
Chapter 4

Uncertainty

Robots operate in the real world, and the real world is messy and noisy. It is critical
that real-world robotics applications incorporate an understanding of uncertainty,
whether to model the likely outcomes of an action, better estimate the state of the
world, or make predictions about the future.

4.1 Nondeterminism and Stochasticity

We will begin by defining two key pieces of terminology: nondeterminism and
stochasticity. These terms have slightly different meanings in a robotics context
than you may be accustomed to from other fields.

Definition 4.1 A system is nondeterministic if we cannot predict what it will do
in the future.

Definition 4.2 A system is stochastic or probabilistic if we have some notion of
how it is likely to behave.

These definitions, which are drawn from section 9.2.2 of LaValle [4], reflect the
significance of randomness to robotics applications. To inform a robot’s decision-
making capabilities, we typically would like to model the environment that the
robot is in (including other agents in the environment like people), and thus we
want to characterize these systems in terms of our ability to predict them. As an
example, consider a robot attempting to navigate a crowded hallway without col-
liding with moving pedestrians. Without gathering statistics about the trajectories
of the pedestrians, the behavior of a person in the hallway is nondeterministic; that
is, we cannot predict where the person might go from one timestep to another.

In the absence of information about the behavior of the environment and the
agents within it, one option is to make a decision assuming that the world is acting
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in the robot’s worst interest. More specifically, we can apply a minimax solution
that attempts to minimize the cost of the robot’s next action by assuming that the
world is trying to drive that cost to its maximum. Although it is rather pessimistic,
choosing actions based on this worst-case outlook should guarantee that the robot’s
interaction with the environment cannot have a higher cost than anticipated.

However, we know some things about the hallway environment. We know that
humans walk in continuous paths, and we may even have some statistical knowl-
edge of trajectories, destinations, or other relevant information to the problem at
hand, which makes the hallway scenario probabilistic (or stochastic). We can use
this information to build a more informed model than the worst-case assumption.
For example, we can create a time-varying distribution of paths and choose our
own trajectory based on a minimization of the projected likelihood of intersecting
any of the paths of the pedestrians. If our information is statistically valid, then we
can expect our robot to make better decisions given the current environment.

For more about nondeterministic and probabilistic models in the context of
robot motion planning, please see section 9.2.2 of LaValle [4].

4.2 Probability Basics

A probabilistic model is a mathematical description of an uncertain situation, i.e.
a situation in which several possible outcomes may occur. The process underlying
the probabilistic model is called the experiment and will produce exactly one of
the possible outcomes. Although the term “experiment” seems to suggest a con-
trolled laboratory setting, it is used broadly to mean anything from flipping a coin
to taking sensor readings. The set of all possible outcomes of the experiment is
called the sample space and is denoted by S . The smallest sample space is one
that contains two possible outcomes; for example, the sample space for flipping a
coin one time is S = {H,T}, where H represents heads and T represents tails.
If we flipped the coin two times, then the sample space would be all sequences
of H’s and T ’s of length two, i.e. S = {HH,HT, TH, TT}. Note that in our
formulation of a probabilistic model, there is only a single experiment, so flipping
a coin twice constitutes one experiment rather than two separate experiments.

In our study of probability, we are interested in not only single outcomes but
also collections of outcomes. We refer to the subset of a sample space as an event,
which can either be simple if it contains exactly one outcome or compound if it
contains more than one outcome. In the experiment where we flip a coin twice, an
example of a simple event is “the event that heads comes up exactly twice,” which
we could write as A = {HH}, and an example of a compound event is “the event
that tails comes up at least once,” which we could write as A = {HT, TH, TT}.
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Example 4.1 A laser rangefinder is a sensor that bounces a frequency-modulated
laser off of objects in order to determine their distance from the robot. A typi-
cal laser rangefinder might return an integer distance in centimeters in the range
[10, 1000], whereas a return value of 0 would indicate that no return signal was
detected. An experiment occurs each time the device emits laser light and tries
to detect a return signal. Note that the physics of light travel mean that after
emitting a laser signal, there is a small range of times during which a return
signal could possibly be detected, so that the experiment has a definite start and
end time. The value r of the return signal is an outcome. The sample space
would be {0, 10, 11, 12, . . . , 1000}. An important compound event occurs when
r ∈ {10, 11, 12, . . . , 1000}. In words, we would describe this event as “the robot
detected an obstacle.” This event carries significance because it may require that
the robot perform obstacle avoidance to prevent a collision. Note that the opposite
event – that the robot did not detect an obstacle – is a simple event since the single
reading 0 is used to indicate no return signal.

With these definitions in place, we can now state a probability law and three
important axioms. Given an experiment with sample space S, the probability law
assigns to each eventA a number P(A) called the probability ofA. The probability
of A quantifies the likelihood that A will occur and satisfies the following axioms:

1. (Nonnegativity) P(A) ≥ 0 for any event A.

2. (Normalization) P(S) = 1.

3. (Additivity) If A and B are two disjoint events (i.e. they have no outcomes
in common), then the probability of their union satisfies

P(A ∪B) = P(A) + P(B).

In general, if S contains an infinite collection of disjoint events A1, A2, . . . ,
then the probability of their union satisfies

P(A1 ∪A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

The nonnegativity axiom formalizes the intuitive notion that an event cannot have
negative probability. The normalization axiom states that the probability of S must
be equal to 1, the maximum probability that can be assigned to an event, since by
definition S contains all possible outcomes and therefore must always occur when
the experiment is performed. Finally, the additivity axiom states that if we have a
collection of events which cannot occur simultaneously, then the probability of one
of them occurring is the sum of the probabilities of the individual events.
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What about the case where we have events that are not disjoint? Suppose for
example that we are rolling a fair six-sided die, and let event A be the event that
we roll a two. Since the die is fair, we have P(A) = 1/6. Now let event B be
the event that we roll an even number. There are three outcomes contained within
this compound event (i.e. we roll a two, a four, or a six), so the probability of B is
P(B) = 1/6 + 1/6 + 1/6 = 1/2. Now let’s ask a slightly different question about
these two events. Suppose that we know that B occurred, i.e. we rolled an even
number, and we want to ask the question “What is the probability that I rolled a
two given that I rolled an even number?” To answer this question, we need a new
probability law that accounts for available knowledge; that is, we need a law that
specifies the conditional probability of A given that B has occurred, which we
denote as P(A | B) and define as

P(A | B) =
P(A ∩B)

P(B)
, (4.1)

where we assume that the conditioning event B has probability greater than zero.
Intuitively, this definition follows from the fact that P(A | B) must be proportional
to P(A ∩ B), the probability that both A and B occur. Since the set of possible
outcomes now consists only of the outcomes in B rather than the entire sample
space S, we use the proportionality constant 1/P(B) to ensure that P(B | B) = 1
and to scale P(A | B) accordingly. Thus, the conditional probability that we rolled
a two given that we rolled an even number is

P(A | B) =
1/6

1/2
=

1

3
. (4.2)

Note that it is important to know which event is the conditioning event. If we made
A the conditioning event, then we would be computing P(B | A), the conditional
probability that we rolled an even number given that we rolled a two, and the result
would be

P(B | A) = 1/6

1/6
= 1. (4.3)

Thus, in general, P(A | B) 6= P(B | A). Later in this chapter, we will introduce
a crucial theorem called Bayes’ rule that gives the relationship between P(A | B)
and P(B | A), allowing us to compute one conditional probability given the other.

