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Ahstract- We present an approach to position k servers (e.g. 
mobile robots) to provide a service to n independently moving 
clients; for example, in mobile ad-hoc networking applications 
where inter-agent distances need to be minimized, connectivity 
constraints exist between servers, and no a priori knowledge of 
the clients' motion can be assumed. Our primary contribution 
is an algorithm to compute and maintain a small representative 
set, called a kinematic coreset, of the n moving clients. We prove 
that, in any given moment, the maximum distance between 
the clients and any set of k servers is approximated by the 
coreset up to a factor of (1 ± E) , where E > 0 is an arbitrarily 
small constant. We prove that both the size of our coreset 
and its update time is polynomial in k log( n) / E. Although our 
optimization problem is NP-hard (i.e., takes time exponential in 
the number of servers to solve), solving it on the small coreset 
instead of the original clients results in a tractable controller. 
The approach is validated in a small scale hardware experiment 
using robot servers and human clients, and in a large scale 
numerical simulation using thousands of clients. 

I. INTRODUCTION 

A cooperative team of robots can provide a large range of 
services to moving clients, where these clients can be other 
robots (or even humans) that are performing independent 
tasks. Such services include environmental surveillance, sys
tem health monitoring, and communication coverage. Many 
interesting applications enabled by these services require 
that the team of robots be adaptive to their environment; 
the overlying control strategy must account for the motion 
of the clients that the robots are tasked to service. In 
addition, the quality of these services (e.g., communication 
strength, camera resolution) often attenuates with increasing 
separation between robots. Thus, we favor proximity-based 
solutions that consider the dynamical constraints of real 
platforms. 

In this paper we consider the problem of controlling this 
team of k robots (servers) to provide services to n clients 
moving independently in a d-dimensional space, where d 2: 1 
is constant. Our model assumes that: 1) the clients are 
free to move over arbitrary a priori unknown paths, 2) the 
maximum distance between any client and its nearest server 
should be small, and 3) additional constraints and control 
limitations can be applied over the feasible new locations 
of the servers, e.g., by restricting the maximum distance 
between servers. As a motivating example, consider the 
problem of controlling a team of aerial robots that provide 
ad-hoc network commuincation to ground based clients. A 
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Fig. 1: Overhead view of our hardware setup of two Kuka Youbot robots 
and white helmets with vicon tracking markers that were worn by five adults, 
or "clients", moving around the motion capture room at a walking pace as 
shown in figure 4. This figure shows the constraint that the first Youbot was 
tethered to a power source at the top left comer of the environment and the 
second Youbot was tethered to the first Youbot for power. The Matlab plot 
in the top right corner demonstrates the two kinematic coreset points (red) 
and the optimal configuration of the Youbots (blue) computed for the client 
positions under the given tethering constraints. 

client p needing to route a message to another far away 
client q can route its message through a path of servers 

Cl, ... ,Ci, where Cl is the closest server to p, and Ci is the 
closest server to q. This approach requires that every client 
maintain a connection only to its closest server, rather than 
all the other clients, and that the servers remain connected. 
By dynamically repositioning the servers as the clients move, 
we can increase the communication coverage and reduce the 
number of required servers. 

It is common knowledge that even the static and un
constrained versions of these problems (known as k-center) 
are NP-hard, i.e, take time exponential in k to compute 
a solution. Intuitively, it should not be necessary to track 
every client individually to compute near optimal server 
placement. Hence, we concentrate on constructing a subset 
that accurately represents client locations such that the error 
compared with the optimal placement of servers can be 
bounded. A naive uniform sampling of clients will often 
miss outliers that dominate the optimization's cost function, 
leading to high approximation costs. Thus, we need a better 
solution. 

The main tool we propose to handle these problems as 
well as the dynamic and constrained versions is a kinematic 
coreset. This tool yields a sparse representative set of the n 

clients that provably approximates their maximum distance to 
any possible positioning of the k servers at any given time. 
Since our coresets are small and can be updated quickly, 
we are able to apply exact (optimal) solutions that would 
otherwise be intractable. This yields dynamic positioning of 
the servers that provably approximates the optimal solutions 
on the full set of clients. Since the running times are 
exponential in k, our core sets improve the performance even 



for a small number n < 10 of clients. 

A. Previous Work 

Information and resource sharing amongst robot teams are 
common requirements for increased efficiency and thus inter
agent proximity is often favored. One common application 
is that of communication over mobile wireless networks 
where agent positions must be optimized to form a connected 
network. Both distributed and centralized solutions in either 
open or constrained environments have been examined in 
papers such as [3], [4], [8], [9], [15], [1 6]. 

