
2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

K-Robots Clustering of Moving Sensors using Coresets

Dan Feldman*, Stephanie Gil*, Ross A. Knepper*, Brian Julian*t, and Daniela Rus*

Ahstract- We present an approach to position k servers (e.g.
mobile robots) to provide a service to n independently moving
clients; for example, in mobile ad-hoc networking applications
where inter-agent distances need to be minimized, connectivity
constraints exist between servers, and no a priori knowledge of
the clients' motion can be assumed. Our primary contribution
is an algorithm to compute and maintain a small representative
set, called a kinematic coreset, of the n moving clients. We prove
that, in any given moment, the maximum distance between
the clients and any set of k servers is approximated by the
coreset up to a factor of (1 ± E) , where E > 0 is an arbitrarily
small constant. We prove that both the size of our coreset
and its update time is polynomial in k log(n) / E. Although our
optimization problem is NP-hard (i.e., takes time exponential in
the number of servers to solve), solving it on the small coreset
instead of the original clients results in a tractable controller.
The approach is validated in a small scale hardware experiment
using robot servers and human clients, and in a large scale
numerical simulation using thousands of clients.

I. INTRODUCTION

A cooperative team of robots can provide a large range of
services to moving clients, where these clients can be other
robots (or even humans) that are performing independent
tasks. Such services include environmental surveillance, sys
tem health monitoring, and communication coverage. Many
interesting applications enabled by these services require
that the team of robots be adaptive to their environment;
the overlying control strategy must account for the motion
of the clients that the robots are tasked to service. In
addition, the quality of these services (e.g., communication
strength, camera resolution) often attenuates with increasing
separation between robots. Thus, we favor proximity-based
solutions that consider the dynamical constraints of real
platforms.

In this paper we consider the problem of controlling this
team of k robots (servers) to provide services to n clients
moving independently in a d-dimensional space, where d 2: 1
is constant. Our model assumes that: 1) the clients are
free to move over arbitrary a priori unknown paths, 2) the
maximum distance between any client and its nearest server
should be small, and 3) additional constraints and control
limitations can be applied over the feasible new locations
of the servers, e.g., by restricting the maximum distance
between servers. As a motivating example, consider the
problem of controlling a team of aerial robots that provide
ad-hoc network commuincation to ground based clients. A

* All authors are with the Computer Science and Artificial Intelligence
Laboratory, MIT, Cambridge, MA 02139, USA, {dannyf, sgil, rak, bjulian,
rus} @csail.mit.edu

t Brian Julian also with MIT Lincoln Laboratory, 244 Wood Street,
Lexington, MA 02420, USA

This work is supported by MAST Project under ARL Grant W911NF
OS-2-0004. This work is also sponsored by the Department of the Air
Force under Air Force contract number FAS721-05-C-0002. The opinions,
interpretations, recommendations, and conclusions are those of the authors
and are not necessarily endorsed by the United States Government.

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 881

Client chosen for kinematic coreset
Client not in kinematic core set
Power source
Tether constraint
Server

Fig. 1: Overhead view of our hardware setup of two Kuka Youbot robots
and white helmets with vicon tracking markers that were worn by five adults,
or "clients", moving around the motion capture room at a walking pace as
shown in figure 4. This figure shows the constraint that the first Youbot was
tethered to a power source at the top left comer of the environment and the
second Youbot was tethered to the first Youbot for power. The Matlab plot
in the top right corner demonstrates the two kinematic coreset points (red)
and the optimal configuration of the Youbots (blue) computed for the client
positions under the given tethering constraints.

client p needing to route a message to another far away
client q can route its message through a path of servers

Cl, ... ,Ci, where Cl is the closest server to p, and Ci is the
closest server to q. This approach requires that every client
maintain a connection only to its closest server, rather than
all the other clients, and that the servers remain connected.
By dynamically repositioning the servers as the clients move,
we can increase the communication coverage and reduce the
number of required servers.

It is common knowledge that even the static and un
constrained versions of these problems (known as k-center)
are NP-hard, i.e, take time exponential in k to compute
a solution. Intuitively, it should not be necessary to track
every client individually to compute near optimal server
placement. Hence, we concentrate on constructing a subset
that accurately represents client locations such that the error
compared with the optimal placement of servers can be
bounded. A naive uniform sampling of clients will often
miss outliers that dominate the optimization's cost function,
leading to high approximation costs. Thus, we need a better
solution.

The main tool we propose to handle these problems as
well as the dynamic and constrained versions is a kinematic
coreset. This tool yields a sparse representative set of the n

clients that provably approximates their maximum distance to
any possible positioning of the k servers at any given time.
Since our coresets are small and can be updated quickly,
we are able to apply exact (optimal) solutions that would
otherwise be intractable. This yields dynamic positioning of
the servers that provably approximates the optimal solutions
on the full set of clients. Since the running times are
exponential in k, our core sets improve the performance even

for a small number n < 10 of clients.