One final important note about conditional probabilities is that if events A and
B are independent, then the occurrence ofB has no effect on the probability ofA.
In other words, A and B are independent events if and only if P(A | B) = P(A).
It follows from (4.1) that if A and B are independent, then the probability that they
both occur is

P(A ∩B) = P(A)P(B). (4.4)
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We adopt the relation in (4.4) as our definition of independence since it implies
that independence is a symmetric property and can also be used when P(B) = 0.

Example 4.2 Returning to the laser rangefinder from Example 4.1, let us consider
the probability of every simple event. In the absence of any knowledge about the
situation in which the laser rangefinder experiment was performed (robot location,
presence of obstacles in the vicinity), we might assign an equal probability to every
range reading as well as the “no obstacle detected” reading. Thus, if we let A be
the event that r1 = 500, then we would say P(A) = 1

992 because there are 992
different possible return values.

Having taken a reading and received the return value r1 = 500 (event A), let
B be the event that a second reading gives a return value r2 = 500. There is a
good chance that these readings occurred because the laser struck an obstacle at a
distance of 500 cm. Since the two events are caused by a common mechanism, they
are not independent. Whereas P(A) = P(B) = 1

992 , the conditional probability
P(B|A) is much higher (nearly one) because laser rangefinder readings are very
repeatable.

4.3 Random Variables and Probability Distributions

Often times, we would like to define a rule that associates each possible outcome of
an experiment with a numeric value. Such a rule of association is called a random
variable and in mathematical terms is a real-valued function of the experimental
outcome. We denote a random variable with an uppercase letter like X and use
the notation X(s) = x to mean that x is the numeric value associated with the
outcome s by the random variable X . For example, for a coin flip, we might define

X =

{
1 if the outcome is heads,
0 if the outcome is tails.

(4.5)

Note that this kind of random variable — one where the only two possible values
are 0 and 1 — is called a Bernoulli random variable. In practice, the Bernoulli
random variable is often used to model probabilistic situations with two outcomes.

An important characteristic of a random variable is whether it is discrete or
continuous. If a random variable is discrete, its possible values are either finite or
countably infinite. The Bernoulli random variable, with its finite number of values,
is an example of a discrete random variable. Continuous random variables, on the
other hand, can take on an uncountably infinite number of values, such as all of
the numbers in the interval [0, 1]. The distinction between discrete and continuous
random variables is important when defining its probability distribution, which
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describes how the total probability of the sample space (recall that this must be 1
by the normalization axiom) is distributed among the possible values of the random
variable. Probability distributions are the subject of the rest of this section.

4.3.1 Probability Mass Functions

Given a discrete random variable X , we define its probability distribution with a
probability mass function, or a pmf for short. For each possible value x of X ,
the pmf assigns a probability mass, which we notate as follows:

p(x) = the probability that X will take on value x = P(X = x).

For example, suppose we flip a fair coin twice and define X to be the number of
times the outcome is heads. Then the pmf of X is

p(x) =


1/4 if x ∈ {0, 2},
1/2 if x = 1,
0 otherwise.

(4.6)

Notice that ∑
x

p(x) = 1, (4.7)

where x ranges over all possible values of X . For any pmf, this property must hold
by the normalization and additivity axioms of probability.

In a similar manner, we can use the pmf of X to determine the probability of
compound events. Suppose for example that we would like to know the probability
of the outcome being heads at least once. We compute this as

P(X > 0) =
2∑

x=1

p(x) =
1

2
+

1

4
=

3

4
. (4.8)

Thus, the probability of heads coming up either once or twice is 3/4.

4.3.2 Probability Density Functions

Given a continuous random variable X , we define its probability distribution with
a probability density function, or a pdf for short. The pdf ofX is a function f(x)
such that for any two numbers a and b with a ≤ b, we have

P(a ≤ X ≤ b) =
∫ b

a
f(x) dx, (4.9)
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which can be interpreted as the area under the graph of the pdf. Note that this means
no single value of a continuous random variable has positive probability, i.e.

P(X = a) =

∫ a

a
f(x) dx = 0. (4.10)

Thus, when a random variable is continuous, we always talk about the probability
of intervals of values rather than the probability of single values.

To be a legitimate pdf, the function f(x) must be nonnegative, i.e. f(x) ≥ 0
for every x, and must have the normalization property∫ ∞

−∞
f(x) dx = 1, (4.11)

i.e. the area under the entire graph of the pdf must be equal to 1.

4.3.3 Cumulative Distribution Functions

To describe both discrete random variables and continuous random variables with
a single mathematical concept, we can use the cumulative distribution function,
or cdf for short. The cdf is defined as follows:

F (x) = P(X ≤ x) =


∑
y≤x

p(y) if X is discrete,

∫ x

−∞
f(y) dy if X is continuous.

(4.12)

An intuitive way to understand the cdf is that it is the accumulation of probability
“up to” the value x. Any random variable, whether discrete or continuous, has a cdf
since {X ≤ x} is always an event and consequently has a well-defined probability.

Notice that we can use the cdf as a means of obtaining the pmf or pdf of X .
Suppose that X is discrete. In this case, we can obtain the probability mass for any
value y by differencing, as

p(y) = P(X ≤ y)− P(X ≤ y − 1) = F (y)− F (y − 1). (4.13)

In the case where X is continuous, we can obtain the pdf by differentiating, as

f(x) =
dF

dx
(x), (4.14)

which is valid at every x at which the derivative of the cdf exists. Also note that
we can compute the probability of an interval of values with the cdf, as

P(a ≤ X ≤ b) = F (b)− F (a), (4.15)

by the Fundamental Theorem of Calculus.
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4.4 Statistical Moments

Although we can understand how a random variable behaves by studying the many
individual numbers that constitute its probability distribution, it is frequently useful
to summarize this information into a few representative numbers. These summary
statistics are called moments, and we define several of them — expected value,
variance, skewness, and kurtosis — in this section.