The problems in this paper are variants and generalizations 
of the classic k-center problem [14], where we wish to 
minimize the maximum distance from a set of n clients to a 
set of k servers. Gonzalez [10] suggested a 2-approximation 
for the k-center problem that takes time O (nk). An exact 
solution to this problem generally requires time exponential 
in k [iO] and has given rise to many static approximation 
methods including static coresets, or sparse representative 
sets [1], [6], [7], [13]. These coresets can be constructed in 
time that is linear in both n in k, and returns a small set 
of size roughly k/Ed, i.e., independent of n. We then run 
exhaustive search algorithms, approximations, or heuristics 
on these small representative sets. 

In our previous work [7] we constructed (static) coresets 
for a class of problems framed as a connected k-center 
problem, where we wish to compute the positions of k 
servers that minimize both the maximum distance from 
any client to its closest server, and the longest edge in 
the minimum Euclidean spanning tree over the servers (ie. 
connected centers). Unfortunately, this requires computation 
time that grows exponentially in the number k of servers. 
This motivates the approach of reducing the number of 
clients n, in order to get a faster approximated solution 
(although still exponential in k). 

The focus of this paper is to improve the static coreset 
approximation to explicitly account for the dynamic nature 
of the client vehicles under constraints. For the original k
center without any constraint, such coresets were suggested 
in [2], [5], [12]. In particular, the work by Timothy Chan 
in [2] has a similar focus as it derives a dynamic coreset for 
the k-center problem that can be updated in time 10gO(1) n 
for constant k and E. 

The current work differs from [2] in that our coreset can 
be used for approximating the distances of the clients to 
any k servers, rather than only to the k-center of the clients 
or their coresets; see Eq. 4 for our formal definition. This 
makes our coreset useful for solving the k-center problem 
with additional constraints, or when maximum client-server 
distance is only part of the optimization function. 

In particular, we use the core set to solve the class of 
connected k-center problems from [7], where centers must 
maintain connectivity over a Euclidean minimum spanning 
tree (see Eq. (2)), and are subject to maximum velocity 
constraints. This class of problems is important for practical 
scenarios such as ad-hoc network formation where vehicles 
have control input limitations such as maximum velocity 
limits. 

In this work we derive a kinematic coreset with the 
properties that it 1) can be updated quickly and adapt to 
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client motion, 2) provides consistency such that the same 
coreset can be maintained for marginal client motion and 3) 
can provide approximation error bounds for the k-center and 
connected k-center problems as well as constrained versions 
of these problems. Our system contains the first implementa
tion of kinematic coresets, and include several improvements 
to the state of the art, both in term of theoretical guarantee 
and practical usage. 

B. Our Contributions 

1) Kinematic Coreset: Our main new technical tool is 
an algorithm to compute a kinematic core set, or sparse 
subset, of clients to be used as input for computing server 
positions to form a connected communication network for 
the set of moving client vehicles. This coreset differs from 
the static coreset of our previous work in [7] in that the 
kinematic coreset can be updated quickly, is reactive to client 
movement, and also provides consistency across iterations 
such that for marginal client movement the same coreset can 
be maintained. 

We show how to maintain a coreset S for the set P of n 
clients such that in every given moment it holds that 1) for 
any position of the k servers, the maximum distance between 
a client and its closest server is the same for P and S, up to 
a multiplicative factor of ( 1  +E) where E > 0 is an arbitrarily 
small given constant reflecting the desired accuracy and 2) 
the size of S and its update time per client position update is 
only polynomial in k log( n) / E. In particular, our kinematic 
coreset extends both the current theory and generalizes the 
practical application for coresets in the following ways: 

i) Theory: Our coreset is applicable to a general class of 
problems related to the classic k-center problem where, in 
addition, centers are subject to constraints such as mainte
nance of a connected Euclidean spanning tree, and maximum 
velocity or control input limitations. 

ii) Practical Application: Our coreset provides consistency 
across iterations by updating only to reflect client movement 
that effects the cost of the network beyond a specified 
threshold; thus resulting in greater stability of the center 
positioning. 

2) Experimental Results: We test the computational ef
ficiency and approximation error bound properties of our 
kinematic core sets on large problem sizes of up to n = 

2000 in simulation as well as on a small scale hardware 
implementation using two Kuka Youbot robots (servers) 
that must react online to five clients moving over a priori 
unknown trajectories. 

