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Abstract
Mobile robot motions often originate from an uninformed path-sampling process such as random or low-dispersion sam-
pling. We demonstrate an alternative approach to path sampling that closes the loop on the expensive collision-testing
process. Although all necessary information for collision testing a path is known to the planner, that information is typ-
ically stored in a relatively unavailable form in a costmap or obstacle map. By summarizing the most salient data in a
more accessible form, our process delivers a denser sampling of the free path space per unit time than open-loop sampling
techniques. We obtain this result by probabilistically modeling—in real time and with minimal information—the locations
of obstacles and free space, based on collision-test results. We present CALM, the combined adaptive locality model, along
with an algorithm to bias path sampling based on the model’s predictions. We provide experimental results in simulation
for motion planning on mobile robots, demonstrating up to a 330% increase in paths surviving collision test.
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1. Introduction

The motion-planning problem is to find a path or trajec-
tory that guides the robot from a given start state to a given
goal state while obeying constraints and avoiding obsta-
cles. The solution space is high-dimensional, so motion-
planning algorithms typically decompose the problem by
searching for a sequence of shorter, local paths, which solve
the original motion-planning problem when concatenated.

Each local path comprising this concatenated solution
must obey motion constraints and avoid obstacles and haz-
ards in the environment. Many alternate local paths may be
considered for each component, so planners select a com-
bination of paths that optimizes some objective function.
In order to generate such a set of feasible (i.e. constraint-
satisfying) and collision-free paths, the planner must gener-
ate a much larger set of candidate paths, each one of which
must be verified against motion constraints and collision-
tested prior to consideration. Motion planners generate this
large collection of paths by sampling—most often at ran-
dom or deterministically from a low-dispersion sequence.

All the information needed to find collision-free path
samples exists within the costmap (sometimes called an
obstacle map), but the expensive collision-test process pre-
vents that information from being readily available to the
planner. A negative collision-test result (i.e. no collision) is

retained for future consideration, but a positive collision-
test result is typically thrown away because the path is not
viable for execution. Such planners may later waste time
sampling and testing similar paths that collide with the
same obstacle. The true impact of this effect is illustrated in
Figure 1, where 94% of tested paths are in collision. Many
of these tests could be avoided with a smarter path-sampling
strategy.

This policy of discarding information about colliding
paths highlights a major inefficiency, which especially
impacts real-time planning. Every detected collision pro-
vides a known obstacle location. This observation may not
seem significant at first, as all detected collisions repre-
sent known obstacles in the costmap. However, not all such
obstacles are equally relevant to a given local planning
problem, and so we can benefit by storing relevant costmap
obstacles in a form more immediately available to the plan-
ner. We argue that the planner may derive increased perfor-
mance by feeding back the set of collision points, known
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Fig. 1. Within a typical set of paths sampled by the planner within
each replan cycle, only a small fraction typically survive collision
with obstacles (black blocks). Paths emanate from the robot (red
rectangle). Those deemed to be in collision are shown in gray,
while surviving paths are in black. Fewer than 6% of paths in this
example are collision free.

Fig. 2. Typical data flow within a robot closes the loop around the
sense–plan–act cycle, but the planner itself runs open loop. We
close the planning loop, informing path sampling with the results
of collision-testing earlier paths.

from prior collision tests, to the path-sampling process, as
in Figure 2.

Despite the opportunity for such collision-test feedback,
many modern sampling-based planners do not incorporate
such feedback into the sampling process, be it state-based
or action-based sampling. The greatest opportunity is pre-
sented by planners that sample a set of paths within a neigh-
borhood. RRT-Blossom (Kalisiak and van de Panne, 2006)
and RRT* (Karaman and Frazzoli, 2011) both possess this
property, although here we focus on the local planner com-
ponent of the model-based hierarchical planner (Knepper
and Mason, 2008). Each of these algorithms repeatedly
samples and collision-tests many outgoing paths from a sin-
gle point, treating each as if its collision-test outcome is
completely independent of the others.