4.4.1 Expected Value

To motivate the definition of the expected value of a random variable, let us suppose
that we are at a fair and are deciding whether to play a game that costs one ticket.
We are told that we will double our tickets back with probability 0.2 and triple
our tickets back with probability 0.1 (and we infer from this that we earn back no
tickets with probability 0.7). Let X be the net gain or loss from playing one round
of this game. The possible values of X are therefore 1, 2, and −1, and the pmf is

p(x) =


0.7 if x = −1,
0.2 if x = 1,
0.1 if x = 2,
0.0 otherwise.

(4.16)

In order to decide whether to play, we might consider what to “expect per round”
if we played the game many times. Suppose that we play the game n times and
that kx is the number of times that the outcome is x. The net gain or loss in tickets
averaged over the n rounds is then given by

−k−1 + k1 + 2k2
n

. (4.17)

It is reasonable for us to anticipate that if n is quite large, then the fraction of rounds
where the outcome is x is approximately the probability of x, i.e.

kx
n
≈ p(x), (4.18)

and thus the net gain or loss we “expect per round” is approximately

− p(−1) + p(1) + 2p(2) = −0.7 + 0.2 + 2(0.1) = −0.3. (4.19)

We would therefore expect to lose about 0.3 tickets per round if we played this
game a large number of times (which we clearly should not do). The intuitive prin-
ciple behind our method for reaching this result is formalized by the Law of Large
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Numbers, which states that as the number of times an experiment is performed
approaches infinity, the average of the outcomes approaches the expected value.

Motivated by this example, we define the expected value (also known as the
expectation or mean) of a random variable X to be

E(X) =


∑
x

x · p(x) if X is discrete,

∫ ∞
−∞

x · f(x) dx if X is continuous.

(4.20)

Hence, E(X) is a probability-weighted average over all possible values of X , and
by the Law of Large Numbers is the number that we will approach if we repeat the
experiment associated with X many times and average the results. Another useful
way to view E(X) is that it is the center of mass of the probability distribution.

Sometimes we would like to determine the expected value not ofX itself but of
a function of X . For instance, suppose that in our motivating example we instead
wanted to determine how many tickets we could expect to win each round rather
than the expected net gain or loss in tickets. Keeping the same definition of X , we
could define a function h(X) = X + 1 and then compute the expected value of
that function. It turns out that if h(X) is any function of X (it does not necessarily
need to be linear), then the expected value of the random variable h(X) is given by

E(h(X)) =


∑
x

h(x) · p(x) if X is discrete,

∫ ∞
−∞

h(x) · f(x) dx if X is continuous;

(4.21)

that is, we compute the expected value in the same manner as in (4.20) except that
we replace x with h(x). We will make use of this rule shortly.

4.4.2 Variance

Aside from the expected value, the most important moment of a random variable
X is its variance, denoted as Var(X) or σ2X . Whereas the expected value describes
where the probability distribution is centered, the variance measures how much the
probability distribution is dispersed about the center. We can informally understand
the variance Var(X) as a measure of how much we expectX to deviate from E(X).
More formally, we define the variance of X as

Var(X) = E
[
(X − E(X))2

]
. (4.22)
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In other words, Var(X) is the expected squared deviation of X from the center of
mass. A related measure of variability is the standard deviation, denoted as σX ,
which is simply the square root of the variance,

σX =
√

Var(X). (4.23)

It is often easier to interpret the standard deviation of X as a measure of variability
since it uses the same units as X rather than the square of the units. For example,
if X is measured in meters, then the standard deviation σX is measured in meters,
whereas the variance σ2X is measured in meters squared. The standard deviation is
thus often preferred to describe a distribution in a real-world setting, whereas the
variance is typically more useful and conducive to work with mathematically.

From the definition of variance given in (4.22), computing the variance seems
somewhat expensive since we need to compute the distribution of (X − E(X))2.
Fortunately, we can reduce the number of arithmetic operations required by using
the rule for the expected value of a function of a random variable given in (4.21).
In particular, suppose that X is a random variable and that Y is a linear function of
X; that is, Y = aX + b, where a and b are scalars. Then

E(Y ) = aE(X) + b and Var(Y ) = a2 Var(X). (4.24)

We can use the first of these results and the definition of variance in (4.22) to derive

Var(X) = E
[
(X − E(X))2

]
= E

[
X2 − 2E(X)X + (E(X))2

]
= E(X2)− E(2E(X)X) + (E(X))2

= E(X2)− 2E(X)E(X) + (E(X))2

= E(X2)− 2(E(X))2 + (E(X))2

= E(X2)− (E(X))2,

(4.25)

a formula for computing the variance that is often less costly and more convenient.

4.4.3 Skewness

Another statistical moment that describes an aspect of the probability distribution
about its center of mass is skewness. Intuitively, the skewness of a random variable
X measures the degree to which its distribution departs from horizontal symmetry,
as well as the direction of that departure. We define the skewness of X as

Skew(X) =
E
[
(X − E(X))3

]
(E [(X − E(X))2])3/2

. (4.26)
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Unlike expected value and variance, skewness does not have a unit, so it can be
hard to interpret. Even so, we can glean an important property — the direction of
the skew — just from looking at the sign of the skewness score:

• If the skewness is positive, then the distribution is positively (or right) skewed,
meaning that the right tail is longer than the left.

• If the skewness is negative, then the distribution is negatively (or left) skewed,
meaning that the left tail is longer than the right.

Note that the positivity or negativity of the skewness indicates which tail is longer,
not which direction the distribution visually appears to be leaning. Also note that a
skewness score of zero means that the distribution is perfectly symmetric about its
center of mass. In practice, random variables very rarely have perfectly symmetric
distributions, so it is useful to have heuristics for interpreting the skewness score.
Bulmer [2] suggests this rule of thumb:

• If |Skew(X)| > 1, then the distribution is highly skewed.

• If 1/2 < |Skew(X)| ≤ 1, then the distribution is moderately skewed.

• If 0 < |Skew(X)| ≤ 1/2, then the distribution is fairly symmetrical.

Note that a normal (or Gaussian) distribution has a skewness of zero. Thus, a high
skewness score indicates that a distribution is non-normal.

