of a partial derivative:

Definition 5.1 (The Partial Derivative of a Real-Valued Function) For some func-
tion f : Rn → R, i.e. f(x1, . . . , xn), we define ∂f

∂xi
, the partial derivative

of f with respect to xi, as ∂f
∂xi

= d
dxi
g(xi), where g(xi) is defined as f with
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x1, . . . , xi−1, xi+1, . . . , xn held constant. In other words, ∂f
∂xi

is the derivative of f
with every input variable other than xi treated as though it were constant.

Given this definition, we can see that computing a partial derivative is nearly
equivalent to computing an ordinary derivative. The partial derivative of a function
is the ordinary derivative of that function with all but one variable treated as con-
stant, so computing a partial derivative is as simple as imagining that every variable
other than some xi is a constant and computing the ordinary derivative of f with
respect to xi.

As an example, consider the following:

Example 5.1 Take f(x, y, z) = 3 sin(x) tan2(y) + 4x2

log(z) . We wish to compute
∂f
∂x and ∂f

∂z

(
∂f
∂x

)
.

To begin, we will compute ∂f
∂x by taking y and z to be constants and computing

as follows:

d
dxg(x) = d

dx

(
3 sin(x) tan2(y) + 4x2

log(z)

)
= d

dx

(
3 sin(x) tan2(y)

)
+ d

dx

(
4x2

log(z)

)
The derivative of a sum is the sum of the derivatives

= 3 tan2(y) d
dx sin(x) + 4

log(z)
d
dxx

2
Pull out the constants

= 3 tan2(y) cos(x) + 8x
log(z)

Computing ∂f
∂z

(
∂f
∂x

)
is very similar. We begin with ∂f

∂x as computed above and
proceed as follows:

d
dzh(z) = d

dz

(
3 cos(x) tan2(y) + 8x

log(z)

)
= d

dz

(
3 cos(x) tan2(y)

)
+ d

dz

(
8x

log(z)

)
The derivative of a sum is the sum of the derivatives

= 0 + 8x d
dz

1
log(z) The first term is all constants, with a derivative of zero

= −8x
z log2(z)

As you may be able to see from this example, the order in which we evaluate
partial derivatives does not change the final result. The intuition for this property is
that the other variables in the equation play no role in the computation of a partial
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derivative with respect to some specific variable, so the partial derivatives each have
a sort of independence. To better see this for yourself, try computing ∂f

∂x

(
∂f
∂z

)
and

comparing your result to the result of ∂f
∂z

(
∂f
∂x

)
in the above example. For more on

the partial derivative, see Dawkins [3].

5.1.2 The Gradient

The gradient is core to a large number of optimization techniques. It can be con-
sidered as a more general version of the derivative, expanding the notion of the
change of a function with respect to some variable to multiple dimensions. Com-
puting the gradient is quite simple: For a function with input variables x1, . . . , xn,
the gradient is the vector consisting of the function’s partial derivative with respect
to each of the xi in turn. More formally:

Definition 5.2 (Gradient of a Real-Valued Function) Given a differentiable func-
tion f : Rn → R, i.e. f(x1, . . . , xn), we define the gradient of f to be ∇f =
〈 ∂f∂x1

, . . . , ∂f
∂xn
〉, the vector of all first-order partial derivatives of f .

The gradient is useful because it tells us the direction of increase of a function
at every point. If we imagine placing a ball at a point (x1, . . . , xn) on the surface
created by the values of a function f , then (−∇f)(x1, . . . , xn) tells us which way
that ball would roll (obviously, this intuition makes the most sense when n = 2 or
3). The gradient’s value is a vector with magnitude equivalent to the slope of f and
direction equivalent to the direction in which f is increasing fastest.

The utility of the gradient to optimization is thus fairly straightforward: If we
want to solve an optimization problem, we typically want to find the point(s) where
a function is at its extrema — where it is largest or smallest. Given that the gra-
dient tells us the direction of increase of a function (and thus also the direction of
decrease of a function, by negating the gradient), it seems intuitive that we could
“follow” the gradient to find the extrema of the function. We will see some tech-
niques for doing so in Section 5.2.

Finally, we have already encountered the Jacobian matrix in a number of con-
texts. The Jacobian can be thought of as the further generalization of the gradient
to vector-valued functions. It is the matrix of first order derivatives of a vector-
valued function. In short, each row of the Jacobian of a vector-valued function ~f is
the gradient of each element of the column vector which comprises ~f , in order.

5.1.3 The Hessian Matrix

The Hessian matrix for a function is a measure of the function’s local curvature. It
has many applications, some of which we will see in later sections. For now, we



5.1. CALCULUS FOR OPTIMIZATION 133

will simply define the Hessian.