This paper expands upon results presented
recently (Knepper and Mason, 2011) and leverages
our work exploring local path equivalence (Knepper et al.,
2012). Combined, these efforts seek a deeper understanding

of the relationships between path sampling and collision-
testing. We offer a real-time, data-driven technique to
model the salient portions of the distribution of obstacles
in the task space. In utilizing this technique to bias path
sampling, we may improve both the planning success
rate and the yield of collision-free paths generated by the
sampling process, thus making planning both smarter and
faster. Such increased speed allows the planner to increase
its cycle rate, making the robot more reactive to changes in
its environment.

1.1. Path sampling and path parametrization

The general path-sampling problem is to supply a sequence
of distinct paths {p1, p2, . . . } = P ⊂ X , the continuum
space of paths. Often, these paths are not parametrized
directly by their geometry but instead are described by their
means of generation. For instance, some planners consider
only straight-line paths. Given a current robot state q0 ∈ Q,
the configuration space (C-Space), a straight-line path is
uniquely specified by connecting q0 to an arbitrary sampled
state qf ∈ Q. In such planners, it is expected that the robot
is able to execute arbitrary paths, and so the boundary-value
problem is easy to solve because it is underconstrained.

Definition 1. Given start and end states, the boundary-
value problem (BVP) is to find any feasible path between
the start and goal states (i.e. the local planning problem). A
variant of this problem is to find the shortest such path. �

Some classes of robotic systems possess velocity con-
straints that limit the direction in which they may move
instantaneously. The most well-known example of these
nonholonomic constraints involves parallel parking a car.
In such highly constrained, underactuated systems, the set
of feasible paths F is much smaller than the space of all
paths, X . Thus, an arbitrary path sample drawn from X is
unlikely to be in the feasible set F . In such cases, the BVP
is difficult to solve.

For constrained systems, we may avoid solving the BVP
by instead sampling in U , the space of actions. Suppose we
have a ‘black box’ model of the robot’s response to a con-
trol input, which is a mapping M : U → F . Sampling in
the control space offers several advantages: 1) all sampled
paths trivially obey motion constraints; and 2) we may pre-
compute a diverse set of such paths. For a mobile robot,
these paths are independent of initial position and heading,
depending only on their derivatives (at this stage, we ignore
external interference such as wind or wheel slip). There-
fore, a relatively small look-up table suffices to describe
an expressive set of robot motions. For a manipulator arm,
a diverse set of paths can be precomputed as a function
of manipulability, somewhat resembling the work of Leven
and Hutchinson (2003).
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1.2. Outline

In Section 2, we survey the literature on biased and adap-
tive sampling strategies. We introduce our approach to
informed path sampling in Section 3. Then, following some
fundamental concepts in Section 4, we delve into a prob-
abilistic model for obstacle location, called locality, in
Section 5. Section 6 culminates the combined adaptive
locality model (CALM) by incorporating prior knowledge
of negative space. Then, in Section 7, we introduce several
approaches to the decision problem of selecting paths to
test. We report some experimental results in Section 8, and
conclude with a discussion of the results in Section 9.

2. Prior work

The motion-planning community has invested considerable
effort in the topic of non-uniform and adaptive sampling.
There has been a particular focus on exploring this topic as
it pertains to probabilistic roadmaps (PRMs), which directly
sample states rather than paths. The basic PRM uses
rejection sampling to generate a sequence of uniformly-
distributed configurations within the free C-Space. Hsu
et al. (2006) motivate the need for non-uniform sampling
and provide a survey of recent work in non-uniform sam-
pling for PRMs. We update that survey to include recent
work and a broader variety of planners.

2.1. Sampling strategies with fixed bias

The primary impetus for biased sampling is the narrow-
passage problem. That is, some environments’ arrangement
of obstacles is such that a only a precise motion among
the obstacles will avoid collision, and the set of valid
C-Space samples that would lead to generating such a path
is of small—but non-zero—measure compared to the full
C-Space. When a planner must find a path through a narrow
passage to solve a problem, unbiased random samplers typi-
cally require a great deal of time, memory, and computation
to create a connected PRM.