4.4.4 Kurtosis

The final statistical moment that we will introduce in this chapter is kurtosis, which
is similar to skewness in that it describes the shape of the distribution, has no unit,
and is somewhat hard to interpret. The mathematical definition is also the same as
that of skewness except that the powers of three are replaced by powers of four:

Kurt(X) =
E
[
(X − E(X))4

]
(E [(X − E(X))2])2

. (4.27)

What the kurtosis of a random variable X means in terms of distribution shape has
been disputed, but the interpretation that we adopt in these notes is that the kurtosis
is related to tail extremity. As a result, the kurtosis ofX gives us information about
the kind of outliers we can expect X to produce. In particular,

• a higher kurtosis indicates more extreme outliers, whereas

• a lower kurtosis indicates more modestly-sized outliers.
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Note that the kurtosis of a normal distribution is 3. It is common for the kurtosis
of a given distribution to be compared to this value, thus giving a sense of how the
outliers of the given distribution compare to a normal distribution.

4.5 Multiple Random Variables

Up until now, our probabilistic models have only involved a single random variable,
but we often would like to develop a model for the simultaneous behavior of several
random variables. For example, suppose that we have two random variablesX and
Y that represent a robot’s distance to each of two people walking down a hallway
together. The trajectory of one pedestrian influences the trajectory of the other,
and thus to make informed judgments about how X and Y will behave over time,
we need to understand how X and Y relate to each other. Motivated by examples
such as these, in this section we discuss probabilistic models involving multiple
random variables simultaneously. We start by generalizing previous concepts from
this chapter to cases where we have two random variables, and then at the end of
the section we further generalize to more than two random variables.

4.5.1 Joint Probability Mass Functions

The pmf of a single discrete random variableX tells us how much probability mass
is placed on each possible value x. Similarly, the joint pmf of two discrete random
variables X and Y that are associated with the same experiment tells us how much
probability mass is placed upon each possible pair of values (x, y). We define the
joint pmf of X and Y as

p(x, y) = P(X = x and Y = y). (4.28)

Hence, if we have a subset of the sample space A ⊆ S that is the set of all pairs
(x, y) with a certain property, then the joint pmf satisfies

P((X,Y ) ∈ A) =
∑

(x,y)∈A

p(x, y). (4.29)

In addition, the joint pmf must satisfy

p(x, y) ≥ 0 and
∑

(x,y)∈S

p(x, y) = 1. (4.30)

To gain some intuition about joint distributions, let us consider an example.
Suppose that the local bakery Wakeful Cookies is open from midnight to 3:00am
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and sells cookies in packs of six, twelve, eighteen, and twenty-four. For simplicity,
assume that every customer purchases one pack of cookies. Let X be the number
of cookies that the customer purchased, and let Y be the hour that the customer
bought the cookies, where 0 means “between midnight and 12:59am,” 100 means
“between 1:00am and 1:59am,” and 200 means “between 2:00am and 2:59am.”
Suppose that the joint pmf is given by the following table:

X = 6 X = 12 X = 18 X = 24

Y = 0 0.07 0.10 0.09 0.14

Y = 100 0.04 0.14 0.07 0.10

Y = 200 0.04 0.11 0.04 0.06

Using this table, we can read off the probability of events involving both X and Y ,
e.g. the probability that a given customer of Wakeful Cookies bought 24 cookies
between midnight and 12:59am is p(24, 0) = 0.14. We can also use this table to
calculate the pmf of each variable individually. In the context of jointly-distributed
random variables, the pmf of an individual variable is called the marginal pmf
to distinguish it from the joint pmf. The marginal pmf of X at value x, denoted
pX(x), is found by summing all the values in the corresponding column:

pX(6) pX(12) pX(18) pX(24)

0.07 0.10 0.09 0.14

+0.04 +0.14 +0.07 +0.10

+0.04 +0.11 +0.04 +0.06

= 0.15 = 0.35 = 0.20 = 0.30

Likewise, the marginal pmf of Y at value y, denoted pY (y), is found by summing
all the values in the corresponding row:

pY (0) 0.07 + 0.10 + 0.09 + 0.14 = 0.40

pY (100) 0.04 + 0.14 + 0.07 + 0.10 = 0.35

pY (200) 0.04 + 0.11 + 0.04 + 0.06 = 0.25

Thus, in general, the marginal pmfs of two random variables X and Y associated
with the same experiment are given by

pX(x) =
∑
y

p(x, y) and pY (y) =
∑
x

p(x, y). (4.31)
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These formulas can be derived from (4.29), but it is helpful to remember that they
correspond to column totals and row totals when the joint pmf is given as a table.
In fact, the name “marginal pmf” comes from this idea, as one often writes column
totals and row totals in the margins of a table.

4.5.2 Joint Probability Density Functions

When we have two continuous random variables X and Y that are associated with
the same experiment, we cannot write a table for all of the possible pairs of val-
ues, but the interpretation is analogous to the discrete case. A joint pdf of two
continuous random variables X and Y is a function f(x, y) that satisfies

P((X,Y ) ∈ A) =
∫∫

(x,y)∈A

f(x, y) dx dy (4.32)

for every subset A of the two-dimensional plane. In particular, if A is the two-
dimensional rectangle {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}, then we have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a
f(x, y) dx dy. (4.33)

To be a valid joint pdf, f(x, y) must also satisfy

f(x, y) ≥ 0 and
∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1. (4.34)

Just as in the discrete case, we can use the joint pdf to compute the marginal pdf
of each random variable. The marginal pdf of X, denoted fX(x), is given by

fX(x) =

∫ ∞
−∞

f(x, y) dy, (4.35)

and the marginal pdf of Y , denoted fY (y), is given by

fY (y) =

∫ ∞
−∞

f(x, y) dx. (4.36)

In other words, integrating the joint pdf with respect to y yields the marginal pdf
of X , and integrating the joint pdf with respect to x yields the marginal pdf of Y .
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4.5.3 Joint Cumulative Distribution Functions

IfX and Y are two random variables associated with the same experiment, whether
discrete or continuous, we define their joint cdf as

F (x, y) = P(X ≤ x, Y ≤ y)

=


∑

{(u,v)|u≤x,v≤y}

p(u, v) if X and Y are discrete,

∫ y

−∞

∫ x

−∞
f(u, v) du dv if X and Y are continuous.

(4.37)

Although we do not consider it here, note that F (x, y) = P(X ≤ x, Y ≤ y) is
also well-defined in the case where one of the random variables is discrete and the
other is continuous, and thus any pair of random variables has a joint cdf.