A. Previous Work

Information and resource sharing amongst robot teams are
common requirements for increased efficiency and thus inter
agent proximity is often favored. One common application
is that of communication over mobile wireless networks
where agent positions must be optimized to form a connected
network. Both distributed and centralized solutions in either
open or constrained environments have been examined in
papers such as [3], [4], [8], [9], [15], [1 6].

The problems in this paper are variants and generalizations
of the classic k-center problem [14], where we wish to
minimize the maximum distance from a set of n clients to a
set of k servers. Gonzalez [10] suggested a 2-approximation
for the k-center problem that takes time O (nk). An exact
solution to this problem generally requires time exponential
in k [iO] and has given rise to many static approximation
methods including static coresets, or sparse representative
sets [1], [6], [7], [13]. These coresets can be constructed in
time that is linear in both n in k, and returns a small set
of size roughly k/Ed, i.e., independent of n. We then run
exhaustive search algorithms, approximations, or heuristics
on these small representative sets.

In our previous work [7] we constructed (static) coresets
for a class of problems framed as a connected k-center
problem, where we wish to compute the positions of k
servers that minimize both the maximum distance from
any client to its closest server, and the longest edge in
the minimum Euclidean spanning tree over the servers (ie.
connected centers). Unfortunately, this requires computation
time that grows exponentially in the number k of servers.
This motivates the approach of reducing the number of
clients n, in order to get a faster approximated solution
(although still exponential in k).

The focus of this paper is to improve the static coreset
approximation to explicitly account for the dynamic nature
of the client vehicles under constraints. For the original k
center without any constraint, such coresets were suggested
in [2], [5], [12]. In particular, the work by Timothy Chan
in [2] has a similar focus as it derives a dynamic coreset for
the k-center problem that can be updated in time 10gO(1) n
for constant k and E.

The current work differs from [2] in that our coreset can
be used for approximating the distances of the clients to
any k servers, rather than only to the k-center of the clients
or their coresets; see Eq. 4 for our formal definition. This
makes our coreset useful for solving the k-center problem
with additional constraints, or when maximum client-server
distance is only part of the optimization function.

In particular, we use the core set to solve the class of
connected k-center problems from [7], where centers must
maintain connectivity over a Euclidean minimum spanning
tree (see Eq. (2)), and are subject to maximum velocity
constraints. This class of problems is important for practical
scenarios such as ad-hoc network formation where vehicles
have control input limitations such as maximum velocity
limits.

In this work we derive a kinematic coreset with the
properties that it 1) can be updated quickly and adapt to

882

client motion, 2) provides consistency such that the same
coreset can be maintained for marginal client motion and 3)
can provide approximation error bounds for the k-center and
connected k-center problems as well as constrained versions
of these problems. Our system contains the first implementa
tion of kinematic coresets, and include several improvements
to the state of the art, both in term of theoretical guarantee
and practical usage.

B. Our Contributions

1) Kinematic Coreset: Our main new technical tool is
an algorithm to compute a kinematic core set, or sparse
subset, of clients to be used as input for computing server
positions to form a connected communication network for
the set of moving client vehicles. This coreset differs from
the static coreset of our previous work in [7] in that the
kinematic coreset can be updated quickly, is reactive to client
movement, and also provides consistency across iterations
such that for marginal client movement the same coreset can
be maintained.

We show how to maintain a coreset S for the set P of n
clients such that in every given moment it holds that 1) for
any position of the k servers, the maximum distance between
a client and its closest server is the same for P and S, up to
a multiplicative factor of (1 +E) where E > 0 is an arbitrarily
small given constant reflecting the desired accuracy and 2)
the size of S and its update time per client position update is
only polynomial in k log(n) / E. In particular, our kinematic
coreset extends both the current theory and generalizes the
practical application for coresets in the following ways:

i) Theory: Our coreset is applicable to a general class of
problems related to the classic k-center problem where, in
addition, centers are subject to constraints such as mainte
nance of a connected Euclidean spanning tree, and maximum
velocity or control input limitations.

ii) Practical Application: Our coreset provides consistency
across iterations by updating only to reflect client movement
that effects the cost of the network beyond a specified
threshold; thus resulting in greater stability of the center
positioning.

2) Experimental Results: We test the computational ef
ficiency and approximation error bound properties of our
kinematic core sets on large problem sizes of up to n =

2000 in simulation as well as on a small scale hardware
implementation using two Kuka Youbot robots (servers)
that must react online to five clients moving over a priori
unknown trajectories.

C. Paper Roadmap

The structure of this paper is as follows. We define our
representative set and a static algorithm for finding this
representative set in Section III. We define key characteristics
of an algorithm that computes a representative set with error
bounds on optimal server placement for general communi
cation problems defined in Section IV. In Section III we
present an algorithm for computing kinematic updates to
our representative set such that this set can be updated
quickly and where points critically influencing the cost are
tracked such that we maintain desired error bounds with
respect to optimal server placement computed over the full
set of clients. Finally in Section V-B we provide empirical

evaluation showing the time complexity and accuracy of our
kinematically updated representative set for practical imple
mentations where routing vehicles have both connectivity
constraints and control effort constraints.