One approach to finding narrow passages observes that
they comprise points that are in the neighborhood of an
obstacle. By employing a fixed strategy to bias config-
uration sampling towards obstacle neighborhoods, these
approaches sample narrow passages with increased prob-
ability. The canonical PRM (Kavraki et al., 1996) accom-
plishes this task by performing a random walk from nodes
that have seen many connection failures due to collision
with obstacles. Similarly, in a precursor of the PRM, Horsch
et al. (1994) present a roadmap-building planner which tries
to unify separate connected components by repeatedly cast-
ing rays that bounce off of C-Space obstacles in random
directions.

Still other planners utilize a combination of samples
in parts of the C-Space that are in obstacles (Cobs) and
collision-free (Cfree) to bias sampling near their bound-
ary. Amato et al. (1996, 1998) proposed OBPRM, which

samples on the boundary between Cobs and Cfree. Boor
et al. (1999) described the Gaussian sampling approach,
in which samples are made in pairs separated by a dis-
tance drawn from a Gaussian distribution. A sample is
retained when exactly one sample of the pair is collision
free, thus causing most sampled configurations to be close
to obstacles. Hsu et al. (2003) introduced the bridge test,
which samples three points in a straight line in C-Space.
The middle sample is retained only when it is in Cfree

and the two endpoint samples are in Cobs. Although this
approach performs three times the point-collision tests, it
rejects points located in expansive spaces, thus saving sig-
nificantly in the more expensive path-collision test. Collins
et al. (2003) constructed a hierarchical PRM by recursively
refining sampling density in C-Space balls that contain both
obstacle and free-space samples. Another method of sam-
pling near obstacles (Aarno et al., 2004) used values of a
potential function to bias PRM sampling towards regions
that neighbor obstacles, including narrow passages. Denny
and Amato (2011) proposed Toggle-PRM, which simulta-
neously constructs two PRMs located in Cfree and Cobs.
Failed connection attempts in either graph generate ‘wit-
ness’ points in the other. Such witness points occupy narrow
passages with an elevated probability.

A variety of motion planners capitalize on properties of
the Voronoi diagram or Voronoi graph. These structures are
defined as the locus of points that are two-way equidistant
and d-way equidistant (respectively) to obstacles, where d
is the dimension of the space. By biasing sampling toward
these structures, a planner takes advantage of two of their
properties. First, the Voronoi diagram and graph extend
between every pair of neighboring obstacles, and so they
can be used to find any passage, including a narrow one.
Second, both structures describe routes through space that
reside maximally far from obstacles for optimal safety.
Wilmarth et al. (1999) sampled on the Voronoi diagram
by first sampling uniformly in the space—including within
obstacles—then projecting points onto the Voronoi diagram
(also called the medial axis). Holleman and Kavraki (2000)
and Yang and Brock (2004) have offered similar algorithms
that operate within the task space. This design decision
makes the algorithm more computationally efficient at the
cost of being less effective for highly articulated robots.

Garber and Lin (2004) leveraged existing physics-based
constrained optimization solving software to move towards
the Voronoi diagram, which can then be traversed by a
potential field planner. Rickert et al. (2008) espoused a
similar planning approach in which overlapping task space
bubbles fill the free space. A potential field planner guides
the robot through the bubbles. The authors present explo-
ration strategies for cases in which the potential field
planner fails.

Interestingly, some planners take the opposite approach
to sampling among obstacles by completely ignoring obsta-
cle locations during the preplanning phase. In single-query
planning, most of the path segments generated will not
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ultimately be executed. A greedy approach, called a ‘lazy
PRM’ method (Bohlin and Kavraki, 2000; Nielsen and
Kavraki, 2000; Song et al., 2001), holds potential for
increased performance in uncluttered environments. The
other side of this trade-off is that in highly cluttered envi-
ronments, the planner may suffer decreased performance.

Leven and Hutchinson (2002) introduced a variety of
approaches to improve the likelihood that a lazy PRM will
yield a collision-free path. The authors also contributed a
pair of ideas to the biased-sampling discussion. First, they
bias sampling density for a kinematic chain toward C-Space
regions of low manipulability because the arm is less dex-
terous in those areas. Second, they increase sampling near
joint limits, which are no different than obstacles in their
potential to create narrow passages.