Definition 5.3 (The Hessian) For a twice-differentiable function f : Rn → R, the
Hessian matrix H is defined as:

H =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 (5.1)

In other words, the Hessian is the matrix of all second-order partial derivatives
of f .

5.1.4 Critical Points & Critical Point Tests

Before we begin considering more advanced methods of optimizing functions, we
will briefly review one of the most fundamental methods of finding the extrema of a
function: computing its critical points and evaluating their second-order properties.

Definition 5.4 (Critical Points of a Real-Valued Function) Given a continuously
differentiable function f : Rn → R, a point x = (x1, . . . , xn) is considered a
critical point of f iff f(x) exists and either∇f(x) = ~0 or∇f(x) does not exist.

In this section, we will only consider functions for which we can fairly easily
compute the critical points algebraically. Section 5.2 and much of the rest of this
chapter discusses methods for approximating the extrema of functions, which in
some cases includes approximating their critical points.

In general, the procedure for finding the critical points of a function f is as
follows: Compute∇f , and then use algebra to find the roots of∇f , as well as any
points where at least one component of ∇f does not exist. The resulting set of
points is the set of critical points for f .

Once we have the critical points of f , we need some way to find out whether or
not they are extrema. Recall that while all extrema are critical points, not all critical
points are extrema. If f is twice differentiable (meaning that we can compute its
second-order gradient), then we can use the second derivative test to check its
critical points.

For f of the form we have been considering thus far (i.e. f : Rn → R), we can
perform the second derivative test for a critical point c by the following procedure:

First, compute the Hessian matrix H (see Section 5.1.3) of f at c, and then the
eigenvalues1 of H. If all of the eigenvalues λi of H are positive, then f has a local

1Recall that an eigenvalue λ of a matrix A is a root of the characteristic polynomial of A,
|A− λI| = 0, where I is the identity matrix.
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minimum at c, If all λi are negative, then f has a local maximum at c. If none of
the λi are zero, but there are some negative and some positive, then c is a saddle
point of f . Finally, if none of these conditions are met, then the second derivative
test is inconclusive and we cannot classify c.

This test only gives us information about the local extrema of a function,
whereas we are often more interested in the global extrema. In order to find these,
we must take a slightly different approach. We have no general means of finding
the global extrema for a function; we do not even have a guarantee that global ex-
trema exist. As such, we will restrict our attention to a closed, bounded region of
B ∈ Rn.

GivenB, we can find the region-global extrema by finding the critical points of
our function f within B and the minimum and maximum points of f on the border
of B. With these values, it is fairly straightforward to use comparison to find the
true extrema of f in B.

5.2 Iterative Methods

Unfortunately, the exact methods provided by calculus are not always applicable to
optimization problems. It may be intractable or otherwise infeasible to exactly find
the critical points of a function, the second derivative test may be inconclusive, we
may be unable to set bounds necessary to find the global extrema of a function, or
some other property of the problem may prevent us from using exact methods. In
these cases, it is useful to be able to fall back on a numerical approximation of
the optima for the problem. Thus, we will now introduce a subset of the iterative
methods of optimization. As their name implies, these methods iteratively im-
prove on an approximation of the optimal value for a function. The key difference
between the methods is their update rule — the means by which they determine
how to change their estimate.

5.2.1 Newton’s Method

Newton’s method is the most basic method of iterative optimization. You have
probably encountered Newton’s method in the context of approximating function
roots in a calculus class; in this section, we will discuss the applications of this
method to the problem of function optimization.

Method

As we saw earlier (specifically, in Section 5.1.4), the minima of a function occur at
its critical points — the input points for which the first derivative of the function is
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zero. This fact is the crux of Newton’s method in optimization: with this in mind,
we can use Newton’s method to approximate the roots of the first derivative of a
twice differentiable function, thus approximating the function’s critical points. We
can then use these points to find the minima of the function.

To put this more formally, given a function f : R → R such that f is twice-
differentiable, we can pick an initial “guess” x0 and compute:

xn+1 = xn −
ḟ(xn)

f̈(xn)
(5.2)

You will note that this equation is recursively defined. We use our guess value
x0 to initialize the computation. Iteration continues until xn converges. We can test
for convergence by examining the value of ∆ = xn − xn−1; when we have ∆ ≤ ε
for some ε ∈ R, we can stop the iteration because the value of xn is not going
to change significantly in future iterations. We elide the proof of convergence for
Newton’s method in these notes, but it is easily found online.

Newton’s method is not limited to single-dimensional functions. For a function
f : Rm → R where f is twice-differentiable, we can generalize the recurrence
relation given in (5.2) as follows:

xn+1 = xn − (H(xn))−1∇f(xn) (5.3)

where H is the Hessian of f (see Section 5.1.3) and ∇f is the gradient of f .
Intuitively, all we are doing in this generalization is replacing the 1-dimensional
notions of first and second derivatives with their multi-variable equivalents. Note
also that xn and xn+1 are both vectors, as is necessary for higher-dimensional
functions.