II. PROBLEM STATEMENT

Given k moving clients, find server locations so that
the entire heterogeneous system of servers and clients is
connected, or serviced. We assume control of the server
vehicles but do not assume control over the clients. Our
approach is to determine the kinematic coreset, or sparse
representative set, of clients and control the servers to track
this coreset.

In the geometry literature, the servers are called centers
and the clients are called points, and the problem is related
to the k-center or connected k-center problems. In the k
center problem we are given an integer k � 1 and a set P
of n points in IRd. We wish to compute a set of centers with
positions {Cl, . . . , Ck} E C � IRd such that the maximum
point-center distance is minimized, i.e, minimize

r(P,C) := max Dist(p, C).
pEP

(1)

The connected k-center cost, rb(P, C), additionally opti
mizes the distance between neighboring centers as defined
by the minimum Euclidean spanning tree T* (C) over C.

rb(P,C) = max{r(P,C),b(C)} (2)

b(C) := max dist(c, c
/) .

(c,c')ET*(C)

For a given Euclidean spanning tree T(C) the mlOl
mum communication power needed to maintain connectivity
amongst centers is the worst case mutual connectivity cap
tured by the bottleneck edge b(C), or longest edge, of T(C).
Figure 2 shows some of the main differences between k
center and connected k-center solutions. In particular this
schematic shows that 1) even if the optimal clustering (point
assignments to centers) is known, one cannot "divide and
conquer" by applying the k = 1 solution to each cluster,
due to the connectivity constraints between the centers
themselves, see Figure 2(a), and 2) although the k = n
case has a trivial solution for the k-center problem, the same
is not true for the connected k-center problem due to the
coupled effects of point clustering and a connected spanning
tree over the centers that must be optimized simultaneously,
see Figure 2(b). The interested reader is referred to [7] for
an in-depth explanation of the connected k-center problem.

Let C* denote the set that minimizes r(P, C) over every
set C of k centers. For c > 0, a (k, c)-coreset for P is a
subset S such that for every point pEP we have

Dist(p, S) :s; cr(P, C*). (3)

In particular, by the triangle inequality, for every set C of k
centers,

(1 + c)r(P, C) � r(S, C) � (1 -c)r(P, C). (4)

We are interested in such a set S that is as small as possible.
By the above definition, computing the optimal positioning

of k centers (i.e, k-center) for the coreset S, would yield a
(l+c) approximation 6 such that r(P, 6) :s; (l+c)r(P, C*)

883

to the optimal solution of the original set P. Moreover, this
holds for any optimal positioning with additional constraints
on the feasible positioning of the centers. Formally, for a
(possibly infinite) set of candidate solutions C of centers in
IRd, we have by (4) that the optimal solution of S,

r(S, C*) := min r(S, C)
CEre

is an approximate optimal solution for P

r(S, C*) � (1 -c) min r(P, C).
CEre

A kinematic (k, c) -coreset is a data structure that dynam

ically updates the coreset whenever a point updates its new
position . More precisely, the data structure consists of a
(k, c)-coreset S for the set of points P, and an update method
MOVE(p, pi) that gets a point's position pEP and replaces
it by pi E IRd. That is, both P and S are updated in each call
to the MOVE method. We wish to maintain such a set S of
size as small as possible, and also to minimize the execution
time of a call to MOVE.

III. ALGORITHMS

In Algorithms 2-5 we define the main procedure MOVE

for updating the coreset, together with its sub-routines. We
also provide a sample optimization problem that we run on
the coreset in our experiments, for computing a set of centers
that is close to the points, with additional restriction on
maximum distance between centers. The procedure INIT (P)
(Algorithm 1) is called once with the initial position of points
set P. It runs the static version of our coreset construction
from [6]. The data structure maintains the coreset in each call
to MOVE(P,Pa), and correctness follows from Theorem 4.1.

To minimize the changes to the coreset, our data structure
maintains a partition of the points into 0 (log n) resolution
levels. The first level is large and represents the "main
stream" or large dense clusters of the points that are not
sensitive to a small fraction of points that may change
their position. The last level is very small and consists of
few "outliers" or isolated points that change their location
frequently. Each of the o (log n) levels has its own coreset
o

.
f m = O�klog(n)/c) points. This yields a coreset of

sIze O(klog (n)/ c). When a point updates its location the
method MOVE (p, Pa, i) is called. The parameter p denotes
the last recorded position, and Pa denotes the new position.
The last recorded position can be saved on the point or center
side. The data structure then computes which of the following
actions should be taken:

No update (Line 3). Our data structure maintains the
distances of each point to its closest coreset point at its level.
These distances are stored in a binary heap for fast updates.
A binary heap has the property that a value in a heap's node
is always larger than its childs node. Therefore, the root of
the heap contains the largest distance from a point to the
coreset of the heap in that level. When a point updates its
new location, it also sends a pointer to its node in the heap.
If the heap is still valid after the change (the new distance is
still larger then the node's child and smaller than its parent)
no other action is taken. This is the fastest update type and
takes constant 0 (1) time.