In the late 1990s, several techniques based on geomet-
rically deforming the obstacles were proposed. Baginski
(1996) deformed links in a kinematic chain until a path
was collision free, then evolved the C-Space trajectory as
the link lengths were restored. Ferbach and Barraquand
(1997) formulated a series of increasingly relaxed con-
straints involved in a manipulation problem by solving the
least-constrained instance first and then refining the plan
until the fully-constrained version was solved. Hsu et al.
(1998) described a similar notion of dilating the free space
in order to improve the probability of sampling free config-
urations. They likewise relaxed the dilation until a path was
found in the original configuration space.

Some techniques perform a task space cellular decom-
position in order to bias sampling towards certain cells
based on their relationship to neighboring obstacles and
freespace. Kurniawati and Hsu (2004) proposed task space
importance sampling, which computes cells in an exact cel-
lular decomposition of the task space formed by a Delaunay
triangulation (or tetrahedralization in 3D). The chance of
sampling varies inversely with height of triangles where the
base forms part of the task space boundary. This algorithm
leads to a higher probability of sampling in narrow pas-
sages. van den Berg and Overmars (2005) performed an
approximate cellular decomposition on the task space using
an octree. They performed watershed labeling of the cells,
a technique borrowed from computer vision. The bound-
ary between basins of attraction (pinch-points in the task
space) was specially labeled to receive higher probability
of sampling within it. Thus, narrow passages are sampled
with elevated probability.

Nissoux et al. (1999) constructed the visibility PRM,
which suppresses samples whose visibility region is not
substantially different from some ‘guard’ sample. New
samples are retained when they have visibility to zero or two
distinct connected components. By suppressing samples
that do not aid the connectivity of the PRM, performance
improves due to the avoidance of redundant structure.

Finally, Thomas et al. (2007) observed that many of the
above biased-sampling schemes can be compounded. They
showed that through a combination of biases, PRM planners

can realize performance superior to any individual biased-
sampling method.

2.2. Adaptive sampling strategies

In recent years, the non-uniform sampling field has largely
moved towards more sophisticated, adaptive strategies.
These strategies typically employ a parametrized model to
adjust sampling bias in response to detected collisions.

For instance, Jaillet et al. (2005) restricted sampling
to size-varying balls around nodes in an RRT to avoid
testing paths that would go through obstacles. The same
authors further improved their algorithm to adaptively vary
the size of balls (thus the probability of expanding each
node) according to past success rates at node expansions
(Yershova et al., 2005).

Zucker et al. (2008) applied statistical techniques to learn
a feature-weighting vector to describe important attributes
of common environments. After learning weights, the fea-
tures bias the sampling distribution of a bidirectional RRT.
Features are defined as functions of the task space for
computational efficiency.

Missiuro and Roy (2006) incorporated the uncertainty
in modeling of the robot state and obstacle locations.
They maintained a probabilistic obstacle map, representing
vertices with Gaussian distributions. When sampling to
construct a PRM, the probability of retaining a point sam-
pled from a uniform random distribution is proportional to
its probability of survival under the obstacle distributions.
Routes within the roadmap are selected to minimize cost,
which is a function of both length and collision probability.

Blackmore et al. (2011) formulated planning under
uncertainty as a linear/Gaussian system and solved it as
a Disjunctive Linear Program. Obstacles were polyhedral.
They optimized an objective function subject to the con-
straint that the solution path’s collision probability pos-
sesses a specified upper bound.

Another recent adaptive approach has been to construct
a meta-planner with several tools at its disposal; such plan-
ners employ multiple sampling strategies (Hsu et al., 2005)
or multiple randomized roadmap planners (Morales et al.,
2004), based on a prediction of which approach is most
effective in a given setting.

2.3. Sampling to maximize information gain

Another aspect of this paper involves careful path sampling
to maximize information gain at each step. Many others
have addressed this area, again with particular attention to
roadmap methods.

Yu and Gupta (2000) performed sensor-based planning
in which a PRM is incrementally constructed based on
the robot’s partial observations of obstacles. Exploratory
motions were selected by maximizing information gain.