C. Paper Roadmap 

The structure of this paper is as follows. We define our 
representative set and a static algorithm for finding this 
representative set in Section III. We define key characteristics 
of an algorithm that computes a representative set with error 
bounds on optimal server placement for general communi
cation problems defined in Section IV. In Section III we 
present an algorithm for computing kinematic updates to 
our representative set such that this set can be updated 
quickly and where points critically influencing the cost are 
tracked such that we maintain desired error bounds with 
respect to optimal server placement computed over the full 
set of clients. Finally in Section V-B we provide empirical 



evaluation showing the time complexity and accuracy of our 
kinematically updated representative set for practical imple
mentations where routing vehicles have both connectivity 
constraints and control effort constraints. 

II. PROBLEM STATEMENT 

Given k moving clients, find server locations so that 
the entire heterogeneous system of servers and clients is 
connected, or serviced. We assume control of the server 
vehicles but do not assume control over the clients. Our 
approach is to determine the kinematic coreset, or sparse 
representative set, of clients and control the servers to track 
this coreset. 

In the geometry literature, the servers are called centers 
and the clients are called points, and the problem is related 
to the k-center or connected k-center problems. In the k
center problem we are given an integer k � 1 and a set P 
of n points in IRd. We wish to compute a set of centers with 
positions {Cl, . . .  , Ck} E C � IRd such that the maximum 
point-center distance is minimized, i.e, minimize 

r(P,C) := max Dist(p, C). 
pEP 

(1) 

The connected k-center cost, rb(P, C), additionally opti
mizes the distance between neighboring centers as defined 
by the minimum Euclidean spanning tree T* (C) over C. 

rb(P,C) = max{r(P,C),b(C)} (2) 

b( C) := max dist( c, c
/ ) . 

(c,c')ET*(C) 

For a given Euclidean spanning tree T( C) the mlOl
mum communication power needed to maintain connectivity 
amongst centers is the worst case mutual connectivity cap
tured by the bottleneck edge b( C), or longest edge, of T( C). 
Figure 2 shows some of the main differences between k
center and connected k-center solutions. In particular this 
schematic shows that 1) even if the optimal clustering (point 
assignments to centers) is known, one cannot "divide and 
conquer" by applying the k = 1 solution to each cluster, 
due to the connectivity constraints between the centers 
themselves, see Figure 2(a), and 2) although the k = n 
case has a trivial solution for the k-center problem, the same 
is not true for the connected k-center problem due to the 
coupled effects of point clustering and a connected spanning 
tree over the centers that must be optimized simultaneously, 
see Figure 2(b). The interested reader is referred to [7] for 
an in-depth explanation of the connected k-center problem. 

Let C* denote the set that minimizes r(P, C) over every 
set C of k centers. For c > 0, a (k, c )-coreset for P is a 
subset S such that for every point pEP we have 

Dist(p, S) :s; cr(P, C*). (3) 

In particular, by the triangle inequality, for every set C of k 
centers, 

(1 + c)r(P, C) � r(S, C) � (1 -c)r(P, C). (4) 

We are interested in such a set S that is as small as possible. 
By the above definition, computing the optimal positioning 

of k centers (i.e, k-center) for the coreset S, would yield a 
(l+c) approximation 6 such that r(P, 6) :s; (l+c)r(P, C*) 
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to the optimal solution of the original set P. Moreover, this 
holds for any optimal positioning with additional constraints 
on the feasible positioning of the centers. Formally, for a 
(possibly infinite) set of candidate solutions C of centers in 
IRd, we have by (4) that the optimal solution of S, 

r(S, C*) := min r(S, C) 
CEre 

is an approximate optimal solution for P 

r(S, C*) � (1 -c) min r(P, C). 
CEre 

A kinematic (k, c) -coreset is a data structure that dynam

ically updates the coreset whenever a point updates its new 
position . More precisely, the data structure consists of a 
(k, c )-coreset S for the set of points P, and an update method 
MOVE(p, pi) that gets a point's position pEP and replaces 
it by pi E IRd. That is, both P and S are updated in each call 
to the MOVE method. We wish to maintain such a set S of 
size as small as possible, and also to minimize the execution 
time of a call to MOVE. 

III. ALGORITHMS 

In Algorithms 2-5 we define the main procedure MOVE 

for updating the coreset, together with its sub-routines. We 
also provide a sample optimization problem that we run on 
the coreset in our experiments, for computing a set of centers 
that is close to the points, with additional restriction on 
maximum distance between centers. The procedure INIT (P) 
(Algorithm 1) is called once with the initial position of points 
set P. It runs the static version of our coreset construction 
from [6]. The data structure maintains the coreset in each call 
to MOVE(P,Pa), and correctness follows from Theorem 4.1. 