Heap update (Line 4). When the updated distance of a
point to the closest coreset point in its level does not preserve

01 Scenario 1: k-center solution

c1 53
c,

c,
51 Scenario 2: k-center solution, rkctr=O

- �--------------- ----------------- -

51 Scenario 1: connected k-center solution

(a)

Scenario 2: connected k-center solution

(b)

Legend
53 • client

• server
I- conn backbone

- conn client

Fig. 2: Schematic drawings showing the differences between the k-center and connected k-center solutions for the n=3, k=2 case (a) and the n=3, k=3
case (b). Note that points have the same positions for all scenarios depicted above.

the structure of the heap (the new distance is smaller than the
node's childs or larger than its parent), we need to "heapify"
the node down or up the heap to preserve its structure. The
update time depends on the number £ of such switches with
other nodes. Since the height of the heap is O(log n) these
changes take time £ ::; 0 (log n).

Level update (Lines 7-10). After a series of heap updates,
a point may be the farthest from its level coreset, and reaches
the root of its level's heap. In this case, if a new point is
added to the level with a smaller distance to the coreset, we
remove the point in the root to a different resolution level,
or even £ levels. The update time for such a change is 0(£)
where £ ::; log2 n is the difference between the current level
and the new level of the point.

Coreset update (Line 6). Every level maintains its core
set, which is a uniform random sampling of size k from its
points positions during different times ("snapshots"). That
is, when a point position is chosen for the coreset, the point
itself may continue to move, but its "recorded" coreset point
is static until it is removed from the coreset. We thus call
the coreset points "virtual points" .

When too many points (constant factor) have entered or
left the level's heap using heap updates, the coreset should
also be updated. Updating a point in the coreset may affect
all the points that it serves in the level, and also next levels.
However, since the coreset is a random sample, update should
occur very rarely in the higher levels (which contain large
clusters) and may occur frequently in the lower levels (the
small sets of outliers). Based on this observation, we prove
that the overall expected running time of such an update is
at most O(log n).

Algorithm 3 handles the case where P is inserted or
deleted from the ith level. That is, P was one of the IQil
closest points to Si but not after the call to MOVE, or vice
versa. Intuitively, p has left its cluster and has moved from
the "main stream" toward a different level of resolution.
In this case, we insert (respectively, remove) p to its new
(respectively, old) heap and continue recursively to update p
in the next level.

In case the size of the heap of Qi is not cPi for some
c E (1/4,3/4) (see Line 2 in Fig. 1), then we also need to

884

balance the heaps by moving the root r of one of the heaps
to the other one and recursively update this change in the
next pair (QHl, SHl).

Finally, we handle the case where there is no c E
(1/4,3/4) such that ISil E c(k + logn). That is, Pi
was removed or inserted to Si. In this case, we recom
pute all the data structures that correspond to the pairs
(Qi, Si), . . . , (QIDI, SIDI)' As we prove in our main the
orem, this event is rare (happens with probability at most
l/n).

Data Structure to Maintain Coreset

·20

P3 ={P, \ H,}
20 40

legend:
• Input point (sensor)
• Coreset point

C.'" H1set
C) H2set

60

. '11
r .-.

l.
.

.'
..

80 100

Observation: Large and small clusters alike
have representatives

Fig. 3: Typical test scenario where points move randomly between clusters
forming large and small clusters. The red squares are sampled input points
from a (k, c:)·coreset demonstrating that most clusters (both large and small)
are fairly sampled in contrast to uniform random sampling where several
small clusters are often missed thus adversely affecting approximation
quality. On the left, key properties of the construction of a (k, c:)·coreset
are explained.

IV. ANALY SIS

In this section we prove that the algorithms presented in
the previous section provide a kinematic coreset S that 1)
is updated in time polynomial in k lo;(n) for an input set
of n sensors, and 2) captures information about points most

Algorithm 1: INIT(P, m)
Input: A set P of n points, and an integer m ;::: 1
Output: A set S that satisfies Theorem 4.1.

1 i +-1; PI +-P
2 while IPil > m do

3 Si +-A uniform random sample of m points from Pi,
with replacement.

4 Hi +- A set of cilPil points P E Pi with the smallest
distance Dist(P,Si) for some Ci E (1/4,3/4).

5 PHI +-Pi \ Hi
6 i+-i+1
7 Si +-Pi; Hi +-Pi
8 S +-SI U ... U Si
9 return S

critically influencing the cost by reactively updating itself
to maintain an upper bound on the approximation error as
compared to the optimal cost by a factor of at most (1 + c).

