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I. INTRODUCTION

Humans organize the world into objects that adhere to
specific conceptual rules. For example, most adults would
agree that it is impossible for two individual objects to occupy
the same physical space at the same time, without one being
contained in the other. Similarly, it is impossible for one object
to exist in some location B, after existing in another location
A, without having traversed a path between the two locations
[3]. The ability to quickly learn intuitive theories that organize
our surroundings into relatable concepts is a trait that enables
humans to build intricate mental models of the world. Such
a capacity also allows humans to reason about and explain
situations they encounter in the world and is thus a key
component of the foundational knowledge we call intuitive
physics.

It is not surprising then that infants even as young as 4-6
months exhibit the beginnings of physical reasoning [10, 47].
Seminal work in Cognitive Science and Developmental Psy-
chology has shown that infants are able to reason about basic
physical phenomena—including object individuation by rela-
tive motion [26, 51], object permanence [3], spatiotemporal
continuity [48]—despite their limited perceptual capabilities
compared to grown adults. Presented with a complex and
largely uninterpretable environment, infants seek structure by
developing simple physical rules and building upon them.

Despite successes in statistical pattern recognition tasks,
modern deep learning systems have not yet matched the
reasoning power of a 4-6 month old infant. Finding, testing,
and revising possible explanations for observations in a given
environment—abductive inference—can inform how an agent
builds and refines models of the world. Explanation through
abduction enables a robot to build such models in a task-
agnostic manner, mirroring the world-modeling capabilities of
the developing infant. We posit that task-agnostic models of
intuitive physics will enable more robust robotic intelligence
by bridging the gap between the experiential learning capabil-
ities of model-free algorithms and the explanatory power of
model-based learning.

An effective physical reasoning system must address two
problems. The first problem is transforming raw sensory
information into a set of concepts, preferably ones that are
compositional. The second problem involves reasoning over
those concepts in an interpretable way. The former is a
problem broached by representation learning [8], where the
goal is to extract visual concepts from an observed sensory
input [18, 20]. In this paper we focus on the latter, proposing

Fig. 1: Sample frames from the PhysSprite dataset. Top-to-
Bottom: Spatially separated blocks, a single-object occlusion
event, a box-and-rod partial occlusion. Left-to-Right: frames
progress through time.

an abductive framework for reasoning over visual primitives.
We describe a hierarchical Bayesian model that propagates
belief over a set of distinct hypotheses representing possible
explanations of an observed scene. Our model generates hy-
potheses composed of individual visual primitives regarding
object motion as well as relational visual primitives that
capture physical interactions between two or more objects
(i.e. occlusion). Further, we provide a new video dataset,
PhysSprites, containing synthetic recreations of the environ-
ments traditionally used to study intuitive physics in infants
[3, 26, 48]. The PhysSprites dataset, shown in Figure 1, serves
as the basis for our preliminary evaluation in Section IV.

A summary of our method, including a video complement
to our evaluation, can be found at: https://bit.ly/2Z8HecW.

II. RELATED WORK

A. Computational Accounts of Intuitive Physics

The method by which infants acquire a model of intuitive
physics has been hotly contested dating back to Piaget’s initial
theory of cognitive development in the infant [41, 42]. From a
computational perspective, recent work has identified similari-
ties between the approximate, probabilistic reasoning capabil-
ities of infants and the physics engines found in modern day
simulators [5, 7, 49]. Several approaches in the literature have
focused on training application-specific models of physics
[2, 31, 55]. In some cases, a partial or complete physics
simulator can be learned directly from data [6, 11] and used for
many different subsequent control tasks [23, 32]. An exciting
alternative direction explores the use of probabilistic program
induction for one-shot classification tasks [29, 28, 30].



Fig. 2: Adaptation of experiments from Spelke et al. [51]. (a)
adjacent objects move relative each other, providing a kinetic
cue that they are separate objects; (b) adjacent objects move
together, leading infants to perceive a single, unified object;
(c), (d) spatially separate objects are perceived as distinct units,
regardless of motion.