As you might expect, we can obtain the marginal cdf of each variable from
the joint cdf. To find the marginal cdf of X , we evaluate the joint cdf at y =∞, as

FX(x) = F (x,∞), (4.38)

and to find the marginal cdf of Y , we evaluate the joint cdf at x =∞, as

FY (y) = F (∞, y). (4.39)

Just as in the case of a single random variable, the benefit of working with the cdf
is that it is a single mathematical concept that applies equally well to both discrete
and continuous random variables.

4.5.4 Conditional Distributions

Let X and Y be two random variables associated with the same experiment, and
suppose we know that the value of Y is some particular y with pY (y) > 0. Having
this knowledge about Y may influence what we know about X , knowledge which
is captured by a conditional distribution. In the case where X and Y are discrete,
the conditional pmf of X given Y is

pX|Y (x | y) =
P(X = x and Y = y)

P(Y = y)
=
p(x, y)

pY (y)
. (4.40)

Note how this is analogous to (4.1), the conditional probability of an event given
that another event occurred, as is the justification for this definition. To understand
how pX|Y (x | y) relates to p(x, y), suppose we fix some y with pY (y) > 0 and
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consider pX|Y (x | y) to be a function of x. Then this function of x is the slice
Y = y of the joint pmf scaled by 1/pY (y) to abide by the normalization axiom.

In the case where X and Y are continuous, the conditional pdf of X given Y
is defined in a similar manner, as

fX|Y (x | y) =
f(x, y)

fY (y)
. (4.41)

Along the same lines as before, the conditional pdf ofX given Y can be interpreted
by visualizing the joint pdf along the slice Y = y for a fixed y, where the slice is
normalized with the factor 1/fY (y) so that it integrates to 1.

To better understand conditional distributions, let us return to Wakeful Cookies,
the example from the beginning of this section. Suppose that a customer purchased
a pack of cookies between 1:00am and 1:59am. Given this information, we would
like to determine the probability that the customer bought a dozen cookies. In other
words, we seek to calculate

pX|Y (12 | 100) =
p(12, 100)

pY (100)
. (4.42)

If we take the slice Y = 100 of the table representing the joint pmf, we get

X = 6 X = 12 X = 18 X = 24

Y = 100 0.04 0.14 0.07 0.10

Note that this slice of p(x, y) is not a valid pmf on its own because the sum of
all of the probability mass is less than 1. Thus, we need to divide the probability
mass assigned to each value of X by pY (100) in order to renormalize. We obtain
pY (100) by summing all of the mass in the slice, as

pY (100) = 0.04 + 0.14 + 0.07 + 0.10 = 0.35. (4.43)

Now we can compute pX|Y (x | 100) at any value of X using (4.40) directly, as

pX|Y (6 | 100) =
0.04

0.35
=

4

35
,

pX|Y (12 | 100) =
0.14

0.35
=

2

5
,

pX|Y (18 | 100) =
0.07

0.35
=

1

5
,

pX|Y (24 | 100) =
0.10

0.35
=

2

7
.
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Thus, the probability that the customer purchased a dozen cookies given that she
bought the cookies between 1:00am and 1:59am is pX|Y (12 | 100) = 2/5 = 0.4.

4.5.5 Independence of Random Variables

Intuitively, if any two random variables X and Y are independent of one another,
then knowing the value of one of these variables provides no knowledge about the
other variable. More formally, if X and Y are independent random variables, then
the events {X = x} and {Y = y} are independent for every x and y. One way to
define independence is therefore

pX|Y (x | y) = pX(x) for all y with pY (y) > 0 and all x. (4.44)

However, just as we derived a more symmetric definition for the independence of
two events in (4.4), we can do exactly the same here using (4.40), as

p(x, y) = pX(x) pY (y) for all x and y. (4.45)

Likewise, we say that two continuous random variables X and Y are independent
if and only if

f(x, y) = fX(x) fY (y) for all x and y. (4.46)

To obtain a general definition of independence, we can use the joint cdf, i.e. we say
that two random variables X and Y are independent if and only if

F (x, y) = FX(x)FY (y) for all x and y. (4.47)

Note that this holds even in the case where we have one discrete random variable
and one continuous random variable.

4.5.6 Joint Expectation and Covariance

Suppose we have a function h(X,Y ) of two random variables X and Y associated
with the same experiment. Then h(X,Y ) is itself a random variable, and therefore
we can compute its expected value, as

E(h(X,Y )) =


∑

(x,y)∈S

h(x, y) · p(x, y) if X and Y are discrete,

∫ ∞
−∞

∫ ∞
−∞

h(x, y) · f(x, y) dx dy if X and Y are continuous.

(4.48)
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We can use this formula to determine another quantity that is frequently of interest:
the strength and the direction of the relationship between X and Y . We call this
measure the covariance of X and Y and define it as

Cov(X,Y ) = E [(X − E(X))(Y − E(Y ))] . (4.49)

Thus, the covariance of X and Y is the expected product of the deviations of X
and Y from their respective expected values. Note that

Cov(X,X) = E
[
(X − E(X))2

]
= Var(X), (4.50)

i.e. the covariance of a random variable with itself is equal to the variance of that
random variable. To gain further insight into the definition of covariance and how
to interpret it, consider the following three scenarios:

• Suppose X and Y have a strong positive relationship, meaning that

– small x-values tend to occur with small y-values, and
– large x-values tend to occur with large y-values.

Then the variables tend to exhibit similar behavior, and as a result, the signs
of X −E(X) and Y −E(Y ) tend to be either both positive or both negative,
resulting in a positive covariance.

• Suppose X and Y have a strong negative relationship, meaning that

– small x-values tend to occur with large y-values, and
– large x-values tend to occur with small y-values.

Then the variables tend to exhibit opposite behavior, and as a result, the
signs ofX−E(X) and Y −E(Y ) tend to be opposite of each other, resulting
in a negative covariance.

• Suppose X and Y are not strongly correlated. Then positive and negative
products tend to cancel each other out, resulting in a covariance near zero.
In the case where Cov(X,Y ) = 0, we say that X and Y are uncorrelated.
Independent random variables are always uncorrelated, but the converse is
not true, i.e. uncorrelated random variables are not necessarily independent.

Finally, to reduce the number of computations that we need to make to calculate
the covariance, we can derive an alternate formula by expanding the product in the
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definition of covariance and taking the expected value of each individual term:

Cov(X,Y ) = E [(X − E(X))(Y − E(Y ))]

= E [XY −XE(Y )− E(X)Y + E(X)E(Y )]

= E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

= E(XY )− E(X)E(Y ).

