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Abstract. A smooth-primitive constrained-optimization-based path-tracking algo-
rithm for mobile robots that compensates for rough terrain, predictable vehicle dy-
namics, and vehicle mobility constraints has been developed, implemented, and tested
on the DARPA LAGR platform. Traditional methods for the geometric path following
control problem involve trying to meet position constraints at fixed or velocity depen-
dent look-ahead distances using arcs. We have reformulated the problem as an optimal
control problem, using a trajectory generator that can meet arbitrary boundary state
constraints. The goal state along the target path is determined dynamically by mini-
mizing a utility function based on corrective trajectory feasibility and cross-track error.
A set of field tests compared the proposed method to an implementation of the pure
pursuit algorithm and showed that the smooth corrective trajectory constrained opti-
mization approach exhibited higher performance than pure pursuit by achieving rough
four times lower average cross-track error and two times lower heading error.

1 Introduction

When autonomous vehicles move in complex outdoor environments, precision
motion control becomes both more difficult and necessary. Modeling errors in-
crease sufficiently in magnitude relative to those in structured indoor environ-
ments that an approach based on improving any amenable aspect of mobility
models seems warranted. We present a model predictive, optimal control ap-
proach to trajectory following which relies on a capacity to model many aspects
of rough terrain vehicle mobility.

1.1 Motivation

Future robotics missions of planetary exploration will require precision motion
control for geologic experiments, instrument placement, and infrastructure con-
struction for permanent colonies. Traditional methods of path following can fail
in challenging outdoor environments because they rely on simple models of ve-
hicle motion and do not fully consider the effects of rough terrain, dynamics, or
mobility constraints. In most modern applications, mobile robot path trackers
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merely react to and try to compensate for disturbances, whereas human drivers
typically can predict and adjust their controls to prevent path following errors.
Path trackers that only react to disturbances have difficulty performing precision
instrument placement problems, unless the mobile robot exhibits extremely high
mobility to correct for the terminal state error. Precision control is also more
necessary in complex environments due to increased prevalence and lethality
of hazards. It is more challenging because perception technology presently falls
short of adequate prediction of terrain material (traction and compressibility)
properties that truly do determine the magnitudes of the external forces that in
turn determine how the vehicle responds to its control inputs. Vehicle actuator
and body dynamics can also play a significant role in mapping those forces onto
vehicle motion. On the other hand, these effects are not entirely unknown. Even
without detailed knowledge of terrain shear strength and friction, it is possi-
ble compute estimates of wheel interactions that are better than no model at
all. Steering dynamics and terrain following are also highly predictable in many
cases. To the degree that any controller can predict the mean behavior of these
pseudo-random processes, it can reduce the magnitude of the model disturbances
and improve path following performance.

1.2 Related Work

Geometric path tracker algorithms for outdoor mobile robots have been part
of robotic architectures since the very beginning. Pure pursuit [1, 2] remains
one of the simplest and most often applied algorithms for solving the geometric
path-tracking problem today, although many variations of the algorithm exist.
In [4], the path follower calculates a control based on a combined pure pursuit /
PI controller. Recent work applied to the Rocky series rover platforms at JPL
in rough terrain incorporates into the controller the effects of the observed slip
rate on the heading [3]. A feed forward approach to minimize total path fol-
lowing error was presented in [9], which increased the look-ahead distance in
proportion to the heading error and incorporated a dynamic vehicle simulator.
Early work in mobile robot control addressing the use of higher-order primitives
to meet position, heading, and continuity constraints is discussed in [6, 7]. [6]
addressed the need to bound velocity and acceleration on the corrective controls
to meet vehicle limitations. A robust control tracking method for differentially
steered mobile robots was discussed and simulated in [11], where a simplified
vehicle dynamics model was used in the control loop to improve tracking per-
formance. All of these methods have advantages and disadvantages. The choice
of the look-ahead distance in the pure pursuit algorithm can lead to large track-
ing errors (look-ahead distance too large) or instability (look-ahead distance too
small) if improperly tuned. Typically, path trackers modify the look-ahead dis-
tance by scaling it proportionally with velocity [10]. The feed forward approach
can improve the stability of the algorithm, but requires a simulator and only
searches a subset of feasible motions. The PID controller is more difficult to
tune and incurs large heading error when the target path changes abruptly, but
is stable. Our approach differs from the prior art in several ways. First, we have
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leveraged recent work in model-predictive real-time trajectory generation to de-
termine smoother corrective trajectories. By using these more general methods
for trajectory generation, we can incorporate predictive models of propulsion,
suspension, and dynamics into the controls. Second, we have developed and im-
plemented a constrained-optimization approach for on-the-fly computation of an
optimal corrective trajectory.

1.3 Problem Statement

For a robot with perfect perception, modeling, and control, a path follower would
not be required. In reality however, path followers for mobile robots are required
to account for unmodeled vehicle dynamics (e.g. wheel slip). We seek to develop
a general path follower that can account for predictable errors due to rough
terrain and observed vehicle dynamics, and which can automatically select the
optimal corrective trajectory from the continuum.