In contrast, this paper does not explicitly rely on a learned
a physics model, but rather employs abductive inference to
reason over visual primitives in a manner consistent with a
physically-aware infant. Our work is most similar to the work
of Teglas et al. [53] in this regard.

B. Abductive Inference

Abductive inference is the logical process of finding an
explanation A—preferably the best explanation—given an
observation B and a general principle (A → B) [33, 40].
Abduction differs from both deduction—a conclusion B is
guaranteed, given a general principle (A → B) and a true
observation A—and induction—a general principle (A→ B),
given two individual observations A and B.

For example, when Mary walks barefoot into the yard and
feels wet grass under her toes, she can use this observation and
knowledge that rain makes the ground wet to infer that it might
have rained recently. This explanation is chosen amongst other
competing hypotheses, such as sprinklers.

Traditionally, abductive reasoning has been structured as a
logical programming problem, in which a logical explanation
∆ is recovered for a set of observations Γ, such that:

Σ ∧∆ |= Γ (1)

where Σ represents domain-specific background knowledge.
Logical abduction, which has garnered interest from both the
symbolic AI [4, 22, 24, 37] and machine learning communities
[13, 35], has been used for a wide variety of perception tasks,
such as visual scene understanding [1, 14, 52], image/video
interpretation [21, 54], and concept learning [25]. In the
specific case of robotic perception, Σ represents background
knowledge regarding the effects of the robot’s actions on
the world and the impact of changes in the world on future
observations [50].

Competing accounts have instead posed abductive reasoning
as a probabilistic task [12, 15, 16, 36, 43, 44, 45, 46], using
Bayesian networks [39] over random variables instead of dis-
crete symbols. We adopt a similar interpretation of abduction,
defining a hierarchical Bayesian model that supports reasoning
over visual primitives at varying levels of abstraction.

Fig. 3: A visualization of static and motion segmentation: (a) A
frame from the box-and-rod environment; (b) A sample motion
mask; (c) Segmentation boundaries: motion segmentation in
blue and the static segmentation in pink.

III. APPROACH

Our framework for probabilistic physical inference reasons
abductively over a set of visual primitives. Object segmen-
tation extracts a set of visual entities, which are combined
to form candidate objects in a scene. Candidate objects are
then used to populate a hypothesis space over individual
and relational primitives describing each object’s motion and
interactions with other candidate objects.

A. Object Segmentation

The findings of Spelke et al. [51] suggest that infants
individuate objects using both spatial and kinetic cues. In
the simplest case, spatial gaps in 2D images constitute strong
evidence that the best explanation of a scene contains multiple
distinct objects. When objects are adjacent, however, and
spatial information is ambiguous, kinetic information takes
precedence during individuation, as shown in Figure 2. To this
end, we use both motion and static segmentation to identify
candidate objects in a scene.

a) Motion Segmentation: Given a set of input image
frames I = {I0, I1, ..., In} of dimension H×W , we construct
a set of motion masks M = {M0,M1, ...,Mn} following
the method of Pathak et al. [38]. Mi represents a binary
segmentation of video frame Ii, where each pixel px,y = 1
if it is undergoing significant motion, or px,y = 0 otherwise.

b) Static Segmentation: We then perform static segmen-
tation using input image frames I and motion masks M ,
resulting in a set of entities E = {Em ∪ Es} from which
candidate objects can be constructed.

Due to noise in the segmentation process and the possibility
of objects interacting in different ways on a frame-by-frame
basis (i.e. contact, occlusions, etc.), we cannot assume that
every entity e ∈ E is an individual object. Therefore, we
initialize a set of candidate objects O = P(E), considering all
possible combinations of entities E. To fight exponential com-
plexity in the number of candidate objects, unlikely hypotheses
are aggressively pruned. A visualization of the segmentation
process is shown in Figure 3. Figure 3 displays a frame from
the box-and-rod PhysSprite scene, its motion mask, and the
entities resulting from both static and motion segmentation.