To minimize the changes to the coreset, our data structure 
maintains a partition of the points into 0 (log n) resolution 
levels. The first level is large and represents the "main 
stream" or large dense clusters of the points that are not 
sensitive to a small fraction of points that may change 
their position. The last level is very small and consists of 
few "outliers" or isolated points that change their location 
frequently. Each of the o (log n) levels has its own coreset 
o

.
f m = O�klog(n)/c) points. This yields a coreset of 

sIze O(klog (n)/ c). When a point updates its location the 
method MOVE (p, Pa, i) is called. The parameter p denotes 
the last recorded position, and Pa denotes the new position. 
The last recorded position can be saved on the point or center 
side. The data structure then computes which of the following 
actions should be taken: 

No update (Line 3). Our data structure maintains the 
distances of each point to its closest coreset point at its level. 
These distances are stored in a binary heap for fast updates. 
A binary heap has the property that a value in a heap's node 
is always larger than its childs node. Therefore, the root of 
the heap contains the largest distance from a point to the 
coreset of the heap in that level. When a point updates its 
new location, it also sends a pointer to its node in the heap. 
If the heap is still valid after the change (the new distance is 
still larger then the node's child and smaller than its parent) 
no other action is taken. This is the fastest update type and 
takes constant 0 (1) time. 

Heap update (Line 4). When the updated distance of a 
point to the closest coreset point in its level does not preserve 
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Fig. 2: Schematic drawings showing the differences between the k-center and connected k-center solutions for the n=3, k=2 case (a) and the n=3, k=3 
case (b). Note that points have the same positions for all scenarios depicted above. 

the structure of the heap (the new distance is smaller than the 
node's childs or larger than its parent), we need to "heapify" 
the node down or up the heap to preserve its structure. The 
update time depends on the number £ of such switches with 
other nodes. Since the height of the heap is O(log n) these 
changes take time £ ::; 0 (log n). 

Level update (Lines 7-10). After a series of heap updates, 
a point may be the farthest from its level coreset, and reaches 
the root of its level's heap. In this case, if a new point is 
added to the level with a smaller distance to the coreset, we 
remove the point in the root to a different resolution level, 
or even £ levels. The update time for such a change is 0(£) 
where £ ::; log2 n is the difference between the current level 
and the new level of the point. 

Coreset update (Line 6). Every level maintains its core
set, which is a uniform random sampling of size k from its 
points positions during different times ("snapshots"). That 
is, when a point position is chosen for the coreset, the point 
itself may continue to move, but its "recorded" coreset point 
is static until it is removed from the coreset. We thus call 
the coreset points "virtual points" . 

When too many points (constant factor) have entered or 
left the level's heap using heap updates, the coreset should 
also be updated. Updating a point in the coreset may affect 
all the points that it serves in the level, and also next levels. 
However, since the coreset is a random sample, update should 
occur very rarely in the higher levels (which contain large 
clusters) and may occur frequently in the lower levels (the 
small sets of outliers). Based on this observation, we prove 
that the overall expected running time of such an update is 
at most O(log n). 

Algorithm 3 handles the case where P is inserted or 
deleted from the ith level. That is, P was one of the IQil 
closest points to Si but not after the call to MOVE, or vice 
versa. Intuitively, p has left its cluster and has moved from 
the "main stream" toward a different level of resolution. 
In this case, we insert (respectively, remove) p to its new 
(respectively, old) heap and continue recursively to update p 
in the next level. 

In case the size of the heap of Qi is not cPi for some 
c E (1/4,3/4) (see Line 2 in Fig. 1), then we also need to 

884 

balance the heaps by moving the root r of one of the heaps 
to the other one and recursively update this change in the 
next pair (QHl, SHl). 

Finally, we handle the case where there is no c E 
(1/4,3/4) such that ISil E c(k + logn). That is, Pi 
was removed or inserted to Si. In this case, we recom
pute all the data structures that correspond to the pairs 
(Qi, Si), . . .  , (QIDI, SIDI)' As we prove in our main the
orem, this event is rare (happens with probability at most 
l/n). 

Data Structure to Maintain Coreset 

·20 

P3 ={P, \ H,} 
20 40 

legend: 
• Input point (sensor) 
• Coreset point 
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80 100 

Observation: Large and small clusters alike 
have representatives 

Fig. 3: Typical test scenario where points move randomly between clusters 
forming large and small clusters. The red squares are sampled input points 
from a (k, c:)·coreset demonstrating that most clusters (both large and small) 
are fairly sampled in contrast to uniform random sampling where several 
small clusters are often missed thus adversely affecting approximation 
quality. On the left, key properties of the construction of a (k, c:)·coreset 
are explained. 