First we show that a coreset computed by the static
approach in Algorithm IN IT provides the desired (1 + c), c E
(0,1/2), error bound on the optimal cost for the k-centers.
A corollary to this provides that any algorithm obeying
three key properties of the INIT algorithm also produces a
(k, c)-coreset for our cOlmnunication costs. Proposition 4. 6
further generalizes this claim so that any (k, c)-coreset for
P is also a coreset for any perturbed set P A as long as
the magnitude of the perturbation is bounded below some
constant factor. Finally we prove our main result: that our
Algorithm MOVE for updating a kinematic coreset in time
polynomial in k lo;(n) indeed satisfies Corollary 4.2 and thus
provides the error guarantees for an arbitrarily moving set of
sensors.

Theorem 4.1: Let P be a set of n points, k ;::: 1 be
an integer and c > 0 be a constant. Let S denote the
output of the algorithm INIT(P, m) for an appropriate m =

O(k log n/c2). Then, with arbitrarily high probability of at
least 1 -l/n, S is a (k, c)-coreset for P of size lSI that is
polynomial in k lo;(n) .

Proof The algorithm INIT is a small modification to
the Static BiCriteria algorithm from [6] and thus the proof
from that paper holds with minor modification to account for
a different constant factor C E (:t, �) of points taken from Pi
at every iteration. For brevity we will not repeat the proof
here. •

A result of this theorem is that any algorithm that main
tains the properties of the coresets Si from Algorithm INIT as
an invariant also produces a (k, c)-coreset for P. In particular
we state the following Corollary:

Corollary 4.2: Let P be a set of n points, j ;::: 1 be an
integer, and (HI,· . . ,Hj) be a partition of P. Let S <;;; P
and (SI,··· ,Sj) be a partition of S. Let m = O(k logn/c2)
be defined as in the previous theorem. Suppose that the
following properties 4.3-4.5 hold for every i = 1, . . . ,j -1:

Property 4.3: Si is a random sample of size ISil ;::: m

from Pi
Property 4.4: Hi is the set of cl Pi I points P E Pi with

Algorithm 2: MOVE(P,Pa,i):
Move P E Pi to its actual position Pa.
Input: A virtual point P E Pi, its actual position Pa,

and an integer i ;::: 1.
1 hi +-maxqEH, Dist(q, Si)

/ * Si is the core set of level i.
2 if Pa,P > hi then

I
MOVE(Pa,p,i+1)
/* Check next levels recursively */

3 else if P E Hi and dist(Pa,P):S; Dist(p, Si)/2 then
I return / * No update * /

4 else if dist(p, Si), dist(Pa, Si) :s; hi then

5

6

Replace P with Pa in Hi / * Heap update * /
if P E Si then

I
Reconstruct levels i, i + 1, i + 2, ...
/* Coreset update

return
* At this line P E Hi and Pa tf. H,

/* or vice versa
7 if dist(p, Si) :s; hi then
8 / * P E Hi but Pa tf. H

UPDATE(p, i, delete)
UPDATE(Pa, i, insert) 9

else

10

/ * Pa E Hi but P tf. Hi
UPDATE(Pa, i, delete)
UPDATE(p, i, insert)

11 return

Algorithm 3: UPDATE(p, i, action)
InsertlDelete P from Pi
Input: A point P E Pi, and action E {insert, delete}

1 UPDATESAMPLE(P, i, action)
2 if Si was changed during the execution of previous line

then
3

I
Reconstruct levels i, i + 1, i + 2, . . .

4 return
5 InsertlDelete P to/from its heap H E {Hi, Hd.

In case of ties, choose smallest heap.
6 if H = Hi then
7 I UPDATE(p, i + 1, action)
8 BALANCE(i)
9 return

Algorithm 4: BALANCE(i)
Balance the pair of heaps at level i
Input: A coreset level i ;::: 1

1 if IHil tf. [1/4,3/4] then
2 P +- root of the larger heap in {Hi, Hi}
3 UPDATE(p, i, delete)
4 UPDATE(p, i, insert)

/* P is inserted to the smaller
heap

885

Algorithm 5: UPDATESAMPLE(p, i, action):
Update the sample Si with the deletion/insertion of P
Input: A point P that should be inserted/deleted from

Pi according to action E {insert, delete}.
1 if action = insert then
2 Pif-PiUp
3

else

r(p) f- A random number, sampled uniformly over
the interval [0,1]

4 I Pif-Pi \ {P}
s Remove from Si every q E Si such that

r(q) > k log2 n/ lPil
6 Insert to Si every q E Pi such that r(q):S; k log2n/ iPi i

Algorithm 6: RELAXATION(P, C, ,)
Compute connected centers that are attainable from Ct-1

Input: A set P of k points, the current set c�, . . . ,ck
of centers, and max velocity bound , > 0

