
•  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  MARCH 2014 1070-9932/14/$31.00©2014IEEE64

Date of publication: 12 February 2014

necessary attribute of a 
mobile robot plan-
ning algorithm is the 
ability to accurately 
predict the conse-

quences of robot actions to 
make informed decisions 
about where and how to drive. 
It is also important that such 
methods are efficient, as on-
board computational resources 
are typically limited and fast 
planning rates are often re-
quired. In this article, we pres-
ent several practical mobile 
robot motion planning algo-
rithms for local and global 
search, developed with a com-
mon underlying trajectory 
generation framework for use 
in model-predictive control. 
These techniques all center on 
the idea of generating informed, 
feasible graphs at scales and resolu-
tions that respect computational 
and temporal constraints of the ap-
plication. Connectivity in these graphs is provided by a trajec-
tory generator that searches in a parameterized space of robot 
inputs subject to an arbitrary predictive motion model. Local 
search graphs connect the currently observed state-to-states 
at or near the planning or perception horizon. Global search 
graphs repeatedly expand a precomputed trajectory library in 
a uniformly distributed state lattice to form a recombinant 
search space that respects differential constraints. In this arti-

cle, we discuss the trajectory 
generation algorithm, methods 
for online or offline calibration 
of predictive motion models, 
sampling strategies for local 
search graphs that exploit glob-
al guidance and environmental 
information for real-time ob-
stacle avoidance and naviga-
tion, and methods for efficient 
design of global search graphs 
with attention to optimality, 
feasibility, and computational 
complexity of heuristic search. 
The model-invariant nature of 
our approach to local and 
global motions planning has 
enabled a rapid and successful 
application of these techniques 
to a variety of platforms. 
Throughout the article, we also 
review experiments performed 

on planetary rovers, field robots, 
mobile manipulators, and autono-
mous automobiles and discuss fu-
ture directions of the article.

Mobile Robot Motion Planning 
The development and application of kinodynamic motion 
planning algorithms has been a key development in the last 
decade of autonomous mobile robots. Robots that can effec-
tively model the consequences of their own actions can navi-
gate more safely and efficiently in challenging environments. 
This is particularly important as these systems move out-
doors into unstructured domains where the mapping be-
tween control inputs and robot motion can be nontrivial. 
Examples of such disturbances include terrain shape for 
planetary rovers and wheel slip for autonomous automobiles 
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and field robots. As it is difficult to generate trajectories by 
inverting the nonlinear, coupled equations of robot motion 
with limited computational resources, efficient sampling 
techniques must be developed to achieve the real-time per-
formance in practical applications. This challenge drives ap-
plications away from naturally recombinant structures and 
toward sampling-based techniques that search in the space of 
sequential robot inputs. We assert that there is a need for a 
universal planning, navigation, and control framework that 
applies broadly across a wide range of platforms. 

This article serves as an accessible summary of a decade 
of work on a number of programs that relate to the use of 
high-fidelity predictive models in mobile robot planning, 
navigation, and control. Herein, we review our model-based 
approach to trajectory generation, model calibration, and 
graph design with applications for local and global motions 
planning. We achieve generality by hiding the implementa-
tion of the predictive motion model from the optimizer, en-
abling rapid and successful deployment of such techniques 
on a diverse set of mobile robot systems (Figure 1). 

Trajectory Generation
A trajectory generator must be able to determine the action 

,u x t^^ hh that satisfies a set of state constraints x tC ^^ hh or 
minimize a cost function ,xJ t^^ hh or both subject to initial 
state constraints x t0^^ hh and the predictive motion model 

, , .x x u to ^ h  Many techniques have been proposed, developed, 
and applied to solve this constrained optimization problem 
for the mobile robots. Our approach, detailed in [1], trans-
forms the general problem of optimal control to parametric 
optimal control by parameterizing the space of inputs (1). 
This technique reduces searching in the space of all possible 
actions to a more computationally effective representation 
where the shape of inputs is controlled by a small number of 
degrees of freedom