(4.51)

By using this formula, we replace all of the intermediate subtractions with a single
subtraction at the end of the computation.

4.5.7 Random Vectors and Covariance Matrices

All of the concepts introduced in this section can be extended to account for cases
with more than two random variables. For example, if we have three continuous
random variables X , Y , Z that are associated with the same experiment, we define
their joint pmf to be a function f(x, y, z) satisfying

P((X,Y, Z) ∈ A) =
∫∫∫

(x,y,z)∈A

f(x, y) dx dy dz (4.52)

as well as the usual nonnegativity and normalization constraints. It is often helpful
to collect all of the random variables associated with the same experiment into a
vector, which we call a random vector. Specifically, if we have n random variables
X1, X2, . . . , Xn, we define their corresponding random vector to be

X =


X1

X2
...
Xn

 . (4.53)

Whether X consists of discrete random variables, continuous random variables,
or a combination thereof, it has a well-defined joint cdf denoted as

F (x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (4.54)

We can make other generalizations as well. For example, the expected value of
X is a vector containing the expected values of the elements of X; that is,

E(X) =


E(X1)
E(X2)

...
E(Xn)

 . (4.55)
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The covariance of X is slightly more complicated because it must encode the
relationship between each element of X with every other element of X. It is defined
analogously to the covariance of two random variables, as

Cov(X) = E
[
(X− E(X))(X− E(X))T

]
. (4.56)

To better understand this definition, we can expand the vector notation to get

Cov(X) = E


X1 − E(X1)

...
Xn − E(Xn)

(X1 − E(X1) · · · Xn − E(Xn)
) , (4.57)

and then, letting Ci,j = (Xi − E(Xi))(Xj − E(Xj)), carry out the multiplication:

Cov(X) = E


C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n
...

...
. . .

...
Cn,1 Cn,2 · · · Cn,n

 . (4.58)

Akin to how we defined the expected value of a vector in (4.55), the expected value
of a matrix M is a matrix that contains the expected values of the elements of M .
Accordingly, we note that E(Ci,j) = Cov(Xi, Xj) and rewrite (4.58) as

Cov(X) =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xn)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · Cov(Xn, Xn)

 . (4.59)

We call this matrix the covariance matrix, also known as the variance-covariance
matrix since Cov(Xi, Xi) = Var(Xi) and thus the entries along the main diagonal
are the variances of each element of X. The covariance matrix is used extensively
in robotics and a variety of other fields.

4.6 Bayes’ Rule

In the preceding sections, we have seen how the notion of conditional probability
allows us to take existing knowledge into account when determining the likelihood
of an event. What we have not yet seen is how to relate conditional probabilities to
each other; that is, given two events A and B associated with the same experiment,
what is the relationship between P (A | B) and P (B | A)? To motivate finding an
answer to this question, suppose that a personal assistant robot is trying to localize
itself (i.e. determine its own location) in a house. Using its vision sensors, the robot
detects a spatula. A reasonable question to ask based on this discovery is
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“What is the probability that I’m in room r given that I saw a spatula?”

Having a probability of this form readily available for any arbitrary household item
is infeasible, so it is unlikely that the robot has direct access to this probability. But
if the robot has some knowledge about spatulas, then it might have direct access to
a probability of the form

“What is the probability of seeing a spatula given that I’m in room r?”

in which the conditioning order of the events is reversed. We can derive a relation-
ship between these two conditional probabilities as follows. LetR be the event that
the robot is in room r, and let S be the event that the robot sees a spatula. Recall
that the conditional probability of R given that S has occurred is

P(R | S) = P(R ∩ S)
P(S)

, (4.60)

and therefore the probability that both R and S occur is

P(R ∩ S) = P(R | S)P(S). (4.61)

Similarly,
P(S ∩R) = P(S | R)P(R). (4.62)

Since the intersection operation is commutative, i.e. R ∩ S = S ∩ R, Equations
(4.61) and (4.62) are equal to each other, and we can rewrite (4.60) as

P(R | S) = P(S | R)P(R)
P(S)

. (4.63)

Equation (4.63) is the simplest form of a crucial theorem called Bayes’ rule. Each
component of Bayes’ rule is given a name and meaning in the context of Bayesian
inference, an approach to statistical inference in which we update our beliefs about
the world based on our observations. These names and meanings are as follows:

• R is the hypothesis being considered,

• S is a new piece of evidence that may affect the probability of the hypothesis,

• P(R) is the prior probability (or just the prior), which is the probability of
the hypothesis before observing the new evidence,

• P(R | S) is the posterior probability (or just the posterior), which is the
probability of the hypothesis after observing the evidence,
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• P(S | R) is the likelihood model, which tells us how likely we are to see the
evidence if the hypothesis is true, and

• P(S) is the model evidence, which tells us how likely we are to see the
evidence in general.

To interpret the meaning of Bayes’ rule, it is important to understand the effect that
the prior probability and the model evidence have in scaling the likelihood model.
We consider both below.

• To say anything about the likelihood of R occurring given that S occurred,
we need to take into account the prior probability P(R). Without this factor,
we could easily assign too high a value to the posterior probability. For
example, suppose that room r is the kitchen, in which case the likelihood
model would probably be quite high (i.e. the robot is likely to see a spatula
given that it is in the kitchen). But now suppose that the kitchen is under
renovation and thus is completely blocked off to the robot. Then P(R), the
probability that the robot is in the kitchen, would be very low. If we did
not scale down the likelihood model by multiplying it by the low-probability
P(R), then the posterior probability would end up being too high.

• The normalization constant 1/P(S) also plays an important role in scaling
the likelihood model. Suppose that the robot’s vision sensor is faulty and
tends to detect spatulas in all rooms of the house. In this case, the model
evidence P(S) would be very high, and knowing that S occurred would give
us little to no information about the robot’s location. Thus, multiplying the
likelihood model by 1/P(S) would scale the probability down accordingly.
On the other hand, if seeing a spatula is a rare event, then the multiplication
would scale the probability up accordingly.