IV. ANALY SIS 

In this section we prove that the algorithms presented in 
the previous section provide a kinematic coreset S that 1) 
is updated in time polynomial in k lo;(n) for an input set 
of n sensors, and 2) captures information about points most 



Algorithm 1: INIT(P, m) 
Input: A set P of n points, and an integer m ;::: 1 
Output: A set S that satisfies Theorem 4.1. 

1 i +-1; PI +-P 
2 while IPil > m do 

3 Si +-A uniform random sample of m points from Pi, 
with replacement. 

4 Hi +- A set of cilPil points P E Pi with the smallest 
distance Dist(P,Si) for some Ci E (1/4,3/4). 

5 PHI +-Pi \ Hi 
6 i+-i+1 
7 Si +-Pi; Hi +-Pi 
8 S +-SI U ... U Si 
9 return S 

critically influencing the cost by reactively updating itself 
to maintain an upper bound on the approximation error as 
compared to the optimal cost by a factor of at most (1 + c). 

First we show that a coreset computed by the static 
approach in Algorithm IN IT provides the desired (1 + c), c E 
(0,1/2), error bound on the optimal cost for the k-centers. 
A corollary to this provides that any algorithm obeying 
three key properties of the INIT algorithm also produces a 
(k, c )-coreset for our cOlmnunication costs. Proposition 4. 6 
further generalizes this claim so that any (k, c )-coreset for 
P is also a coreset for any perturbed set P A as long as 
the magnitude of the perturbation is bounded below some 
constant factor. Finally we prove our main result: that our 
Algorithm MOVE for updating a kinematic coreset in time 
polynomial in k lo;(n) indeed satisfies Corollary 4.2 and thus 
provides the error guarantees for an arbitrarily moving set of 
sensors. 

Theorem 4.1: Let P be a set of n points, k ;::: 1 be 
an integer and c > 0 be a constant. Let S denote the 
output of the algorithm INIT(P, m) for an appropriate m = 

O(k log n/c2). Then, with arbitrarily high probability of at 
least 1 -l/n, S is a (k, c)-coreset for P of size lSI that is 
polynomial in k lo;(n) . 

Proof The algorithm INIT is a small modification to 
the Static BiCriteria algorithm from [6] and thus the proof 
from that paper holds with minor modification to account for 
a different constant factor C E (:t, �) of points taken from Pi 
at every iteration. For brevity we will not repeat the proof 
here. • 

A result of this theorem is that any algorithm that main
tains the properties of the coresets Si from Algorithm INIT as 
an invariant also produces a (k, c )-coreset for P. In particular 
we state the following Corollary: 

Corollary 4.2: Let P be a set of n points, j ;::: 1 be an 
integer, and (HI,· . .  ,Hj) be a partition of P. Let S <;;; P 
and (SI,··· ,Sj) be a partition of S. Let m = O(k logn/c2) 
be defined as in the previous theorem. Suppose that the 
following properties 4.3-4.5 hold for every i = 1, . . .  ,j -1: 

Property 4.3: Si is a random sample of size ISil ;::: m 

from Pi 
Property 4.4: Hi is the set of cl Pi I points P E Pi with 

Algorithm 2: MOVE(P,Pa,i): 
Move P E Pi to its actual position Pa. 
Input: A virtual point P E Pi, its actual position Pa, 

and an integer i ;::: 1. 
1 hi +-maxqEH, Dist(q, Si) 

/ * Si is the core set of level i. 
2 if Pa,P > hi then 

I 
MOVE(Pa,p,i+1) 
/* Check next levels recursively */ 

3 else if P E Hi and dist(Pa,P):S; Dist(p, Si)/2 then 
I return / * No update * / 

4 else if dist(p, Si), dist(Pa, Si) :s; hi then 

5 

6 

Replace P with Pa in Hi / * Heap update * / 
if P E Si then 

I 
Reconstruct levels i, i + 1, i + 2, ... 
/* Coreset update 

return 
* At this line P E Hi and Pa tf. H, 

/* or vice versa 
7 if dist(p, Si) :s; hi then 
8 / * P E Hi but Pa tf. H 

UPDATE(p, i, delete) 
UPDATE(Pa, i, insert) 9 

else 

10 

/ * Pa E Hi but P tf. Hi 
UPDATE(Pa, i, delete) 
UPDATE(p, i, insert) 

11 return 

Algorithm 3: UPDATE(p, i, action) 
InsertlDelete P from Pi 
Input: A point P E Pi, and action E {insert, delete} 

1 UPDATESAMPLE(P, i, action) 
2 if Si was changed during the execution of previous line 

then 
3 

I 
Reconstruct levels i, i + 1, i + 2, . . .  