Output: A set C of k centers and their cost r

1 for if- I to k do

2

3

/* Uniquely assign
close point

Pi f-arg minpEP Ilc� -p il
P f-P \ {pd

each center to a
*/

4 (C,r) f-arg min r s.t. Vi = 1,··· ,k
c={c,,.·· ,cd<:;;IR2,r:C:O

llei -Pi II :s; r,
llei -C'i II :s; l-

s return (C, r)

the smallest Dist(p, Si), for some c E (1/4,3/4).
Property 4.5: PHI = Pi \ Hi

Then S is a (k, c)-coreset for P
Since it is inefficient and costly for the coreset to change

as point vehicles move over small distances that do not
have a significant effect on cost, we must be able to show
that a coreset S for an input set P is also a coreset for a
perturbed set PA if the perturbation is small in magnitude.
The following proposition defines tolerable perturbations
such that this property holds and is a key component of our
kinematic update algorithm MOVE.

Proposition 4.6 (Coresets for Perturbed Sets): A (k, c)
coreset, S, for an input set P, is also a (k, c)-coreset for
any other set PA if for every q E PA there exists a unique
point p E P such that dist(p, q) :s; �Dist(p, Si), where
i is arbitrary and corresponds to the coreset level (line 2
from Algorithm INIT) to which p belongs. Then the coreset
assumption Dist(q, S) :s; O(l)copt Vq E PA holds for
all points q E PA up to a constant factor 0(1) where
S = u��in) Si.

Proof Let p be the unique virtual position of a point
with actual position q EPA. The virtual position p of a point
is the last recorded position of p and the set P contains all the
virtual points' positions. From the Proposition assumption

886

we have that every q E PA has a virtual point pEP such
that dist(p, q) :s; � Dist(p, Qi). Indeed for some p E Hi for
any level i, if the above claims are satisfied we have

Dist(q, Qi) :s; dist(q, p) + Dist(p, Qi)
1 3 :s; 2 Dist(p, Qi) + Dist(p, Qi) :s; 2copt

where the first line follows from the triangle inequality,
the second line follows from our assumption, and the last
inequality proves the proposition. •

Lastly we prove our main results on the time complexity
and accuracy of our kinematic coreset resulting from a call
to the MOVE algorithm. The proof for the following theorem
is an extension of similar proofs from [5], [6] and we omit
it due to lack of space.

Theorem 4.7: Let P' be a set of n points, k � 1, and
c E (0,1/2). Let P denote the set of points after a call to
INIT(P', klc2) followed by a finite sequence of calls to the
MOVE algorithm. Then, the following holds (i) S is a (k, c)
coreset of P, (ii) lSI is of size polynomial in k lo;(n), (iii)
The expected execution time of each such call to MOVE is
polynomial in k lo;(n) , using an appropriate implementation.

Proof (Sketch) (i) The main observations are that
UPDATESAMPLE maintains a random sample Si from Pi.
Therefore, after moving a point using the MOVE procedure,
the coreset has the same properties as the output of the INIT
algorithm and thus must be a (k, c)-coreset for P.
(ii) by the two last lines of the procedure UPDATES AMPLE,
we have that Si contains all the points in Pi that were
assigned random values r(p) E (0,1) that are less than
k log2 n/ lPil. By Hoeffding-Chernoff inequality, the ex
pected size of Si is 8(k logn). Since we have O(logn) such
sample sets Si, the overall size of the coreset is polynomial
in O(klogn). (iii) Since the update takes expected O(logn)
time and there are o (log n) levels, the overall update time is
polynomial in log n if none of the sample sets are updated.
By Lines 5 and 6 of Algorithm 5, the keys r(q) of the
samples q E S have values at most k log n I I Pi I. When we
insert or delete a point from IPil and update the sample,
this threshold changes very little. The probability that the
random number r(q) E (0,1) falls within this gap for one of
the points q E Pi is 11 I Pi I, meaning that indeed S changes
very rarely (once every O(I Pi I) updates).

•

V. EMPIRICAL RESULTS
We extensively test the computational time efficiency of

computing a kinematic coreset, and of computing a k-center
or connected k-center cost over this coreset, as well as the
resulting approximation costs as a function of desired coreset
size. Simulation results over large, up to n = 2000 points,
data sets show the asymptotic properties of our coresets. We
also implement our algorithm on a small n = 5 example
problem in a hardware implementation to provide intuition
behind why coresets work and demonstrate online adaptation
of robots to a priori unknown point movement.

A. Hardware Experiment

We implemented our kinematic coreset algorithm for a
heterogeneous system consisting of n = 5 human points and

Client not in kinematic coreset Client not in kinematic coreset

Points in Kinematic Coreset
(positions provided using Vicon
helmets)

Fig. 4: Side and overhead views of hardware experiments for heterogeneous Kuka Youbot (center) and human (point) systems. Arbitrary intial positions
with coreset (left), centers tracking moving point (middle), overhead view of points divided into two clusters and resulting coreset (right). Matlab plots
show computed kinematic coreset points (red), commanded Youbot positions (blue), and power tether constraints (blue line).

k = 2 robot centers. The five points were instructed to walk
for 10 minutes within the sensing envelope of a Vicon motion
capture system, where their positions were sent in realtime
to a single Intel Core 2 Duo 2.4 GHz computer running our
algorithm. No a priori knowledge of the points' movements
was provided to the two centers, which were Kuka Youbot
omnidirectional ground robots running the Robot Operating
System. Figure 1 shows an overhead view of our hardware
setup.