Example 4.3 Returning once again to the laser rangefinder from Example 4.2, we
ask whether there really is a wall located at a distance of d = 500 that the laser is
bouncing off of. We have two readings r1 = 500 (event A) and r2 = 500 (event
B) that each constitute evidence that there is actually a wall at d = 500 (event
W ). The event W cannot be directly observed, but it can be estimated from the
occurrence of other events like A and B. So we might run tests and collect data
on all possible robot positions and wall positions and determine that on average
P(W ) = 0.0011 — that is, even without evidence there will still sometimes be a
wall at d = 500 just by chance. However, we want to know P(W | A) — having
gotten a return value consistent with event W , how does that change the chance
that W is true? This is a hard question to answer directly, but using Bayes’ rule we
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can transform it into concepts that we can more readily answer. We know P(W )
and P(A), and we can get the number P(A | W ) = 0.9 from the manufacturer —
if there is a wall, how likely will the laser rangefinder return a reading consistent
with that fact? From these numbers, we can estimate

P(W | A) = P(A |W )P(W )

P(A)
=

0.9 · 0.0011
1

992

= 0.982.

This technique can be used repeatedly to further refine the estimate of an event
that cannot be directly observed.

Although the Bayesian approach to statistical inference is quite powerful, it is
not the only method of inference that we might want to use. The most prevalent
alternate approach is called frequentist inference and involves taking repeated
samples in order to estimate the probabilistic model that underlies an experiment.
Rather than treating an unknown model as a random variable with a known prior
probability distribution, the frequentist approach views the model as a deterministic
quantity that happens to be unknown. Consequently, frequentist inference does not
assign beliefs to events that cannot be measured since the event is either true or
false with certainty (but it is unknown which). For example, the event W from
Example 4.3 above could not have a probability of 0.982 using the frequentist
approach since it cannot be directly observed. Rather, frequentist inference would
assign P(W ) = 1 since the two samples taken both indicated that W is true.

When might we choose to use frequentist inference over Bayesian inference?
The most obvious instance is when we cannot obtain or do not account for any
prior probability, as Bayesian inference requires the selection of a prior. Another
reason that we may choose to use frequentist inference is when we require certain
performance guarantees and Bayesian inference is too expensive. In many robotics
applications though, Bayesian inference is the preferred approach since it allows
us to use our beliefs to make estimations about unobservable random variables.

4.7 Bayes Filters

In the previous section, we discussed the concept of having a belief about a random
variable that we cannot observe directly. We may for example have a belief about
whether or not there is a wall in front of us based on our sensor readings, but we
cannot directly observe whether or not there is a wall. Such a belief is represented
by a conditional probability distribution that assigns a probability to each possible
hypothesis about the true state of the random variable. We denote a belief as

bel(xt) = p(xt|z1:t, u1:t), (4.64)
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where xt is the state of the random variable X at time t, z1:t is all measurements
of the state up until time t, and u1:t is all control inputs up until time t.

In some cases, we may wish to formulate a belief about the state right after the
control ut is executed, before taking the measurement zt. We denote this distribu-
tion as

bel(xt) = p(xt|z1:t−1, u1:t) (4.65)

and refer to the process of calculating it as prediction or as performing a control
update. When we use bel(xt) to compute bel(xt), the procedure is called filtering,
a name that has its origin in signal processing in the sense of filtering out noise in
order to estimate the underlying properties of a signal. The filtering computation
is also referred to as making a correction or a measurement update.

To efficiently compute beliefs, we can use a recursive estimation algorithm in
which we use the previous belief bel(xt−1) to calculate the current belief bel(xt).
The most general of these recursive estimation algorithms is called a Bayes filter;
a single iteration of this algorithm is given in Algorithm 1.

Algorithm 1 bayes filter(bel(xt−1), ut, zt)

1: for all xt do
2: bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dxt−1

3: bel(xt) = η p(zt | xt) bel(xt)
4: return bel(xt)

The first step of Bayes filtering, called the prediction step, is given on line 2.
In this step, bel(xt) is calculated by integrating the product of two distributions:
the probability that the control ut will cause a transition from state xt−1 to state xt,
and the prior probability of state xt. Once bel(xt) has been obtained, the next step
to take is the correction step, given on line 3. The correction step multiplies the
probability of getting measurement zt given state xt, multiplied by bel(xt). Since
this product may not integrate to 1, it is normalized by the normalization constant
η, which then leads to the desired belief bel(xt) that is returned in line 4.

Note that since the belief is computed recursively, there always needs to be an
initial belief bel(x0) at time t = 0. If the value of x0 is known, then bel(x0) should
be initialized with a probability of 1 on that value and 0 elsewhere. If the value
of x0 is entirely unknown, then bel(x0) may be initialized with equal probability
on all values (i.e. a uniform distribution). Partial knowledge about x0 may also be
incorporated when selecting the initial belief distribution.
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Further Reading

For more on Bayes filters, please see Section 2.4 of Thrun et al. [5].

4.8 The Markov Assumption

All Bayesian filters make an important assumption when updating beliefs. Recall
that we defined a belief as

bel(xt) = p(xt|z1:t, u1:t) (4.66)

and note that this definition incorporates all measurements and all control inputs up
until time t. However, you may have noticed that Bayesian filters do not compute
beliefs using all of this information. Rather, a belief is computed as

bel(xt) = p(xt|zt, ut, bel(xt−1)). (4.67)

In other words, when we use a Bayesian filter, we assume that the current state xt
depends on no variables prior to those at time t unless that dependence is mediated
through the previous state xt−1. Intuitively, this means we assume that the present
state contains enough information to make the next state conditionally independent
of all information from the past given the present state. We refer to this assumption
as the Markov assumption and call a stochastic temporal process (that is, a set of
random variables over time) satisfying this assumption a Markov chain.

Why would we want to make such an assumption? The key insight is that the
time and space requirements for updating a belief must be held constant if a robot is
to keep track of its current belief distribution. Without the Markov assumption, the
cost of a belief update would increase with every timestep and eventually become
intractable, meaning that too many resources would be required to make the update
feasible. Making the Markov assumption allows us to avoid this expense since the
number of variables that a belief depends on remains fixed over time.

The next important question to ask is whether making the Markov assumption
is valid. In practice, there are many factors that give rise to violations of the Markov
assumption. One such factor is having too few state variables to account for all the
dynamics of the environment. For example, consider a robot trying to localize itself
as it moves about the world, and suppose that the state of the robot is modeled
by its position and velocity. Are these variables enough to maintain the Markov
assumption? The answer is likely no: if the robot is battery-powered, for example,
then battery depletion impacts the robot’s change in velocity. In turn, battery level
is impacted by all of the robot’s previous control inputs, and as a result the Markov
assumption is violated. To rectify this, we can include battery level in our set of
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state variables, but adding more variables makes updating beliefs more complex.
Thus it is important to consider carefully the trade-offs when deciding which and
how many state variables to model. As a general rule, it is best to try to define the
model such that unmodeled state variables have random or near-random effects, in
contrast to a state variable like battery level that has a systematic effect.