 , , , .u x u p xt t"^ ^h h  (1)

Given an initial guess of action parameters ,p0  the trajec-
tory generation problem becomes one of finding a correction 

pD  that satisfies the following expression:

 , , , , .x x x u p p xt t t dt1C
t

t
0

0

1
D= +o^ ^^h h h#  (2)

Solving this expression directly is impractical, if not im-
possible, for the mobile robots operating in realistic three-
dimensional (3-D) terrain with nontrivial actions. For 
mobile robots operating on planar surfaces that are even, (2) 
contains trigonometric expressions that render it noninte-
grable for nonconstant linear and angular velocities. For 
physical systems that navigate on rough (two-and-a-half or 
3-D) terrain, it becomes nonintegrable in any case. Our ap-
proach alternatively generates numerical estimates of the Ja-
cobian and Hessian to iteratively refine the initial guess until 
the boundary state constraints are satisfied, the minimum-
cost solution is found, or both. The partial derivatives in 

these matrices are found using forward simulations of the 
predictive motion model with small perturbations of indi-
vidual action parameters. When it is not necessary to mini-
mize a cost function in addition to satisfying terminal 
boundary state constraints, the expression in (2) can be lin-
earized and inverted to estimate a set of parameter correc-
tions that satisfies the initial state, predictive motion model, 
and terminal boundary state constraints

 .p p p
x p

x p i 0
1

1i i
i

i
i2

2
$

D
D= -+

-^ ^h h; E  (3)

One of the challenges 
of applying such tech-
niques for mobile robot 
trajectory planning in-
volves how the parameter 
space is reduced to search 
efficiently and avoid local 
optima. Some of the initial 
work on this topic applied 
polynomial functions of 
curvature parameterized 
by signed distance to ex-
press the space of candi-
date vehicle motions [2]. 
These expressions were 
well suited to indoor mo-
bile robot applications  
because, for simple kine-
matic predictive motion 
models, the shape of the 

(a) (b)

(c) (d)

Figure 1. The experimental platforms used during the evolution 
of our hierarchical trajectory planning approach: (a) Rocky 8,  
(b) Crusher, (c) LAGR, and (d) Boss. 

A formulation that 

calibrates the predictive 

motion model can be used 

either online or offline, by 

observing its integrated 

effect over short time 

intervals, and comparing 

that result to direct 

measurements.
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trajectory is not influenced by the speed at which it is driven. 
For more sophisticated predictive motion models that account 
for dynamic effects, scaled solutions provide excellent initial 
guesses that can be corrected using the discussed techniques. 
One weakness of this parameterization for trajectory genera-
tion and optimization involved the varying sensitivity of vari-
ables in these expressions. This sensitivity made it difficult to 
accurately estimate the derivatives numerically because of the 
scale at which it is necessary to perturb action parameters may 
vary significantly. An alternate parameterization based on cur-
vature splines provides better convergence performance, as the 
sensitivity of predictive motion model simulation to small 
changes in action parameters is more uniform. Variations of 

this technique for unconstrained and constrained optimiza-
tion trajectory planning, along with more detail about the con-
strained trajectory planning algorithm and a review of the 
comparative literature is described in [1]. 

An example of this technique applied to motion planning 
in rough terrain for a plantetary rover with a rocker-bogie 
chassis is illustrated in Figure 2. Here, we solve for the param-
eters of an action that satisfies a terminal boundary state con-
straint that requires the robot to be positioned 4 m forward 
and 1 m to the left of the initial state and a predictive motion 
model that simulates the response of the rocker-bogie chassis 
with a two-and-a-half-dimensional terrain. Assuming a first-
order spline function of curvature, a constant velocity func-
tion parameterized by distance traveled, and an initial guess 
of parameters , . rad, . m ,sp 0 0 3 01 f0 l= =^ h6 6@ @  a solution 
with subcentimeter accuracy is found in just three iterations. 
Since the partial derivatives of constraint error with respect to 
parameterized freedom values are determined numerically, 
the algorithm is able to invert a sophisticated model of robot-
terrain interaction that simulates the response of the mobility 
system with the terrain.

