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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space

cluttered with obstacles and test whether at least one of

the paths in the path set is collision-free. In this simple

paradigm, a single planning step precedes execution of the

full plan. This formulation of the static paradigm is designed

to obey the assumptions made by many other works on path

diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the

beginning of each path plan while computing the subsequent

replan step. In most implementations of this planning ap-

proach, new plans, which look ahead five seconds or more,

are generated at about 10 Hz. Consequently, only a small

fraction of each plan is ever executed on the robot. Although

the remainder of the path is never executed, it still serves

two important functions. First, the planner must look ahead

beyond its minimum stopping distance in order to guarantee

safety. Second, the remaining path segment approximates

what future invocations of the planner might choose to do,

although there is no guarantee that the next cycle’s path set

will contain the remaining path section. This property causes

complex emergent behavior to dominate performance and

confound simple theoretical analysis. Thus, we are led to

the simulation-based analysis which makes up the bulk of

this work.

We are not aware of any previous work in deterministically

generating dynamic path sets that optimize performance,

although our own earlier work [11] adopts a probabilistic

approach to this task. Our goal in this work is to discover the

fundamental principles governing the performance achiev-

able under the constraints imposed by the local planning

problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been

appreciated as an aspect of the path set planning problem

that can make or break the planner on challenging problems.

But what is path diversity?

Green and Kelly [9] define relative completeness, as “the

prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”

The authors go on to introduce an approximate-area metric

between paths, and they show that relative completeness is

related to the dispersion of paths. Additionally, they provide

a greedy algorithm for selecting a diverse path subset from

a large, densely-sampled path set. We will refer to these as

the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”

defining it as “the probability of the survival of paths, aver-

aged over all possible obstacle environments.” In this context,

a path set survives when at least one of its member paths

is free of collision. The essence of the algorithms presented

in that paper is to minimize mutual overlap between paths,

recognizing that points of overlap represent vulnerabilities

where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],

[10], [16]) face the path diversity problem in the dynamic

paradigm, but none explicitly address it. All of these works

use a path set composed of constant-curvature arcs, either

in the continuum or discretely sampled. The intuition sup-

porting arc-based path sets appears to be that an arbitrary

path can be approximated to desired precision by a curve

of piecewise-constant curvature. While the basis of this

argument is correct, the planner is not made aware of all

these possibilities. Rather, the planner believes at each cycle

that it must commit to follow a circular arc out to the path set

horizon. Consequently, the robot saddled with an arc-based

planner cannot plan to follow an S-curve, a J-curve, or any

other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the

problem of path diversity to a greater degree by incorporating

a set of paths which is diverse in shape space for the purpose

of achieving arbitrary configurations. Although path diversity

is not of explicit concern in these two papers, it is an ancillary

benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban

Challenge utilized path set variants in planning. Several

competitors relied on constant-curvature arcs [2], [15], [18].

Team MIT generated non-fixed random path sets using

Rapidly-exploring Random Trees [13], while VictorTango

pre-computed a path set in the form of an ego-graph designed

for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-

lenge victory utilizing both the static and dynamic path set

approaches. For path following, they dynamically generated a

path set adapted for lane following by generating trajectories

constrained to end parallel to the direction of motion [7],

resembling the approach of 2005 DARPA Grand Challenge

winner, Stanley [17]. As in the dynamic path set paradigm,

Boss followed only the first part of each control before

planning a new trajectory. In unconstrained off-road areas,

Boss employed a lattice planner, in which a fixed path set is

tessellated through space. After planning a motion through

the lattice, Boss tried to follow the path without replanning,

as in the static path set paradigm.
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II. EXPERIMENTAL SETUP

This paper discusses a series of planning experiments that

we conducted in simulation. We find that it is necessary to

perform planner experimentation primarily in the simulation

domain in order to perform the number of trials necessary

to obtain statistically significant results. This work builds on

our previous experimental contribution [11].

As before, we based our experiments on the Nomad Scout,

a differential drive cylindrical robot of radius 0.206 m.

After developing a high-fidelity dynamic vehicle model, we

artificially limited the robot’s action set through the choice of

path set. All candidate paths were selected from a “full” path

set of size 2,401 (Fig. 2), based on a car-like steering model.

Actions in the path set were limited to a linear velocity of

0.3 m/s and angular velocities with magnitude not more than

0.63 rad/s.

All experiments take place in a continuous, bounded

2D world measuring 20 m on a side. For planning and

mapping purposes, the world is discretized into square 0.1 m

cells. We generated a large set of planning problems by

producing maps with different obstacle configurations. In

each problem, the locations of the cell-sized obstacles were

sampled from the uniform distribution with 2.8% coverage.