Burns and Brock (2003) described an entropy-guided
approach to the selection of configuration samples used to
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unify distinct connected components of the PRM graph.
They formulated entropy based on the connectedness of
states in the roadmap. The maximum entropy configura-
tion is one that, if sampled, maximally decreases the total
entropy in the graph by unifying large connected compo-
nents. The algorithm strives to achieve zero entropy by
assembling a fully connected roadmap.

In later work, Burns and Brock (2005c) augmented this
approach with the notion of utility. A sample’s utility incor-
porates both the amount of information gained about obsta-
cle locations as well as the sample’s contribution for solving
the actual planning problem. Thus, utility-guided sampling
selects at each iteration the configuration expected to solve
the planning problem most efficiently, given what is not yet
known about obstacle locations. We take a similar approach
that is balanced between development of an effective path
plan and refinement of our obstacle model.

One important feature of our work is the use of infor-
mation from all collision tests, including positive results, to
minimize entropy (that is, uncertainty) in a model approxi-
mating obstacle locations. Burns and Brock addressed this
topic as well. They described an adaptive model of obsta-
cle locations in C-space based on previous collision-test
results. Their model utilizes locally weighted regression to
sample states (Burns and Brock, 2005a) or paths (Burns and
Brock, 2005b) that maximally reduce model uncertainty.
We likewise develop a probabilistic model of obstacle loca-
tion, although ours inhabits the task space. Since we cir-
cumvent the C-Space, our algorithm’s efficiency is better
suited to real-time applications.

Burns and Brock subsequently observed that model
refinement is not an end in itself, but merely a means to
the end of finding collision-free paths (Burns and Brock,
2005c). We proceed from this observation to consider what
level of refinement is appropriate, in the context of con-
strained paths, based on the maximum width of corridor we
are willing to miss discovering.

Kobilarov (2011) sampled trajectories adaptively by
importance sampling using the cross-entropy method. This
method solves a global optimization problem by alternately
performing biased random sampling and model parameter
updates. Path sample distributions were computed based on
a Gaussian mixture model representation, which was then
used to bias future samples. The model asymptotically con-
verges toward a delta function describing the optimal path
to the goal.

2.4. Our contributions

We build on the state-of-the-art in several ways. We lever-
age the geometry of paths and obstacles in order to create
a locality model that efficiently estimates the distribution
of obstacle- and free space. Via extrapolation, it requires
few samples. Rather than exhaustively searching the space,
our objective is to quickly sample and select an appropri-
ate path for execution. Even unbiased optimal sampling

in path space is not yet well understood (Knepper and
Mason, 2009), and the question of how to correctly bias
path sampling is unexplored.

In addition to a locality model, we contribute a path-
sampling algorithm informed by such a model that both
improves the model quality and exploits the model to pro-
duce a diverse selection of appropriate paths for execu-
tion. The algorithm strikes a principled balance between the
goals of exploration and exploitation.

3. Informed path-sampling approach

In closing the loop on path sampling, we must feed back
knowledge of obstacles reachable by the robot (in the form
of collision-test results) into the sample space of paths, be
it X or U , so that we can suppress from the sampled path
sequence future paths intersecting those regions of the task
space. In Sections 3 and 4 we provide algorithmic and prob-
abilistic foundations for our approach. Subsequently, we
introduce locality—an approximate probabilistic model of
obstacle distributions in the task space. We consider a series
of increasingly sophisticated models of locality that retain
the trait of real-time computability while helpfully biasing
sampling away from obstacles.

Obstacles reside in the task space, W (R2 or R
3). We

describe two set-valued functions,

ws : Q → collection of subsets of X

cs : X → collection of subsets of Q.

The function ws( q) returns a set of task space points x ∈
X that the robot occupies while in configuration q (the
Minkowski sum of the robot shape with a point). cs( x)
returns the set of robot configurations q ∈ Q in which
the robot intersects the task space point x. Supposing that
x resides inside an obstacle, these functions enable us to
reason about configurations the robot must avoid.