To demonstrate this approach in an applicable domain, 
we applied this technique on a planetary rover operating in 
the Jet Propulsion Laboratory (JPL) Mars Yard. We created 
a disturbance in the robot’s motion model by disabling the 
rear right drive motor in software. This mirrors the experi-
ence on Spirit, one of the two planetary rovers from the 
Mars Exploration Robots mission, where one of the drive 
motors was dragged to conserve motor lifetime [3]. There 
are several ways to compensate for this disturbance, with 
the most common being feedback control. In applications 
where a global-positioning system is unavailable, the fu-
sion of odometry and visual feedback can be used to better 
estimate the current state. Although a recent article has 
pushed toward more efficient vision-based pose estimation 
and navigation [4], it still can be computationally prohibi-
tive to estimate state at rates required for feedback control. 
To address this problem, we simply adapt the predictive 
motion model used by our trajectory generator to reason 
about the disturbance. The solution found by the trajecto-
ry planner correctly computed actions that drive the vehi-
cle harder to the left, balancing the influence of the 
disabled drive wheel. Images of this experiment are shown 
in Figure 3, which illustrate tens of centimeters of error 
without predictive compensation, and only a few centime-
ters of error with predictive compensation. More details of 
this experiment can be found in [5].

The utility of a capacity to invert models of mobility and 
utilize this form of predictive error compensation depends 
strongly on the accuracy of the models that are being invert-
ed. Luckily, the same mechanism of parameterization can be 
used to calibrate the models used, based on observations 
generated while the system operates. Furthermore, the pro-
cessing requirements for model identification are trivial 
compared with the predictions being computed in most 
planners already. A formulation that calibrates the predictive 

(a)

(b)

(c)

Figure 2. Planetary rover experiments of model-predictive 
trajectory generation: (a) normal mobility, (b) impaired mobility, 
and (c) impaired mobility with predictive compensation. 
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motion model can be used either online or offline, by ob-
serving its integrated effect over short time intervals, and 
comparing that result to direct measurements [6]. 

The reader may wonder why a model is needed if mea-
surements are available. There are two reasons, both derived 
from the fact that a predictive model is desired that predicts 
motion from commands, rather than estimating it from 
measurements. When calibrating online, the measurements 
are not available until after the motion has been executed. 
The process of continuously comparing predictions with 
measurements refines and adapts the model. Conversely, 
when calibrating offline, the measurements can be generated 
based on high-performance ground-truth sensing, perhaps 
based on infrastructure, which would not be available during 
normal operation. 

While many alternatives exist, we have used a formulation 
that associates all prediction error with presumed disturbance 
inputs. We assume that the disturbances ( , , )u p x ud  depend 
on some parameters and the state and inputs u. For example, 
the commands may be linear V  and angular velocity ~. The 
attitude of the vehicle ( , )z i , or equivalently the gravity vector, 
is also considered to be an aspect of the state. Linear and qua-
dratic terms are included in the model. In the following ex-
ample expression, the V~ term captures the effect of lateral 
acceleration:

 ( , , ) ( ) .sinu p x u p V p p V p1 2 3 4 gd ~ ~ z= + + + +  (4)

The disturbances can be visualized as wheel slip, but be-
cause all prediction error is being calibrated, this means that 
other sources of error are being converted to equivalent wheel 
slip. All velocities in the state are expressed in body coordi-
nates so that they are constant under steady state turning con-
ditions. In the systematic model, the task is to predict the 
system state at future time t1

 , ( , , ) .x x x u u p x ut dt1
t

t

0

1
d= +o^ ^h h#  (5)

The Jacobian of this state prediction integral is, once again, 
computed numerically. For offline use, multiple observations 
can be used to generate an overdetermined system of equa-
tions to be solved for the disturbance parameters. A more ele-
gant method would be formulating an identification Kalman 
filter, which runs continuously while the system operates.