2 Technical Approach

Recent work in continuous primitive trajectory generation for arbitrary vehicle
models [5] has improved the capacity to generate corrective paths that meet gen-
eral position, heading, and curvature constraints in rough terrain. The algorithm
gains its generality by relying on numerically linearizing and inverting forward
models of propulsion, suspension, and motion. This approach can accommodate
such effects as rough terrain, actuator dynamics, wheel slip, and any other some-
what predictable effects of interest. It can also accommodate boundary and in-
ternal constraints while optimizing an objective function. Such a function might
for example involve such criteria as obstacle avoidance, cost, risk, time, or energy
consumption in any combination. The proposed path tracking method relies on
the continuous primitive trajectory generator to plan corrective trajectories back
onto the path. This is the similar to the pure pursuit method, except that higher
order boundary state constraints have been imposed and a more expressive cor-
rective trajectory is required. Pure pursuit requires position constraints, while
the proposed method can meet arbitrary posture constraints (Figure 1).

One problem with current tracking algorithms is the choice of the look-ahead
distance. When the look-ahead distance is too large, a path follower will tend
to cut corners, while a short look-ahead distance often results in instability. In
effect, the choice of target range, whether performed a priori or online, is inher-
ently an optimization problem that searches over possible target ranges in order
to minimize cross track error while providing smooth, stable control. During each
cycle, the proposed path follower determines corrective trajectories to a set of
goal states along the target path. The optimum that is selected by minimizing
a utility function that penalizes cross track error and high curvatures. Formally,
this is a constrained optimization problem, where the free variable is look-ahead
distance, the constraints require that the terminal state lie on the target path,
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Fig. 1. Corrective Trajectory Continuity. This figure demonstrates several differ-
ent trajectory generation boundary conditions that lead to increasingly higher levels
of continuity for corrective trajectories. The corrective trajectory becomes increasingly
complicated at the benefit of higher terminal state continuity of the target path.

and we look to find the optimal trajectory based on minimizing some cost (J)
along the path:

J [x(t), u(t)] = φ[x(tf ), tf )] +
∫ tf

t0

Y [x(t), u(t), t]dt (1)

Typically the integrand (Y ) will penalize cross-track error, high angular ve-
locity, and/or heading error while the state penalty function (φ) will penalize the
amount of time required to complete the corrective trajectory. Two methods for
solving for a nearly optimal corrective trajectory are discrete search and local
gradient methods. A discrete search method will explicitly evaluate a series of
corrective trajectories spanning the parameter space and will select the one with
the lowest cost. Gradient methods will perform local minimization by estimat-
ing the rate of change of the cost function with respect to the free variables in
the system. The gradient method provides the capability to find a local optimal
corrective trajectory but can miss the global optimum if several minima exist
along the cost function and the initial guess is far from the global optimum.
Discrete search methods will find a globally optimal solution, but only to the ex-
tent that the search space is discretized. Figure 2 shows an example of corrective
trajectory discrete search for a single free parameter (look-ahead distance).

Our path following algorithm relies on two nested control loops, a planning
loop and an execution loop. The planning loop determines the proper control
based on the current state and a set of goal states along the path (Figure 2) while
the execution loop commands the desired linear and angular velocities according
to the determined curvature and linear velocity functions.

3 Experiments and Experimental Results

We have conducted a set of experiments with our path-tracking algorithm on the
differential-drive DARPA LAGR (Learning Applied to Ground Robotics) mobile
robot platform. The constrained optimization path-tracker performance has been
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Fig. 2. Constrained Optimization Formulation Corrective Trajectory Deter-
mination. The look-ahead distance problem simplifies to a constrained optimization
problem. The trajectory generator produces a search space consisting of smooth correc-
tive trajectories at waypoints along the geometric path. In general, we want to minimize
a utility function (J ) over the search space. In this example, we look to minimize the
integral of the weighted sum of squared curvature (smoothness) and the cross track
(following) error along each corrective trajectory. After searching the span of possi-
ble solutions, the algorithm selects an optimal corrective trajectory that minimizes a
weighted balance between curvature and cross track error.

compared to a baseline pure pursuit path tracker. The experiments developed
for this test follow previous work [8] in evaluating path tracker performance
by looking at paths with discontinuous heading, constant curvature arcs, and
discontinuous curvature (Figure 3). We performed the tests with a fixed target
speed of 0.5 m/sec along the path since many pure pursuit implementations now
scale look-ahead with velocity. The cost function for the constrained optimiza-
tion path follower was a weighted sum of the squared curvature along the path
(favoring smooth paths) and the time it would take to complete the corrective
trajectory (favoring short paths). The tests were conducted in a grass field out-
doors where the terrain is uniformly bumpy and where wheel slip is generally
unpredictable. This locale allows us to measure the resilience of these methods
to unknown vehicle dynamics. Sections 3.1 through 3.3 will exhibit comparisons
of the most significant runs of each test.

3.1 Discontinuous Heading Tests (Square) Experimental Results

The discontinuous heading test was designed to see how each tracking algorithm
handled sharp angles in the pre-computed path. After tuning the performance
of the pure pursuit path tracker, we measured roughly equal performance on
the 3.0 meter square between the two methods (Figure 4). Some crosstrack and
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Fig. 3. Path Tracking Experiments. Our experiments involve testing the path
tracker’s ability to follow a discontinuous heading (square) path, a constant curvature
arc (circle) path, and a slalom (discontinuous curvature) path.