Using Matlab R2012a and the CVX convex optimization
software [11], kinematic core sets of both two and three
points were maintained and used to calculate the connected
k-center costs from Equation (2). Figure 4 shows the move
ment of the points around the room and the resulting choice
of the two point coreset S maintained by repeated calls to
MOVE. In addition, the optimal cost over the five points was
calculated and used for positioning the centers as described
in [7]. These optimal cost calculations of nO(k) computation
time were made possible due to the small number of agents in
the system, and thus were used to evaluate our algorithm's
performance. Table I shows the computation time and so
lution accuracy of our algorithm compared to the optimal
connected k-center solution and a naIve sampling strategy.

With our experiment, we were able to demonstrate the
ability of our algorithm to detect newly formed clusters. The
plots in Figure 4 show that although the coreset is only of two
points, a representative point (red) is found in every cluster
of points, which is a driving factor for the low resulting
error of E = 0.14 with respect to the optimal solution. In
addition, the center position computation takes 2.2 s, which is
a factor of 97x faster. In contrast, a sample set of two points
chosen randomly often misses one of the point clusters, thus
resulting in a higher E = 0.5 approximation cost. We expect
that for the case where all points are equally distanced, the
solution computed over a kinematic coreset would produce
similar approximation costs to that of a uniform random
sample. However, the clustering of points often arises in
practice, especially for large data sets. This small scale
implementation demonstrates that the properties we prove
for large systems similarly holds for small systems where
the 0(-) notation is irrelevant.

887

Metric KC 2 Pts U 2 Pts KC 3 Pts U 3 Pts
AvgCostiOPT 1.14 1.50 1.02 1.30
VarCost 0.10 0.16 0.08 0.11
OPTtime/Time 97 102 19 19
VarTime (sec) 0.29 0.34 0.41 1.19

TABLE I: This tables summarizes the result of our hardware experiment
employing two centers and five points. Computing new center positions over
a kinematic coreset (KC) of two points is 97x faster with approximation
cost of E = 0.14 compared to performing computation over entire input set
of five points. In contrast, naIvely sampling two input points at random (U)
produces an approximation cost of E = 0.5 at comparable computational
speed. Calculations of center positions using three points shows similar
trends.

B. Numerical Simulation

We present empirical results for update time, and quality
of the coreset S against different input set sizes n. Our test
scenario is of an input set of points, P, moving randomly
between depots located at three corners of the environment.
In particular, at the beginning of a run we randomly select
a subset of 10 points from all depots that choose with equal
probability one other depot to move to. This is representative
of a situation where points are scouting three areas of major
interest where some vehicles may be recalled to other areas
of higher interest. We compare the performance of uniform
random sampling, static bicriteria and kinematic coresets for
maintaining a representative set of the input P. We specify
our three compared methods below where poly(x) means
"polynomial in x":
Uniform Random Sampling: the sample set S is a uniform
sample of m = poJy(k lo;(n)) points from the input set P.
Static Coreset: the sample set S in this case is of cardinality
m = poly(k lo;(n)) and is a (k, E)-coreset returned from Al
gorithm INIT computed from scratch every time the positions
of input set P are updated.
Kinematic Coreset: the samrle set S in this case is of
cardinality m = poly(k lo;(n) and is a (k,E)-coreset that
is updated using Algorithm MOVE each time the positions
of the input points in P are updated.

We measure performance between all three methods in
three different ways. First we compare the time needed to
update the representative set S. Secondly, we compute the
coreset cost distpEP(p, S) which is how well the entire input

Calculation Time VS. Number of Clients
x 104 Coreset Approximation Cost

5
C

x
o�8"cted K-Center Cost with Ma x Control Vel Limit

20.4
<1l
E
i=

0.2

-kinematic update
-static bicriteria
-random sample

2.5

2

1i) 1.5
o

<.:>

-kinematic upd,

-static bicriteria

-random sam pi
4

0.5 rr---t--t-I --1--
010 15 20 25 15 20 25

Number of Input Points n
30 Number of Input Points n

Fig. 5: These plots show calculation time to compute updated representative set after each position update for points in the input set P for up to n = 2000
input points averaged over 500 runs, and the cost over each representative set after each position update for points in the input set P for up to n = 20
input points averaged over 500 runs. Results show that kinematic updates perform comparably to using a static coreset in terms of accuracy and random
sampling performs up to 5 x worse than both of these methods. The last plot shows the case of center velocity constraints where a kinematically updated
coreset outperforms a statically updated coreset since in the former case there is consistency between iterations.

set P is approximated by S. Lastly, we analyze the connected
k-center cost from Equation (2) that takes into account a
communication constraint between centers, with an added
dynamic constraint on the vehicles that limits how far the
centers can move between consecutive iterations, holds for
any physical system. Calculation of the connected k-center
cost demonstrates that kinematically updated coresets are
the most cost effective for physical systems that cannot
tolerate arbitrarily different solutions (since centers cannot
move infinitely fast).