Local Search Graphs
Local motion planning and obstacle avoidance is the prob-
lem of search in the space of horizon-limited actions to se-
lect a motion that keeps a mobile robot safe and moving in 
a way that satisfies some objectives. The planning horizon 
can be described using distance or time, but it should ex-
tend to or beyond the stopping distance of the platform in 
the local environment. The predictive motion model used 
for the local motion planner must also reasonably approxi-
mate the vehicle response to a set of actions because feed-
back control can, in certain situations, execute maneuvers 
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Figure 3. An example of model-predictive trajectory generation 
applied to motion planning in rough terrain for a planetary rover 
with a rocker-bogie chassis: (a) shows the generated trajectory 
that satisfies the terminal state, initial state, and motion model 
constraints, and (b) and (c) show contour plots of the constraint 
error with respect to parameterized freedom values and an 
overlay of the history of parameter corrections by the trajectory 
generation algorithm. 
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inadequately. It is also necessary that the local motion 
planning and obstacle avoidance algorithms react quickly 
to real-time perception and world model information. 
Given limited computational resources and temporal con-
straints, it is essential that the local search graph be well 
separated, feasible, and efficient. 

Standard methods for generating local search graphs are 
based on sampling in the action space. For these methods, 

trees of varying length are 
generated by deliberative 
[7] or randomized sam-
pling [8] in the space of 
vehicle inputs. One signif-
icant advantage of this  
approach includes the in-
herent feasibility of sam-
pled motions. The main 
disadvantage is that it can 
be difficult or computa-
tionally expensive to gen-
erate a well-separated 
search space. This is be-
cause the state-space re-
sponse of a sampled input 
can vary as a function of 

vehicle state. An alternative approach samples in the space of 
constraints, defining a set of boundary states that a robot 
must achieve. We use the aforementioned trajectory genera-
tion techniques to efficiently generate the actions in real time 
that satisfy constraints imposed from sampling and the ro-
bot’s own environmental interaction [9]. The main advantage 
of this technique is the ability to generate a set of sophisticated 
maneuvers with only a small number of trajectory generation 
queries. Consider the example shown in Figure 4. Each of 
these trajectories satisfies initial posture ( , , ,x y } l) and termi-
nal pose ( , ,x y }) constraints using a curvature spline with 
four degrees of freedom , , , .s0 1 2 fl l l^ h  An input-space sam-
pling technique would have to sample in each of these four di-

mensions to produce a set that contains these nine diverse 
maneuvers. 

Another advantage to this approach is that if global guid-
ance is available or environmental constraints are known, the 
rules for distributing the boundary state constraints can be 
adjusted to increase the likelihood of generating a collision-
free or desirable motion.We experimented with this tech-
nique on a field robot, an autonomous automobile, and a 
mobile manipulator.

Crusher, pictured in Figure 1(b), is a six-wheeled skid-
steered field robot that can navigate autonomously in un-
structured outdoor environments. When traveling quickly, 
the angular velocity constraints of the identified predictive 
motion can have a great influence on the state-space re-
sponse of the action. We observed that trajectories uniformly 
sampled in the input space cluster together during turns, re-
quiring denser sampling in the input space to increase the 
likelihood of finding a collision-free path in cluttered ter-
rains. By sampling in the space of terminal position and ori-
entation constraints, we were able to generate expressive local 
search graphs that were far less sensitive to the influence of 
the initial state. Figure  5(a)–(c) shows three local search 
graphs with varying initial angular velocities. Simulation and 
field experiments demonstrated performance improvements 
over the input-space sampling techniques in comparative 
simulation and field tests. Details of the experiments involv-
ing our approach to local search graphs on Crusher can be 
found in [9]. 