Following obstacle sampling, we generated an approximate

C-space expansion in the map grid based on the robot’s

radius, coloring these cells yellow on the map (See Fig. 1).

By remaining in the gray cells, the planner can ensure

robot safety. The gray cells depict a navigation function,

which we generated using the brushfire algorithm in an 8-

connected grid, originating from the goal location. We use

the navigation function to provide global guidance to the

robot. Each problem also contains a unique start/goal pair,

whose positions are sampled uniformly from the continuous

world under the constraint that the distance between start and

goal equals 10.5 m.

At the start of dynamic planning problems, the robot

is oriented along the navigation function’s gradient. The

dynamic planner then proceeds to replan at 5 Hz while the

robot follows the most recently chosen action from the path

set at each stage. The planner returns success when the robot

reaches the goal position. If the heuristic function returns a

better score at the robot’s current position than at any path

set leaf node, then the planner commands zero velocity. Only

when the robot comes to a complete stop without finding a

way to progress does the planner return failure.

III. STATIC PLANNING PARADIGM

Most of the recent work focusing on the design of di-

verse path sets has concentrated on the static case, which

essentially amounts to the following question: if the robot

“parachutes” into a workspace cluttered with randomly-

arranged obstacles, what is the probability that at least one

of the paths in its path set will not collide with an obstacle?

Many motion planning problems are handled by planning for

a period of time and then trying to follow a single planned

trajectory from start to goal.
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Fig. 3. Histogram of static path diversity. This plot shows performance
of randomly-generated path sets compared to several deterministic path
sets in the static parachuting robot experiment. The red curve represents
a histogram of random path set performance. Other path sets of interest are
picked out along the curve. The greedy “metric-based path sets,” including
Green-Kelly, Hausdorff, and mutual collision, all have virtually the same
performance in this test.

The key to achieving static path diversity is reasonably

well understood. A diverse sample of paths is able to forecast

all possible future motions to some precision. The argument

is based on the locality assumption: without regard to the

particular configuration of obstacles, a given path being

collision-free implies that paths within its neighborhood in

path space are also likely to be collision-free. If one chooses

a set of paths that minimizes dispersion—the distance be-

tween any arbitrary solution path and the closest member of

the set, using some metric on paths—then one will maximize

the probability of at least one path surviving.

In our first experiment, we were interested in how several

low-dispersion path sets constructed using the Green-Kelly

algorithm performed in comparison to a variety of randomly-

generated, fixed path sets. We measured the performance of

these and several other path sets in the parachuting robot

scenario. The goal of these experiments was to approximately

quantify the range in path diversity across the space of path

sets. These simulations were conducted with the framework

discussed in Section II.

To generate these random path sets, we sampled 1,000

symmetric path sets of size twenty-four from the full set

of 2,401-paths. For each path set, the simulator repeated

the following process 10,000 times. First, a random world

was selected as described previously, and the vehicle was

placed in a random configuration. Second, with the robot

in this configuration, the path set was expanded and tested

for collision with obstacles. We recorded statistics at each

trial for the surviving number of actions and leaves in

the path set tree—representing the first and last levels in

the tree, respectively. Some configurations were inherently
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infeasible, such as when the robot landed on top of an

obstacle. Therefore, we limited our analysis to those cases

in which at least one action survived. From that set of trials,

we reported the fraction of test cases in which at least one

leaf node in the tree survived. We defined this fraction (or

survival rate) as a static path diversity score.

Fig. 3 shows a histogram of this performance measure on

each of the 1,005 path sets we tested. A set of 24 constant-

curvature arcs put in a mediocre performance compared to

the random path sets. Path sets generated using the Green-

Kelly algorithm with various metrics (Fig. 2) performed

just beyond the best randomly-generated path set, suggesting

that despite the suboptimal greedy algorithm and imperfect

metrics, these path sets may still approach the theoretical

maximum static path diversity for path sets of size twenty-

four. At far right in Fig. 3 is the full path set. It naturally

follows that this path set would outperform the rest in this

static experiment, since it contains 100 times as many paths

as the others, each offering a chance of survival.

These results are consistent with both intuition and ex-

perience. As we have seen, path sets have generally been

designed using a static paradigm assumption, even though

they are often pressed into service in the dynamic paradigm.

Thus, we must address the question of how well static path

set performance translates into the dynamic replanning case.