Analysis

Although Newton’s method usually converges to a low-error approximation of the
desired result, there are some conditions which may cause it to diverge or other-
wise fail to succeed. Some of the most pernicious of these conditions stem from
improper selection of the initial guess, x0. In this section, we will use notation
corresponding to the single-dimensional case, but the principles we discuss are
common to applications of Newton’s method with any dimensionality.

For example, if we pick a value of x0 for some function f such that f̈(x0) = 0,

then the update term ḟ(x0)

f̈(x0)
will be undefined from the first iteration, and the method

cannot make progress toward converging. Such an x0 is known as a stationary
point of f .
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Similarly, it may be possible that we pick x0 for some function f such that
x0 is part of a cycle, e.g. for x1 = x0 − ḟ(x0)

f̈(x0)
, we have x1 − ḟ(x1)

f̈(x1)
= x0. This

choice of x0 will obviously lead to the method iterating forever, as it will keep
making “progress” around the cycle without ever getting to the extrema of f . This
is effectively the method overshooting the real solution.

Sometimes, properties of the function f can affect the ability of Newton’s
method to converge. In particular, we rely on ḟ and f̈ being “well-behaved”, at
least in a neighborhood around each extremum. If this is not the case — for ex-
ample, if f̈ does not exist at some extremum, then Newton’s method will diverge
instead of converging to this extremum. Even if f̈ does exist at a given extremum,
we might also run into trouble if it is discontinuous at the extremum in question. In
general, for Newton’s method to succeed, f needs to be smooth in a neighborhood
around each extremum.

Finally, Newton’s method may be computationally expensive. It uses the exact,
directly computed forms of both ḟ and f̈ , which may be difficult or infeasible to
find. We can imagine that this might be the case for certain choices of f where
f is very complicated, estimated from data, or otherwise not easily differentiated
analytically. In these cases, we sometimes use Quasi-Newton methods, which
work around the need for exact derivative computation. These methods are not
covered in this class, however.

For more on Newton’s method, please see Section 8.6.1 of Goodfellow et al.
[4].

5.2.2 Gradient Descent

Gradient descent is a method of optimizing a function by greedily following its
gradient downward. It is one of the most common methods of optimization used,
particularly for machine and deep learning. This popularity stems from the sim-
plicity and effectiveness of the technique.

Method

The core of gradient descent is the notion that a function decreases fastest in the
opposite direction of its gradient. While this does not guarantee that following the
negative gradient will lead to a global minimum, it does mean that we will converge
to a local minimum2. The formula for basic gradient descent is as follows:

xn+1 = xn − γn∇f(xn) (5.4)

2Assuming certain properties of f , which we won’t discuss here.
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where f : Rm → R is the function we are optimizing, xn is a previous estimate
of the optimum of f , and γn is a scaling coefficient. As in Section 5.2.1, we begin
iteration with an arbitrary estimate x0 and conclude when some stopping condition
is met — usually when the rate of change of the xi drops below some threshold.

Analysis

Gradient descent is simpler and slower but more general than Newton’s method.
Whereas Newton’s method requires f to be twice-differentiable, we only need to
compute the first derivatives of f for gradient descent. Further, computing the gra-
dient is a cheaper operation than computing the update term for Newton’s method3.
However, Newton’s method will usually converge quadratically to a minimum,
while gradient descent tends to be much slower. Additionally, gradient descent
has more of a tendency to get “stuck” near saddle points and near minima, as the
magnitude of the gradient decreases.

5.3 Constrained Optimization

5.3.1 Lagrange Multipliers

All of the techniques we have seen thus far have been applicable to unconstrained
optimization problems, wherein we simply want to minimize some function and
have no constraints on the region of input values we can use for this task. In this
section, we will discuss a method of solving constrained optimization problems
known as the method of Lagrange multipliers.

Constrained Optimization

First, we define a constrained optimization problem as follows:

Definition 5.5 Given a function f , we wish to find the input x such that f(x) is
minimized, while satisfying the equations gi(x) = ci and inequalities hj(x) ≤ dj ,
for constants ci and dj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In other words, we are solving an optimization problem as usual, but some
possible solutions might not be acceptable (if they violate the constraints). While
we could conceivably use an unconstrained optimization method and check each
possible solution against the constraints, this is not a very efficient approach. It
is better to use a method (such as Lagrange multipliers or linear programming —

3This follows because the gradient is only one part of the update term for Newton’s method.
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which we will discuss in Section 5.3.2) which takes into account the constraints in
the search for optima.