Boss, pictured in Figure 1(d), is an autonomous automo-
bile that won the Defense Advanced Research Projects Agen-
cy (DARPA) Urban Challenge [10]. Local search graph 
construction techniques are particularly important on such 
platforms, as they must operate safely at high speeds and 
avoid collisions with people, vehicles, and structures in a con-
strained environment. One important characteristic of this 
platform’s mobility system was the conservative bounds on 
the allowable rates of curvature imposed by the commercial 
off-the-shelf drive by a wire system. This meant that for the 
vehicle to avoid an obstacle at high speed, it must begin turn-
ing the wheel well before reaching the impediment. We ap-
plied the constraint sampling technique and knowledge from 
the perceived world model to generate trajectories that kept 
the vehicle in-lane and satisfied the constraints of our ob-
served predictive motion model (Figure 6). To increase the 
diversity of candidate maneuvers in the local search graph, we 
added constraint on the initial curvature command to pro-
duce both sharp (discontinuous) and smooth (continuous) 
curvature commands for the same terminal boundary state 
constraint. The constraint sampling technique also simplified 
the problem of lane changing by sample constraints that pro-
duce a pose in the center and direction of the neighboring 
lane. More details about the application of our approach to a 
local search graph for in-lane navigation on Boss can be 
found in [11].

Applications of these techniques for generating feasible 
and well-separated local search graphs are not limited to 

Figure 4. A local motion planning search space is generated by 
sampling with uniform distribution of terminal poses. 

Simulation and field 

experiments demonstrated 

performance improvements 

over the input-space 

sampling techniques in 

comparative simulation 

and field tests.
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terrestrial vehicles operating in outdoor environments. We 
can apply these methods to mobile manipulators by augment-
ing the search space with configuration constraints of the ma-
nipulator. Figure 7 illustrates slices of a local search graph 
generated by sampling constraints that included the terminal 
position of the end-effector and orientation of the base with 
respect to the initial pose. We applied this technique for intel-
ligent teleoperation of a Learning Applied to Ground Robots 
(LAGR) platform mobile robot [12] outfitted with a five de-
grees-of-freedom manipulator to autonomously approach ob-
jects of interest. More details on experiments involving the 
application of our approach to local search graphs on mobile 
manipulators can be found in [13]. 

For each of these robots, we constructed local search 
graphs by sampling in the space of boundary state con-
straints. The rules for how boundary state constraints are 
distributed in the local search graph are dependent on the 
characteristics of the robot, application, and environment. 
This flexibility, coupled with the capacity to efficiently gen-
erate trajectories subject to an arbitrary predictive motion 
model, provides us with a simple set of tools for generating 
local search graphs that are well separated, feasible, and ef-
ficient to compute.

Global Search Graphs
Global search graphs represent chains of possible decisions 
that are searched to find a minimum-cost path from the 
initial state to some set of goal states. These approximations 
of the space of all robot motions typically exhibit longer se-
quences of robot decisions, lower fidelity of robot motions, 
and coarser resolution of robot state than their local search 
graph counterpart. Search in global search graphs typically 
involves search implemented with data structures with di-
vergent (acyclic) or recombinant (cyclic) connectivity. Com-
mon examples of divergent structures are trees, which can 
be generated using the previously described input-space 
sampling methods. A well-studied implementation of di-
vergent motion planning search spaces is the rapidly ex-
ploring randomized tree [8], where heuristics are used to 
bias sampling toward unexplored regions. Grids are the 
most common type of recombinant graph search space. 
Vertices corresponding to state values are regularly sampled 
throughout the state space, and edges express the cost and 
existence of the motions required to transition between ad-
jacent vertices. 

Our approach to global search graph construction uses a 
special type of trajectory library composed of motions that 
satisfy differential constraints and conforms to a regularly dis-
tributed set of boundary states [14]. The position dimensions 
are sampled as a uniform grid (rectangular, hexagonal, or 
other repeating unit). The choice of grid resolution signifi-
cantly depends on specifics of the system: it is chosen to be 
commensurate with the trajectory following accuracy of the 
robot controller and the feature size of the robot’s perception 
system (e.g., for occupancy grid approaches, the resolution of 
this grid). Intuitively, search fixed to the grid resolution could 

(a)

(b)

(c)

Figure 5. Local search graphs with varying initial angular velocities 
subject to uniformly sampled terminal boundary constraints:  
(a) turning left, (b) driving straight, and (c) turning right.
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be too expensive to compute (if the resolution is too high) or 
not expressive enough (if the resolution is too low). 