IV. DYNAMIC PLANNING PARADIGM

There are applications, especially in field robotics, where

it becomes necessary for the planner to deal with dynamic

situations; as the robot moves through its environment,

perception data changes continually due to noise, occlusion,

and range limitations (in addition to true dynamic obstacles).

Researchers have developed sophisticated techniques for

handling evolving cost maps, but one very simple technique

is often employed to tackle these problems: by throwing out

the rest of the old path in favor of generating a new plan from

scratch each cycle, the effects of stale plans are elegantly

avoided.

One can argue the merits of the dynamic planning

paradigm, but the recent DARPA Grand Challenges offer

ample evidence for the efficacy of this approach. Despite

considerable exposure in these and other robotic vehicles, it

was not widely appreciated, prior to this work, how different

the static and dynamic planning cases actually are. After

examining the spectrum of dynamic planning performance,

we present evidence for the high degree of the distinction

between the two below in Section V.

We have previously reported on the results of our ex-

periments examining the dynamic replanning case [11]. We

repeated those experiments with slightly different parameters

to match those used in the static experiments above. In this

trial, we randomly generated a set of 1000 symmetric path

sets, again comprising twenty-four paths each. We tested

each of these random path sets, along with the special path

sets mentioned in Section III above, on a group of 1000

planning problems of the type defined in Section II.
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Fig. 4. Histogram of dynamic path diversity. 1000 random path sets were
each tested on 1000 dynamic planning problems and scored based on their
success rate and completion time. The curve represents a histogram of the
scores of these path sets. The scores of several special path sets are also
shown.

We report the results of these tests in Fig. 4. Our dynamic

path diversity score is based on success rate, which in this

experiment is defined as the fraction of test runs in which the

robot successfully navigates to the goal position via dynamic

replanning. As with the static paradigm, a histogram depicts

the performance range of the random path sets. The set of

constant-curvature arcs, which last time produced average

performance, this time delivered a result considerably below

every single other path set under test. The metric-based

Green-Kelly path sets still performed near the top, but this

time they were outraced by a handful of random path sets.

Finally, we have a counterintuitive result: the full path set

performed worse than nearly half of the random path sets.

This result occurred despite the fact that the simulation was

permitted to “cheat” and pretend that all 2,401 path sets could

be computed within the 0.2 second deadline.

One possible explanation for this phenomenon goes as

follows. Although the full path set approximates all feasible

vehicle trajectories, the horizon of the path set is still only

six seconds in the future. Beyond this horizon, the same

infeasible 8-connected grid supplies guidance. Thus, the full

path set exhibits the same greedy behavior as the other

path sets. In fact, it can exercise greater control in driving

near obstacles. A greedy planner naturally attempts to graze

every obstacle (and follow narrow passages) where doing so

minimizes the heuristic solution cost. Since our simulator

is not subject to error from noise, path-following is not of

concern. However, driving close to obstacles has an adverse

effect not considered by the planner. Doing so drastically

reduces the set of future collision-free paths. The lesson from

this example is that a planner should attempt to maximize

future flexibility during each plan step.
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Fig. 7. The effect of continuations on navigation performance. To better
understand the effect of recurrence on dynamic planning performance, each
path set tested in Section IV was retested with an extra path: the untraversed
remainder of the previously-commanded path. Path sets which degrade in
performance appear below the diagonal line, while those path sets that
improve are shown above the line. About 15% of path sets are adversely
affected by the additional continuation option.

recurrence property is guaranteed during each replan cycle.

To interpret the results, we plotted in Fig. 7 a comparison

of performance with and without continuations for each path

set. About 90% of path sets improved their performance with

continuations. This result is of interest to us because contin-

uations partly bridge the gap between the static and dynamic

paradigms. However, fully understanding the implications of

this result remains a subject for future work.

VI. DISCUSSION AND FUTURE WORK

In this paper, we probed the difference in planning perfor-

mance between the static and dynamic planning paradigms

as influenced by path diversity. We demonstrated through

simulation studies that a random path set’s static and dynamic

diversity are weakly correlated. While it is clear that a

substantial performance boost may be realized by careful

path set selection, one must also use care in ensuring that

the basis by which a path set is selected ensures applicability

in its planning context. These foundational principles affect

the performance of many robotic planning systems, and robot

designers would benefit from considering them them as part

of the design process.

In the future, we hope to develop a more sophisticated

model of dynamic path diversity that is capable of predicting

planner performance based on a variety of path set properties.

In the longer term, we hope to use this model to devise

algorithms capable of generating high-performance path sets

that are more robust to the perils of real-world navigation.
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