4 return 
5 InsertlDelete P to/from its heap H E {Hi, Hd. 

In case of ties, choose smallest heap. 
6 if H = Hi then 
7 I UPDATE(p, i + 1, action) 
8 BALANCE(i) 
9 return 

Algorithm 4: BALANCE(i) 
Balance the pair of heaps at level i 
Input: A coreset level i ;::: 1 

1 if IHil tf. [1/4,3/4] then 
2 P +- root of the larger heap in {Hi, Hi} 
3 UPDATE(p, i, delete) 
4 UPDATE(p, i, insert) 

/* P is inserted to the smaller 
heap 
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Algorithm 5: UPDATESAMPLE(p, i, action): 
Update the sample Si with the deletion/insertion of P 
Input: A point P that should be inserted/deleted from 

Pi according to action E {insert, delete}. 
1 if action = insert then 
2 Pif-PiUp 
3 

else 

r(p) f- A random number, sampled uniformly over 
the interval [0,1] 

4 I Pif-Pi \ {P} 
s Remove from Si every q E Si such that 

r(q) > k log2 n/ lPil 
6 Insert to Si every q E Pi such that r(q):S; k log2n/ iPi i 

Algorithm 6: RELAXATION(P, C, ,) 
Compute connected centers that are attainable from Ct-1 

Input: A set P of k points, the current set c�, . . .  ,ck 
of centers, and max velocity bound , > 0 

Output: A set C of k centers and their cost r 

1 for if- I to k do 

2 

3 

/* Uniquely assign 
close point 

Pi f-arg minpEP Ilc� -p il 
P f-P \ {pd 

each center to a 
*/ 

4 (C,r) f-arg min r s.t. Vi = 1,··· ,k 
c={c,,.·· ,cd<:;;IR2,r:C:O 

llei -Pi II :s; r, 
llei -C'i II :s; l-

s return (C, r) 

the smallest Dist(p, Si), for some c E (1/4,3/4). 
Property 4.5: PHI = Pi \ Hi 

Then S is a (k, c)-coreset for P 
Since it is inefficient and costly for the coreset to change 

as point vehicles move over small distances that do not 
have a significant effect on cost, we must be able to show 
that a coreset S for an input set P is also a coreset for a 
perturbed set PA if the perturbation is small in magnitude. 
The following proposition defines tolerable perturbations 
such that this property holds and is a key component of our 
kinematic update algorithm MOVE. 

Proposition 4.6 (Coresets for Perturbed Sets): A (k, c)
coreset, S, for an input set P, is also a (k, c)-coreset for 
any other set PA if for every q E PA there exists a unique 
point p E P such that dist(p, q) :s; �Dist(p, Si), where 
i is arbitrary and corresponds to the coreset level (line 2 
from Algorithm INIT) to which p belongs. Then the coreset 
assumption Dist(q, S) :s; O(l)copt Vq E PA holds for 
all points q E PA up to a constant factor 0(1) where 
S = u��in) Si. 

Proof Let p be the unique virtual position of a point 
with actual position q EPA. The virtual position p of a point 
is the last recorded position of p and the set P contains all the 
virtual points' positions. From the Proposition assumption 
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we have that every q E PA has a virtual point pEP such 
that dist(p, q) :s; � Dist(p, Qi). Indeed for some p E Hi for 
any level i, if the above claims are satisfied we have 

Dist( q, Qi) :s; dist( q, p) + Dist(p, Qi) 
1 3 :s; 2 Dist(p, Qi) + Dist(p, Qi) :s; 2copt 

where the first line follows from the triangle inequality, 
the second line follows from our assumption, and the last 
inequality proves the proposition. • 

Lastly we prove our main results on the time complexity 
and accuracy of our kinematic coreset resulting from a call 
to the MOVE algorithm. The proof for the following theorem 
is an extension of similar proofs from [5], [6] and we omit 
it due to lack of space. 

Theorem 4.7: Let P' be a set of n points, k � 1, and 
c E (0,1/2). Let P denote the set of points after a call to 
INIT(P', klc2) followed by a finite sequence of calls to the 
MOVE algorithm. Then, the following holds (i) S is a (k, c)
coreset of P, (ii) lSI is of size polynomial in k lo;(n), (iii) 
The expected execution time of each such call to MOVE is 
polynomial in k lo;(n) , using an appropriate implementation. 