Assuming lattice state discretization outlined earlier, mo-
tion primitives are defined here to be the controls that con-
nect roadmap vertices (states) and that are feasible motions. 
Furthermore, enforcing state continuity requires that the 
state dimension vector be augmented with appropriate di-
mensionality. A simple example of such a search space is the 
state lattice for a Reeds–Shepp car [15] in Figure 8. This sys-
tem has carlike kinematics, with a restriction that its steering 
angle can have only three values, , , ,0max max

T
z z-6 @  where 

maxz  is the maximum steering angle of the robot. A slightly 
more involved example of a state lattice for a carlike  robot 
without such a restriction is shown in Figure 9.

The process of constructing the state lattice assumes a ca-
pability to determine a control to the system that steers it 
from one state to another. Exact solvers exist for simple sys-
tems [15], but a number of other approximate solutions tech-
niques, such as the trajectory generator presented earlier in 
this article, could also be applied. Implementation of a state 
lattice is a two-step process. First, we design a control set that 
defines the local connectivity of a state lattice by generating 
trajectories to neighboring states in a regularly sampled state-
space. Second, we repeatedly expand the control set within a 
search process to find a minimum-cost motion that satisfies 
differential constraints. 

It is widely accepted that one of the most computationally 
intensive procedures in planning is collision detection and 
estimation of motion cost. To compute this cost accurately, it 
is necessary to simulate the behavior of the vehicle, subject to 
the corresponding control in its environment. The cost esti-
mation is achieved by convolving the vehicle frame along the 
workspace projection (path) of the control trajectory in ques-
tion. Since we precompute motion alternatives, their paths 
(workspace projections) can be cached as well, perhaps in the 
form of trajectory swaths, the set of cost map cells C N2

s 1  
that are occupied by the robot footprint during motion (gray 
cells in Figure 10). Hence, instead of the costly vehicle simu-
lation, edge cost computation can be reduced to accumulat-
ing the cost over an array of map cells, resulting in potential 
orders of magnitude speed-up in overall planning. 

Well-informed search heuristics have the potential to in-
crease the efficiency of the search substantially [16]. Devel-
oping good heuristics for planning with differential 
constraints is a challenging problem. Among the simplest 
options for a heuristic estimate in the given context is the 
Euclidean distance metric. Weighted Euclidean distance, 
where dimensions are scaled differently, and Mahalanobis 
distance can also be applied. Such metrics are computation-
ally efficient and can be defined to satisfy the admissibility 
requirement [16]. However, in many cases, such approaches 
vastly underestimate the true path length in the lattice, re-
sulting in inefficient search. 

Better informed heuristics can be designed by using the ve-
hicle controller. Since this entity is typically endowed with the 
system model, it has the potential of estimating the heuristic 

Figure 6. Local search graphs are generated with sampled 
constraints that consider features of the environment applied 
to an autonomous automobile. Note that lane constraints are 
respected by all trajectories at a distance of approximately three 
vehicle lengths. 

(a)

(b)

Figure 7. Local search graphs are generated with sampled constraints 
that apply to both the mobility system and the manipulator. (a) Base 
aligned with object. (b) Base offset from object. 
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cost of a motion more accurately. However, even though a 
heuristic based on Reeds–Shepp distance [15] is a much better 
informed one for a carlike robot than the Euclidean distance, it 
still can suffer from significant inaccuracies. 

Similar to trajectory swaths in the previous section, state 
lattice structure enables a straight-forward precomputation of 
the free-space costs of motions, stored in a look-up table, 
leading to a well-informed free-space heuristic in terms of ac-
tual cost of feasible motions. Such a heuristic look-up table 
(HLUT) can be set up as a multidimensional array, where ele-
ments are scalars that represent the cost of steering the system 
from the origin to a collection of states in free space [17], [18]. 
An inherent limitation of this approach, however, is the mem-
ory requirement for storage. Even though the availability of 
affordable computer memory is continuously increasing, it is 
interesting to seek methods to alleviate this requirement. One 
approach is to utilize an approximate HLUT that has more 
sparse sampling than the planner search space. 