B. Reasoning over Visual Primitives

Our goal is to identify a hypothesis h ∈ H that adequately
explains the observations an agent receives from two suc-



cessive image frames {It−1, It} ∈ I . We define a set of
visual primitives V = {Vind ∪ Vrel} that can be used to
describe objects in a scene individually, as well as interactions
between objects. In the present 2D case, Vind consists of
motion primitives describing an object’s movement in one of
the four cardinal directions (or lack thereof) and Vrel covers
occlusion interactions between two or more objects.

Using candidate objects O from the previous segmentation
step and visual primitives V , we initialize a hypothesis space
H , where each hypothesis h ∈ H encodes the number of
objects in the scene, their positions, and an explanation com-
posed of V . We model this stochastic process as a hierarchical
Bayesian network [39], propagating belief in accordance with
the following transition and observation models:

a) Transition Model: We model the passage of time as
an increase in entropy:

P (Ĥt) =
∑
Ht−1

P (Ht|Ht−1)P (Ht−1) = P (Ht−1)~f(•) (2)

where ~ denotes convolution with an entropy kernel f(•). We
also assume a constant linear velocity model for all objects in
the scene, following Newton’s equations of motion:

x̂t = xt−1 + vt−1∆t (3)

where xt−1 and vt−1 denote the object’s position and velocity
at the previous time-step, respectively.

b) Observation Model: The Bayesian network reasons
over visual primitives that either directly involve object motion
or those that result in a temporary change of perceived object
motion. Thus, optical flow provides a useful representation
with which to compare hypotheses with incoming observa-
tions. Given input frames {It−1, It} and their corresponding
flow map Ft = flow(It−1, It), we synthesize an image Îh for
each hypothesis h ∈ H and compute a hypothetical flow map
F̂t = flow(It−1, Îh). The likelihood is then be computed as
the inverse of the `2-loss between the ground truth optical flow
and hypothetical flow maps:

P (d|h) =
1

L`2(Ft, F̂t)
=

1

(Ft − F̂t)2
(4)

where d denotes an incoming observation.
Finally, we compute a posterior distribution over hypotheses

via Bayes’ Theorem:

P (h|d) =
P (d|h)P (h)

Σh′∈HP (d|h′)P (h′)
∝ P (d|h)P (h) (5)

where each h ∈ H is a specific hypothesis composed of
primitives v ∈ V pertaining to objects o ∈ O, P (d|h) is the
aforementioned observation model describing the likelihood
of d, and P (h) is the prior distribution over hypotheses.
Unlike a supervised learning algorithm that may learn the
posterior P (h|d) directly, we instead shift focus to defining
an observation model P (d|h) that effectively describes the

likelihood of the input signal, given an h ∈ H . Figure 4
illustrates belief propagation alongside optical flow for single-
object and multi-object scenes.

C. Relational Primitives

We extend the model presented in Section III-B to handle
relational primitives explaining interactions between two or
more objects. Such interactions differ slightly from individual
motion primitives, unfolding over the course of a longer
sequence of frames. Computationally, however, our interest re-
mains in reverse-engineering the physical reasoning displayed
by infants. To this end, we again make use of the relative
motion cues provided by optical flow to compute the likelihood
of each hypothesis h ∈ H .

At the abstract relational level, the observation model
P (d|h) differs in a few important ways. First, it maintains
a running motion similarity score over a horizon of T time-
steps to account for longer duration relational primitives. Next,
in the case of occlusion, we are no longer interested in
the similarity between a hypothesized movement F̂t and the
ground truth flow Ft, but rather the difference between an
unobstructed motion path F̂ = {F̂0, F̂1, ..., F̂t} of a candidate
object o ∈ O and the object’s true path F = {F0, F1, ..., Ft}.
In this case, we no longer need to invert the `2-loss term,
as discontinuities contribute as positive evidence towards an
occlusion hypothesis. These steps result in the updated obser-
vation model:

P (d|h) =

T∑
1

L`2(Ft, F̂t) =

T∑
1

(Ft − F̂t)
2 (6)