Proof (Sketch) (i) The main observations are that 
UPDATESAMPLE maintains a random sample Si from Pi. 
Therefore, after moving a point using the MOVE procedure, 
the coreset has the same properties as the output of the INIT 
algorithm and thus must be a (k, c )-coreset for P. 
(ii) by the two last lines of the procedure UPDATES AMPLE, 
we have that Si contains all the points in Pi that were 
assigned random values r(p) E (0,1) that are less than 
k log2 n/ lPil. By Hoeffding-Chernoff inequality, the ex
pected size of Si is 8(k logn). Since we have O(logn) such 
sample sets Si, the overall size of the coreset is polynomial 
in O(klogn). (iii) Since the update takes expected O(logn) 
time and there are o (log n) levels, the overall update time is 
polynomial in log n if none of the sample sets are updated. 
By Lines 5 and 6 of Algorithm 5, the keys r(q) of the 
samples q E S have values at most k log n I I Pi I. When we 
insert or delete a point from IPil and update the sample, 
this threshold changes very little. The probability that the 
random number r(q) E (0,1) falls within this gap for one of 
the points q E Pi is 11 I Pi I, meaning that indeed S changes 
very rarely (once every O( I Pi I) updates). 

• 

V. EMPIRICAL RESULTS 
We extensively test the computational time efficiency of 

computing a kinematic coreset, and of computing a k-center 
or connected k-center cost over this coreset, as well as the 
resulting approximation costs as a function of desired coreset 
size. Simulation results over large, up to n = 2000 points, 
data sets show the asymptotic properties of our coresets. We 
also implement our algorithm on a small n = 5 example 
problem in a hardware implementation to provide intuition 
behind why coresets work and demonstrate online adaptation 
of robots to a priori unknown point movement. 

A. Hardware Experiment 

We implemented our kinematic coreset algorithm for a 
heterogeneous system consisting of n = 5 human points and 



Client not in kinematic coreset Client not in kinematic coreset 

Points in Kinematic Coreset 
(positions provided using Vicon 
helmets) 

Fig. 4: Side and overhead views of hardware experiments for heterogeneous Kuka Youbot (center) and human (point) systems. Arbitrary intial positions 
with coreset (left), centers tracking moving point (middle), overhead view of points divided into two clusters and resulting coreset (right). Matlab plots 
show computed kinematic coreset points (red), commanded Youbot positions (blue), and power tether constraints (blue line). 

k = 2 robot centers. The five points were instructed to walk 
for 10 minutes within the sensing envelope of a Vicon motion 
capture system, where their positions were sent in realtime 
to a single Intel Core 2 Duo 2.4 GHz computer running our 
algorithm. No a priori knowledge of the points' movements 
was provided to the two centers, which were Kuka Youbot 
omnidirectional ground robots running the Robot Operating 
System. Figure 1 shows an overhead view of our hardware 
setup. 

Using Matlab R2012a and the CVX convex optimization 
software [11], kinematic core sets of both two and three 
points were maintained and used to calculate the connected 
k-center costs from Equation (2). Figure 4 shows the move
ment of the points around the room and the resulting choice 
of the two point coreset S maintained by repeated calls to 
MOVE. In addition, the optimal cost over the five points was 
calculated and used for positioning the centers as described 
in [7]. These optimal cost calculations of nO(k) computation 
time were made possible due to the small number of agents in 
the system, and thus were used to evaluate our algorithm's 
performance. Table I shows the computation time and so
lution accuracy of our algorithm compared to the optimal 
connected k-center solution and a naIve sampling strategy. 

With our experiment, we were able to demonstrate the 
ability of our algorithm to detect newly formed clusters. The 
plots in Figure 4 show that although the coreset is only of two 
points, a representative point (red) is found in every cluster 
of points, which is a driving factor for the low resulting 
error of E = 0.14 with respect to the optimal solution. In 
addition, the center position computation takes 2.2 s, which is 
a factor of 97x faster. In contrast, a sample set of two points 
chosen randomly often misses one of the point clusters, thus 
resulting in a higher E = 0.5 approximation cost. We expect 
that for the case where all points are equally distanced, the 
solution computed over a kinematic coreset would produce 
similar approximation costs to that of a uniform random 
sample. However, the clustering of points often arises in 
practice, especially for large data sets. This small scale 
implementation demonstrates that the properties we prove 
for large systems similarly holds for small systems where 
the 0(-) notation is irrelevant. 