For mobile robots operating in cluttered environments, it 
is frequently beneficial to utilize a high density of representa-
tion in the immediate vicinity of the robot (perhaps within its 
sensor range) and to reduce the density in the areas that are 
either less known or less relevant for the planning problem 
(Figure 11). A lower density of representation is designed to 
increase search speed, whereas higher density provides better 
quality solutions. Since grids have traditionally been utilized 
in replanning, the notion of varying the quality of problem 
representation has often been identified with varying the res-
olution of the grid. However, here we emphasize the discreti-
zation of a continuum of possible motions. Hence, we refer to 
managing the density of the state lattice representation as 
graduated density. 

In designing the connectivity of regions of different densi-
ties, care must be taken to ensure that all densities consist of 
motions that are feasible with respect to the robot’s predictive 
motion model. If this rule is violated, mission failures become 
possible because of limit cycling at the border of density re-
gions due to obstacles. To avoid such difficulties, it is suffi-
cient to ascertain that all levels of density include feasible 
motions. For example, the connectivity of low-density regions 
could be a strict subset of the high-density regions. 

To verify that the runtime performance of the proposed 
precomputed search spaces is acceptable for the intended ap-
plication in field mobile robots, a comparison with several 
basic grid search planners was undertaken. It is challenging 
to compare these planning approaches due to their funda-
mental differences, nevertheless their similarity in runtime, 
as shown below, suggests that the proposed strategy may be a 
beneficial one. 

The experimental comparison is set up with four different 
control sets, in each case using a heuristic function that re-
turns the exact distance to the goal. The basic state lattice is 
used along with a large HLUT. Three grid control sets are test-
ed, in which each state is connected to its four, eight, and 16 
nearest neighbors, using a perfect heuristic for each level of 
connectivity. Results in a simulated world with point obstacles 

(b)(a)

Figure 9. A simplified representation of two state lattices of 
different densities, seamlessly merged due to lattice structure: 
(a) a 3-D roadmap that includes 2-D position (x, y) and 
heading is allocated in the vicinity of the vehicle, and (b) a 
lower-dimensional one (position only) is further away. 

Figure 10. A tractor-trailer motion primitive reorients the robot 
by 90° in heading. The trajectory swath was computed using 
Runge–Kutta simulation and cached offline. During the online 
planning, the evaluation of the cost of this maneuver with 
respect to a cost map is reduced to a summation operation over 
a memory array, resulting in an approximately 100x speed-up 
over the simulation. 

(a) (b) (c)

Figure 8. The Reeds–Shepp car can move forward and backward, 
and it can drive straight or turn left or right at a fixed curvature. 
A rudimentary control set shown in the figure is derived from 
these basic controls by choosing their length such that their 
terminal points coincide with a regular lattice sampling in state 
space. (a) A simple set of six motion primitives for a carlike robot 
that comply with the state lattice structure. (b) A subset of a 
lattice graph composed by duplicating motions from (a). (c) An 
excerpt of the fully connected lattice graph obtained via further 
duplication of the elementary set of motion primitives. 
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(size of a single grid cell) obstacles with 5% density suggest 
that grid planners outperform the lattice in this  
obstacle field because they disregard differential constraints. 
The constrained lattice planner, however, satisfies the given 
differential constraints (heading and curvature continuity, 
maximum curvature of 1/8 = 0.125 cells). In plain terms, a 
grid planner produces faster answers, but they are usually 
wrong. Despite the somewhat increased computation require-
ments, the lattice consistently remains approximately one 
order of magnitude slower than the grid planner on average, it 
returns results in fewer than 0.1 s for all classes of queries on 
commodity computing hardware, which is acceptable for a 
wide range of applications. See [14] for further details on this 

and similar comparative 
studies of motion plan-
ning using state lattices. 