Figure 5 bolsters our main time complexity result from
Theorem 4.7 and indeed demonstrates that the updates for
the kinematic coreset are updated much faster, providing a
larger computational complexity advantage over the updates
for the Static Bicriteria coreset as n increases. Additionally,
Figure 5 demonstrates that the coreset which is updated
kinematically provides similar k-center cost as compared
to the Static Bicriteria coreset in stark contrast to a purely
random sample of the input point set which has minimal
computational complexity but performs up to 5 x worse than
both the kinematic and static bicriteria algorithms.

For our simulation we do not compute the exact connected
k-center cost which takes exponential time in k to compute
as discussed in [7], rather we compute a relaxation where
we pair every coreset point in S to a unique center as
described in Algorithm 6. Figure 5 shows that the kinematic
coreset performs better than the coreset computed using
Static BiCriteria for a cost that takes into account displace
ment constraints on the centers between iterations. This is
because the MOVE algorithm updates the coreset intelligently
as points move whereas the static bicriteria calculates a
new coreset from scratch each iteration and thus has no
consistency between iterations.

VI. CONCLUSION

In this paper we have provided an algorithm for main
taining a sparse set of representative clients that is updated
as the client vehicle team moves arbitrarily through the
environment. Additionally we present theory that guarantees
that our representative set can be updated in time polyno
mial in (k log(n)/c) and provide the same error bounded
approximate k-center cost as the case of computing the
entire representative set from scratch using static coresets

888

from our previous work [7]. Our empirical results addition
ally show that for systems of practical interest that have
physical limitations on how fast server vehicles can move,
updating the existing coreset kinematically is favorable over
computing a static coreset since consistency is maintained
over consecutive iterations.

REFERENCES

[I] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating
extent measures of points. Journal of the ACM, 51(4):606-635, 2004.

[2] T.M. Chan. Dynamic coresets. Discrete & Computational Geometry,
42(3):469-488, 2009.

[3] Alejandro Cornejo, Fabian Kuhn. Ruy Ley-Wild. and Nancy Lynch.
Keeping mobile robot swarms connected. In Proceedings of the 23rd
international conference on Distributed computing, DISC'09, pages
496-511. Berlin. Heidelberg, 2009. Springer-Verlag.

[4] D.Spanos and R.Murray. Motion planning with wireless network
constraints. In Proceedings of the ACC, 2005.

[5] D. Feldman and Daniel Golovin. Dynamic bicriteria approximations.
Manuscript, 2011.

[6] Dan Feldman. Amos Fiat. Micha Sharir, and Danny Segev. Bi-criteria
linear-time approximations for generalized k-mean/median/center. In
Symposium on Computational Geometry'07. pages 19-26. 2007.

[7] S. Gil. D. Feldman, and D. Rus. Communication coverage for inde
pendently moving robots. Proceedings of the IEEEIRSJ Conference
on Intelligent Robots and Systems, 2012.

[8] Stephanie Gil, Samuel Prentice. Nicholas Roy. and Daniela Rus.
Decentralized control for optimizing communication with infeasible
regions. In Proceedings of the 15th International Symposium on
Robotics Research. 2011.

[9] PR Giordano. A. Franchi. C. Secchi .. and H. Bulthoff. Bilateral
teleoperation of groups of uavs with decentralized connectivity main
tenance. In Proceedings of RSS. 2011.

[l0] T. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38, 1985.

[ll] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming. version 1.21. .. I .. I cvx. April 2011.

[12] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median
clustering. In Proc. 36th Ann. ACM Symp. on Theory of Computing
(STOC), pages 291-300. 2004.

[13] S. Har-Peled and K. R. Varadarajan. High-dimensional shape fitting
in linear time. Discrete & Computational Geometry. 32(2):269-288.
2004.

[l4] Dorit S. Hochbaum. Easy solutions for the k-center problem or the
dominating set problem on random graphs. In Analysis and Design
of Algorithms for Combinatorial Problems. volume 109. pages 189 -
209. North-Holland. 1985.

[15] N.Michael. M. M. Zavlanos, Y. Kumar, and G.Pappas. Maintaining
connectivity in mobile robot networks. Experimental Robotics. pages
117-126.2009.

[l6] O. Tekdas, W. Yang. and Y. Isler. Robotic routers: Algorithms and
implementation. Int. Journal of Robotics Research, 29(1), 2010.