Finally, though relational primitives occur over the course
of many time-steps, their explanatory power only takes effect
when objects are actually interacting. For example, if two
objects exist in a particular scene, such as in Figure 1, the
probability that one object is occluded does not carry weight if
the objects are separated by a wide margin on the image plane.
We introduce the following condition on P (d|h) to ensure the
posterior over relational primitives is not adjusted until one or
more objects intersect:

P (d|h) =


∑T

1 L`2(Ft, F̂t), if {oA, oB} ∈ O intersect.

1.0, otherwise.
(7)

In sum, at each time-step, the relational model receives
as input a ground truth flow map Ft and the maximum a
posteriori (MAP) estimate ĥMAP = argmaxhP (h|d) from
the lower-level Bayesian model and computes a posterior
following (5) as before with updated observation model (7).

IV. PRELIMINARY EVALUATION

Synthetic video datasets have become popular in the repre-
sentation learning community for providing a simple yet infor-
mative testbed for visual learning algorithms [9, 17, 18, 19].
We follow a similar approach with the PhysSprites dataset.



Fig. 4: Sample results for the single-object and multi-object
cases.

PhysSprites, modeled after the work of Matthey et al. [34],
contains synthetic recreations of environments used in classical
infant studies, testing our model’s ability to mirror their results
for key traits of intuitive physics. Examples include box-and-
rod displays to measure relative motion cues [3, 26] and
both single- and multi-block displays testing spatiotemporal
continuity [48]. Altogether, the PhysSprites dataset consists
of 30 unique video scenes with an average of 642 frames.

a) Individual Primitives: Results show our model ef-
fectively reasons over individual primitives regarding object
motion. Figure 4 demonstrates the reasoning ability of our
model in both single-object motion and multi-object motion
cases. Each subsection of Figure 4 displays a sample frame, a
flow map corresponding to that frame, and the posterior over
motion primitives. Of note are Frames 175 and 325 of the
upper part of Figure 4, which show an object move to the right,
change course, and head back to the left. Below the images and
flow maps, the MAP estimate of the posterior over hypotheses
correctly identifies the motion primitive that explains these
observations. We find similar results for the multi-object case
on the bottom-half of the figure. In the bottom half of Figure
4, the magnified letters are shorthand for visual primitives
pertaining to each object. For example, L,R represent the
hypothesis that object 0—the blue cube—is moving to the
left and object 1—the pink cube—is moving right.

b) Relational Primitives: We additionally evaluate our
model’s ability to reason over visual primitives that involve
interactions between multiple objects. Consider Figure 5, for
example, which displays the most difficult occlusion scene in
the PhysSprites dataset. In this single-object occlusion scene,
the pink block (object 0) disappears completely behind the
rectangular occluder (object 1). Notice that the increase in
belief that object 0 becomes occluded (relational primitives
between frames 20 and 60) corresponds precisely to the
decrease in belief regarding the motion of the object. Our
model is effectively finding an explanation for the missing
object and quickly reassigning belief once it reappears.

Fig. 5: Belief at various frame intervals throughout a difficult
single-object occlusion environment.

V. DISCUSSION AND FUTURE WORK

We have presented a hierarchical Bayesian framework for
reasoning abductively over visual primitives and, through
qualitative evaluation, have identified a candidate model for
a snapshot of the infant development cycle. We also provided
the PhysSprites dataset, which served as the test-bed for
preliminary evaluations of our model.

The design of our model offers multiple directions for
further research. First, due to its ability to reason over visual
primitives, we are optimistic about the prospects of integrating
our model with representation learning techniques that map
raw visual inputs (i.e. images, videos) to discrete symbols.
Further, an intriguing direction for future work will consider
alternative definitions of the best hypothesis. Possible alter-
natives include the most simple explanation and the most
informative explanation [27]. Finally, rather than surfacing
frame-level hypotheses, we would like our model to abduce
a single explanation for a sequence of frames. For example,
when asked to explain the movement of the square block in
row two of Figure 1, a human observer is not likely to respond:
“the block moved right one pixel, the block again moved
right one pixel, etc”. Instead, the observer would respond: “the
block moved right until it disappeared behind the larger block,
then appeared on the other side”. We will extend this work to
aggregate hypotheses into abstract explanations.
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