The graduated densi-
ty motion planner was 
integrated with research 
prototype rovers at the 
JPL. It enabled rovers to 
navigate in rough rocky 
terrain set up in the JPL 
Mars Yard. Figure 12 
shows the results of the 
field-integrated design 
and operations (FIDO) 
rover running the gradu-
ated density state lattice 
planner on-board to nav-
igate autonomously amid 
dense rocks. In this ex-

periment, the robot featured a single 1.6-GHz CPU and 512 
MB of RAM, shared among all processes of the rover. The 
actual memory usage of the planner was less than 100 MB. 
The rover used a high-density region of the same size as 
above, 21 #  21 map cells, and a perception region (via  
stereo cameras) 41 # 41 map cells, both centered around 

the rover. Figure 12 shows the approximate path that the 
rover traveled. 

The experiments were designed to verify that the motion 
planner described herein is capable of generating feasible 
robot trajectories with respect to the robot’s differential mo-
bility constraints. The demonstrated real-time execution on 
standard computing hardware suggests this approach may 
find applications in other similar mobile robot missions. This 
result is made possible by establishing a high-quality sam-
pling in state space and utilizing the local planning ap-
proaches from earlier sections to generate a compatible 
sampling in the control space. We observe that the proposed 
structured representation provides a number of algorithmic 
and computational optimizations that enable fast global 
planning in difficult environments. More importantly, auto-
matic generation of near-optimal control sets that form a re-
combinant motion planning search space is straightforward 
within this framework.

Conclusions and Future Work
A capacity to both calibrate and invert general models of mo-
bility renders mobile robots far more informed about their 
own capacity to maneuver. It leads to robots that can precise-
ly determine the inputs necessary to acquire a desired termi-
nal state and allows feedback control to concentrate on 
correcting for disturbances that cannot be predicted. Such a 
high-performance trajectory generator leads to approaches 
to local planning that are intuitive, straightforward, and ef-
fective. Here, the essence of the problem becomes how to ef-
fectively sample boundary conditions that shape the search 
space. For planning on a global scale, high-performance tra-
jectory networks that encode sophisticated maneuvers can be 
synthesized efficiently through the careful design of a feasible 
trajectory library. 

We have shown the benefits of this framework for plan-
ning, navigation, and control on a number of diverse mobile 
robot systems. Our work centers on the idea of developing 
trajectory planners that satisfy generalized predictive motion 

Figure 11. The graduated density lattice planner operating 
in a simulated environment using a planetary rover model is 
illustrated. The search graph inside the blue boundary uses 
maneuvers that are continuous in curvature, the area between 
the blue and red boundaries search uses an eight-connected 
grid, and the area outside the red boundary uses the Euclidean 
distance to the goal.

Figure 12. The FIDO rover navigated autonomously among 
previously unknown obstacles using the graduated density lattice 
planner. The approximate path the rover followed is shown in 
white.

The graduated density 

motion planner was 

integrated with research 

prototype rovers at the 

JPL. It enabled rovers to 

navigate in rough rocky 

terrain set up in the JPL 

Mars Yard.
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models at all layers of the navigation architecture. Generality 
of predictive motion models is important, as it enables fast 
application on a broad number of systems, allows tuning of 
the fidelity to match the computational resources of the plat-
form, and provides a means to exploit information derived 
from self-calibration. 

The application of our research has opened other impor-
tant areas for investigation. Methods for automatic parame-
terization of inputs that take into account the difficulty of the 
terrain and density of obstacles will simplify the application 
of the trajectory generator presented in this article. Tech-
niques that permit adaptation of state lattices with graduated 
density will improve the quality of planned trajectories while 
reducing computational complexity of heuristic search. Ex-
tension and application of these algorithms for systems that 
do not operate on a 3-D surface (e.g., unmanned aerial vehi-
cles, autonomous underwater vehicles) also remains an area 
of inquiry. 
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