Let us consider a simple example process that satisfies the Markov assumption.
Suppose that a robot DJ has a catalog of pop, rock, and folk music and continuously
plays songs back-to-back. Since the robot has a limited amount of memory, it does
not retain a history of the songs it has played and selects the next song based only
on the song that is currently playing. If a pop song is currently playing, then the
robot will select either a rock song or a folk song next with equal probability. If a
rock song is currently playing, the robot will pick another rock song half of the time
and the other half of the time pick a pop song or a folk song with equal probability.
Finally, if a folk song is currently playing, then the robot will choose among the
three genres with equal probability when selecting the next song.

It is easiest to express the transition probabilities from genre to genre described
above in a matrix. Let gi be the genre of the song that the robot is currently playing.
Then the transition probabilities to genre gi+1 are given as follows:

gi+1

Pop Rock Folk

gi

Pop - 1
2

1
2

Rock 1
4

1
2

1
4

Folk 1
3

1
3

1
3

Since the robot only considers the current song when picking the next song, the
Markov assumption holds, and the state of the genre over time is a Markov chain.
We often visualize Markov chains as graphs where the nodes are the possible states
and the weights on the edges are the transition probabilities. Such a visualization
for the Markov chain describing the state of the genre is given in Fig. 4.1.

Now suppose that the robot considers both the current song and the song played
previously when choosing the genre of the next song. Is it still possible to describe
this process as a Markov chain? The answer is yes, but we must decide how much
information to model. If we consider only the current genre as a state variable, then
we cannot model the effect of the previous song since doing so would violate the
Markov assumption. Thus, to both consider this effect and maintain the Markov
assumption, we would need to include the genre of the previous song in our state
as well as the genre of the current song. Doing this would in turn make our model
more complicated: rather than having nine transition probabilities to contend with,
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Pop

Rock Folk

1/2

1/21/4

1/2

1/4

1/3

1/3

1/3

Figure 4.1: The Markov chain describing the song genre transition process.

we would have 27. We would therefore need to decide whether we wanted to deal
with the added complexity of another state variable or whether we preferred to have
a simpler but incomplete view of the genre transition process.

4.9 Entropy

In an uncertain world, it is useful to know how much information a robot can expect
to receive upon making a particular observation. To quantify this amount, we define
the entropy of a distribution p(x) to be the expected amount of information that x
carries. Intuitively, the more certain we are about x, the less information it carries.
For example, if we let the random variable X be the outcome of flipping a biased
coin that will always be heads with 100% certainty, then x carries no information:
we already know for sure that x is heads without making an observation. If instead
the coin is biased but only comes up heads with, say, 98% certainty, then x does
not carry very much information since we are fairly certain that it is heads, but the
entropy will be nonzero since there is a small amount of uncertainty. Finally, if the
coin is fair, our entropy will be as high as possible for a random variable with two
outcomes since both outcomes are equally likely. In this case, we are maximally
uncertain about x, and thus it carries a higher quantity of information.

Given this analysis, we can see that outcomes with high probability correspond
to low information content whereas outcomes with low probability correspond to
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high information content, motivating the mathematical definition of entropy

Hp(x) = E[− log2 p(x)], (4.68)

which in the discrete case resolves to

Hp(x) = −
∑
x

p(x) log2 p(x). (4.69)

and in the continuous case is the same except that the sum is replaced by an integral.
The choice of base 2 for the logarithm means that entropy and information content
is measured in bits (zeros and ones). To understand how the number of bits relates
to the amount of information received, consider how many bits are required to
transmit a message with eight possible outcomes. If all of the outcomes were
equally likely, then we would need log2(8) = 3 bits to encode the eight outcomes:
000, 001, 010, 011, 100, 101, 110, 111. Our formula for entropy confirms this:

Hp(x) = −8

(
log2

1
8

8

)
= 3. (4.70)

But what if some outcomes are more likely than others? For example, suppose that
the eight outcomes had probabilities 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64 respectively. In this

scenario, the entropy would be

Hp(x) = −
log2

1
2

2
−

log2
1
4

4
−

log2
1
8

8
−

log2
1
16

16
−

4 log2
1
64

64
= 2, (4.71)

which means that on average, we should need only two bits to transmit a message.
How can we encode eight outcomes with just two bits? We cannot do this exactly,
but we can be clever in our encoding and choose to use fewer bits to represent
likely outcomes at the expense of using more bits to represent unlikely outcomes,
with the goal being to use fewer bits on average. For instance, we may choose
the bit strings 0, 10, 110, 1110, 111100, 111101, 111110, 111111 to represent the
eight outcomes with the respective probabilities given above. These messages have
lengths 1, 2, 3, 4, 6, 6, 6, 6 respectively, and thus the average message length is

1

2
+ 2

(
1

4

)
+ 3

(
1

8

)
+ 4

(
1

16

)
+ 6

(
4

64

)
= 2, (4.72)

which is the same number of bits as the entropy. Note that we cannot make the
length of the bit strings shorter since a sequence of messages, e.g. 11011100, must
decode uniquely to the sequence of outcomes 110, 1110, 0.
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Now let us return to our example of flipping a coin. In the case where the coin
is completely biased to come up heads with 100% certainty, the entropy is

Hp(x) = − log2(1) = 0. (4.73)

If the coin is biased to come up heads with probability 0.98, then the entropy is

Hp(x) = −0.98 log2 0.98− 0.02 log2 0.02 ≈ 0.14. (4.74)

Lastly, if the coin is fair, then the entropy is

Hp(x) = −0.5 log2 0.5− 0.5 log2 0.5 = 1. (4.75)

To compare the entropies of related distributions, we define information gain to
be the expected reduction in entropy when we make an observation that changes
our belief distribution. For instance, we may start out believing that a coin is fair,
but then we may observe something that leads us to believe the coin is biased to
come up heads with probability 0.98. We would then say that the information gain
resulting from this observation is approximately 1− 0.14 = 0.86 bits. In robotics,
we may take a minimum-entropy approach to making decisions, i.e. always select
the action that we believe will result in the maximum information gain.

4.10 Further Reading

For more on applications of probability theory to robotics, see Thrun et al. [5]. For
more discussion of probability and statistics in general, see Bertsekas and Tsitsiklis
[1] and Devore [3].
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