Method

We can only apply the method of Lagrange multipliers to a subset of constrained
optimization problems: those where we have only equality constraints. The in-
tuition behind Lagrange multipliers can be considered to stem from two insights.
First, because we are only working with equality constraints, we know that the so-
lution to the optimization problem must lie in the intersection of the level sets of
all of its constraints.

Definition 5.6 A level set of a function g(x) is the setG = {x|g(x) = c} for some
constant c. In other words, it is the set of points which g maps to the same value.
For g : R2 → R, this set is also called a contour of g.

Second, we know that the optimum for f will be found at a point where f is
unchanging. This will happen either where∇f = 0 or on a contour of f .

Putting these two facts together and noting that the gradient of a function is
perpendicular to its contours4, we can construct a function which will have a zero
gradient at the possible optima of f .

Specifically, we will construct the Lagrangian as follows. For a function f :
Rn → R and constraints gi : Rn → R for i = 1, . . . , n, the Lagrangian is

L(x, λ) = f(x)−
n∑

i=1

λi(gi(x)− ci) (5.5)

We include the vector λ to account for the fact that although the gradients of
f and the gi must be parallel, they need not be of the same magnitude. Then, by
computing ∇L and solving ∇L = 0, we can find the candidate optima for f with
respect to the n constraints gi. To solve this equation, we will note that for f and
the gi as given, this is equivalent to solving the n + m equations described by the
gradient vector of L. This system will be in the variables x1, . . . , xn (for the input
to f ) and λ1, . . . , λm (for the Lagrange multipliers), and thus will be solvable (as
the number of variables and number of equations in the system are equal).

Analysis

The key properties to note for Lagrange multipliers are as follows. First, this
method is only applicable for equality constraints; problems with other kinds of

4We are using terminology for the case of f : R2 → R for convenience; the formulae and notions
generalize to higher dimensions.
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constraints must either be transformed into the equality constraint form or solved
through another method. Second, as with most of the methods we have discussed
thus far, the function f must be differentiable for the method to be applicable. Fi-
nally, note that the solutions to the system of equations discussed above must be
checked for optimality; they may not necessarily be minima or maxima. For more
on Lagrange multipliers, see Klein [5] or Dawkins [3].

5.3.2 Linear Programming

We will conclude our brief overview of optimization techniques by looking at an-
other technique for constrained optimization: linear programming.

Method

Linear programming is a means of solving the subset of constrained optimization
problems where both the objective and all of the constraints are linear functions. At
a high level, linear programming constructs a feasible region where solutions must
lie in the set of constraints, and then it uses one of several techniques to search this
region for the optima.

If an objective function f : Rn → R and set of constraints gi : Rn → R
are all linear, then we can express the constrained optimization problem in terms
of a set of matrix products of the matrices corresponding to the systems of linear
inequalities and equations comprising the problem. For f and gi as given, where
f(x) = c0x0 + . . .+ cnxn and gi(x) = ai,0x0 + . . .+ ai,nxn ≤ bi, we can write
the constrained optimization problem in the form:

minimize cTx (5.6)

maintaining Ax ≤ b and x ≥ 0 (5.7)

where c is the vector composed of the ci from f , A is the matrix composed of
the ai,j from gi, and b is the vector composed of the bi.

Taken together, the inequalities in (5.7) describe the convex region composed
by intersecting the regions that each individual constraint gi ≤ bi describes. Once
we have this feasible region and the appropriate description of f , which is the
expression in (5.6), we can use one of several methods to find the optimal input for
f . In these notes, we will discuss at a high level the simplex algorithm, which was
among the first algorithms for solving linear programs.

The basic method of the simplex algorithm is straightforward: Starting at some
vertex of the region described by the constraints, we walk along the edges of the
region following the direction of increase of f (assuming that we are solving a
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maximization problem) until we reach a vertex from which no edge exists along
which f increases.

The viability of this simple algorithm is based on two clever insights, which we
will state without proof here. First, it can be shown that the optimal value for the
objective function of a linear program in the above form will occur on a vertex of
the region described by the constraints, if any optimal value exists. Second, it can
also be shown that all vertices of the region which do not have the optimal value for
f have an edge along which f increases and which leads to a vertex with a greater
value of f . Thus, by following edges until f cannot increase, we ensure that we
can find the optimal value of f with respect to the constraints.

Analysis

Linear programming is very powerful, and there exist many good tools (and more
sophisticated algorithms) for solving linear programs. The main consideration in
its use is that both the objective function and all constraints must be completely
linear, which limits the class of constrained optimization problems to which it is
applicable. Additionally, although there exist guaranteed polynomial-time algo-
rithms for solving linear programs, simplex is only usually polynomial-time and
may run longer.
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