Fig. 4. 3.0m Square Path Tracking Experiments. These plots show the cross-
track and heading errors measured for the pure pursuit and constrained optimization
path tracking algorithms. Although the pure pursuit algorithm exhibited lower overall
cross-track error, it had to stop and correct large heading errors three times along the
path.

heading error is expected as it is dynamically infeasible for this vehicle to follow
a square path at a constant speed.

3.2 Constant Curvature Arc (Circle) Experimental Results

The constant curvature (circle) tests were designed to see if each tracker was
stable and/or subject to a constant cross-track error. Figure 5 demonstrates
that the pure pursuit method was subject to constant offset errors whereas the
constrained optimization path follower knew to turn harder and subsequently
reacquired the target path.

3.3 Discontinuous Curvature (Slalom) Experimental Results

The discontinuous curvature (slalom) tests were designed to see how each track-
ing algorithm handled sudden changes in path curvature. Figure 6 shows that
the constrained optimization path follower outperforms the tuned pure pursuit
method. The performance gain comes from compensating for the heading and
curvature state constraints in the planned trajectories that reacquire the target
path.
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Fig. 5. 1.0m Diameter Circle Path Tracking Experiments. These plots show
the cross-track and heading errors measured for the pure pursuit and constrained op-
timization path tracking algorithms on the 1.0m diameter circle test. The pure pursuit
algorithm was consistently off by 10 cm.

Fig. 6. 1.0m Radius Slalom Path Tracking Experiments. These plots show the
cross-track and heading errors measured for the pure pursuit and constrained opti-
mization path tracking algorithms on the 1.0m radius slalom test. The pure pursuit
algorithm was not able to handle the curvature discontinuity effectively.

3.4 Additional Pure Pursuit Experimental Results

The performance of the pure pursuit path-tracking algorithm was measured us-
ing a variety of look-ahead distances tuned for the square (0.4m), circle (0.4m),
and slalom (0.7m) tests (Figure 7) and compared against the performance of
developed constrained optimization path follower. The plots show that prop-
erly tuned parameters for one test can exhibit poor path following performance
on the others even at constant velocity whereas the constrained optimization
path tracker used the same utility function to determine the optimal lookahead
distance.

3.5 Dynamic Look-Ahead State Selection

The strength of the constrained optimization formulation of the path follower is
that it dynamically selects the proper corrective trajectory based on evaluating
the cost of a series of paths that reach different states along the path (Figure 8).
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Fig. 7. Pure Pursuit Path Tracking Performance. These plots show how the
tuned parameters for one test result in poor performance on the other tests. This
demonstrates the strength of the constrained optimization approach, which takes into
account the shape of the path when planning the corrective trajectory.

Fig. 8. Dynamic Look-Ahead Selection. The frequency is shown with which the
constrained optimization path tracker selected each look-ahead distance for its terminal
boundary state. In general, nearer targets are generally preferred. The high preference
for the largest distance in the square test is caused by the lack of a cross-track error
term in the utility function.

Figure 8 demonstrates that the dynamic look-ahead distance calculation is
working in the path following experiments. In the circle and slalom courses where
the path is generally smooth, the algorithm prefers shorter paths because they
are generally smooth. In the square tests however, the discontinuity in heading
causes very high curvature turns close in, so for the corners the algorithm selects
longer, smoother corrective trajectories.

3.6 Experiment Summary

A dataset gathered consisting of 22,000 data points from 55 analyzed runs of the
two algorithms showed that the constrained optimization path tracker average
9.47cm of cross-track error and 0.145 radians of heading error versus 39.14cm of
cross-track error and 0.302 radians of heading error for the pure pursuit tests.
The higher performance comes from dynamic look-ahead distance selection and
satisfaction of additional state constraints (heading and curvature) when plan-
ning trajectories.



Constrained Optimization Path Following of Wheeled Robots 351

4 Conclusions and Future Work

In this paper, we have demonstrated the design and implementation of a control
system based on a real-time trajectory generator that provides the predictive
component in an optimal controller. The algorithm recomputes the look-ahead
distance every cycle based on an explicit utility criterion and a model of how
vehicle behavior changes with speed and terrain shape. This approach is not
without limitations. Poor models of vehicle dynamics at high speeds can cause
instability when executing these more complicated corrective maneuvers. An-
other drawback is the added complexity from computing trajectories in real-time.
This approach is therefore suitable in applications where vehicle dynamics are
reasonably predictable and the computational resources to generate trajectories
online are available. Related future work will include unsupervised learning of
the vehicle model to correct for unpredictable vehicle dynamics, constrained op-
timization of more than one variable (velocity, path tangents), utility functions
that incorporate path costs for obstacle avoidance, and a fully unconstrained
optimization approach to path following. The ability to search a set of trajecto-
ries related to some forward state along the path will allow for high-performance
path tracking and obstacle avoidance to be achieved in a single algorithm.
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