887 

Metric KC 2 Pts U 2 Pts KC 3 Pts U 3 Pts 
AvgCostiOPT 1.14 1.50 1.02 1.30 
VarCost 0.10 0.16 0.08 0.11 
OPTtime/Time 97 102 19 19 
VarTime (sec) 0.29 0.34 0.41 1.19 

TABLE I: This tables summarizes the result of our hardware experiment 
employing two centers and five points. Computing new center positions over 
a kinematic coreset (KC) of two points is 97x faster with approximation 
cost of E = 0.14 compared to performing computation over entire input set 
of five points. In contrast, naIvely sampling two input points at random (U) 
produces an approximation cost of E = 0.5 at comparable computational 
speed. Calculations of center positions using three points shows similar 
trends. 

B. Numerical Simulation 

We present empirical results for update time, and quality 
of the coreset S against different input set sizes n. Our test 
scenario is of an input set of points, P, moving randomly 
between depots located at three corners of the environment. 
In particular, at the beginning of a run we randomly select 
a subset of 10 points from all depots that choose with equal 
probability one other depot to move to. This is representative 
of a situation where points are scouting three areas of major 
interest where some vehicles may be recalled to other areas 
of higher interest. We compare the performance of uniform 
random sampling, static bicriteria and kinematic coresets for 
maintaining a representative set of the input P. We specify 
our three compared methods below where poly(x) means 
"polynomial in x": 
Uniform Random Sampling: the sample set S is a uniform 
sample of m = poJy( k lo;(n) ) points from the input set P. 
Static Coreset: the sample set S in this case is of cardinality 
m = poly( k lo;(n) ) and is a (k, E )-coreset returned from Al
gorithm INIT computed from scratch every time the positions 
of input set P are updated. 
Kinematic Coreset: the samrle set S in this case is of 
cardinality m = poly(k lo;(n ) and is a (k,E)-coreset that 
is updated using Algorithm MOVE each time the positions 
of the input points in P are updated. 

We measure performance between all three methods in 
three different ways. First we compare the time needed to 
update the representative set S. Secondly, we compute the 
coreset cost distpEP(p, S) which is how well the entire input 
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Fig. 5: These plots show calculation time to compute updated representative set after each position update for points in the input set P for up to n = 2000 
input points averaged over 500 runs, and the cost over each representative set after each position update for points in the input set P for up to n = 20 
input points averaged over 500 runs. Results show that kinematic updates perform comparably to using a static coreset in terms of accuracy and random 
sampling performs up to 5 x worse than both of these methods. The last plot shows the case of center velocity constraints where a kinematically updated 
coreset outperforms a statically updated coreset since in the former case there is consistency between iterations. 

set P is approximated by S. Lastly, we analyze the connected 
k-center cost from Equation (2) that takes into account a 
communication constraint between centers, with an added 
dynamic constraint on the vehicles that limits how far the 
centers can move between consecutive iterations, holds for 
any physical system. Calculation of the connected k-center 
cost demonstrates that kinematically updated coresets are 
the most cost effective for physical systems that cannot 
tolerate arbitrarily different solutions (since centers cannot 
move infinitely fast). 

Figure 5 bolsters our main time complexity result from 
Theorem 4.7 and indeed demonstrates that the updates for 
the kinematic coreset are updated much faster, providing a 
larger computational complexity advantage over the updates 
for the Static Bicriteria coreset as n increases. Additionally, 
Figure 5 demonstrates that the coreset which is updated 
kinematically provides similar k-center cost as compared 
to the Static Bicriteria coreset in stark contrast to a purely 
random sample of the input point set which has minimal 
computational complexity but performs up to 5 x worse than 
both the kinematic and static bicriteria algorithms. 

For our simulation we do not compute the exact connected 
k-center cost which takes exponential time in k to compute 
as discussed in [7], rather we compute a relaxation where 
we pair every coreset point in S to a unique center as 
described in Algorithm 6. Figure 5 shows that the kinematic 
coreset performs better than the coreset computed using 
Static BiCriteria for a cost that takes into account displace
ment constraints on the centers between iterations. This is 
because the MOVE algorithm updates the coreset intelligently 
as points move whereas the static bicriteria calculates a 
new coreset from scratch each iteration and thus has no 
consistency between iterations. 

VI. CONCLUSION 

In this paper we have provided an algorithm for main
taining a sparse set of representative clients that is updated 
as the client vehicle team moves arbitrarily through the 
environment. Additionally we present theory that guarantees 
that our representative set can be updated in time polyno
mial in (k log(n)/c) and provide the same error bounded 
approximate k-center cost as the case of computing the 
entire representative set from scratch using static coresets 
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from our previous work [7]. Our empirical results addition
ally show that for systems of practical interest that have 
physical limitations on how fast server vehicles can move, 
updating the existing coreset kinematically is favorable over 
computing a static coreset since consistency is maintained 
over consecutive iterations. 
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