A collision can be described as an ordered pair c = ( p, s),
with p ∈ F and s ∈ I = [0, 1], a time/distance param-
eter describing where on the path the collision occurred.
A path is a mapping p : I → Q. Thus, c maps directly
into a state q ∈ Q, identifying the location of an obstacle.
However, this collision state is special because it is known
to be reachable by an action u ∈ U . In fact, q is proba-
bly reachable by a continuum of other actions, of which we
can easily precompute a sampled subset for each possible
collision point.

A collision state q also has a correspondence to some
known task space point. Often, collision-test routines are
able to identify the precise location where a collision
occurred. Knowing that task space point x ∈ ws( q) is
part of an obstacle, we may eliminate from our sampled
sequence all paths passing through the set cs( x). To deter-
mine which paths to eliminate, we must store the list of
actions by which they are parametrized.

In the event that the collision tester is unable to supply
a task space collision point, a projection of q onto the task
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Fig. 3. Given a path set of N paths, each discretized into M points,
the proximity look-up table (PLUT) stores for each ordered pair of
paths a list of shortest distances to each discrete point on the sec-
ond path. Thus, there are a total of MN2 unique PLUT entries.
Taking any point as a detected collision, the PLUT reveals the
closest approach of every other path.

space will suffice. For a mobile robot, that point may corre-
spond to the center of the vehicle while in a colliding state.
For a kinematic chain, it may be the point along the central
axis that comes closest to the obstacle.

In the offline precomputation phase of the planner, possi-
ble task space collision points are established in the robot’s
local reference frame so that their relationship to untested
paths may bias future path samples. We construct, a priori,
a list of correspondences between possible action samples
to accelerate this process. In order to identify the set of
paths passing unacceptably close to an obstacle point x, we
precompute a proximity look-up table (PLUT), as shown
in Figure 3. Suppose our precomputed path set P contains
N paths, each discretized into M points. The PLUT stores,
for every ordered pair of paths ( pi, pj) in P , the shortest
distance to the kth discretized point on pj:

PLUT( pi, pj, k) = min
x∈pi

d

(
x, pj

(
k

M

))
, (1)

where d( x1, x2) gives the Euclidean distance between two
points.

In this work, the distance computation is simplified by
the assumption that the principal axes of the robot have
approximately equal diameter. This assumption allows the
treatment of the robot as a disc or ball. In such case, the
PLUT gives the Euclidean distance from the given colli-
sion point to the center of the ball. For other rigid-body
shapes, we may instead need to find the projection of the
collision point onto the major axis of the robot. The method
even extends to a manipulator arm by projecting onto the
axis of the arm. Such cases complicate only the offline
computation; the online algorithm runs precisely the same.

At runtime, our approach to path sampling feed-
back in highly constrained systems keeps the feedback
entirely within the action space by which such paths are
parametrized. We first collision-test some paths drawn from
a low-dispersion sequence (Green and Kelly, 2007). After
finding the first collision point, its location biases future
action samples. Given a collision c = ( pj, s), we would like

to find out if another path pi would collide with the same
obstacle. We simply query the PLUT as

PLUT( pi, pj, sM) < rr, (2)

where rr is the radius of the robot (or an inscribed circle
of the robot). When this condition holds, the collision test
would fail. With this knowledge, we may eliminate the path
without a test, and instead spend the CPU time considering
other paths. Thus, we have directly eliminated path pi based
on knowledge of colliding path pj without computing any
task space or configuration space geometry at runtime.

However, we may go beyond short-circuiting the colli-
sion test to estimating the probability distribution on obsta-
cle locations using the principle of locality, which states
that points inside an obstacle tend to occur near other points
inside an obstacle. We propose a series of models of locality
and two path-sampling problems, which we address using
these models, which we use to select paths likely to be col-
lision free. The key to the success of this approach is that
the final evaluation will be less costly than the collision tests
it replaces.

4. Probabilistic foundations

We develop a series of probabilistic models that enable us
to rapidly select paths for collision test that maximize one
of two properties. First, in order to find valid robot motions,
we must sample a selection of collision-free paths for exe-
cution. Second, we wish to sample diversely within the free
space of paths, including in proximity to obstacles. The pre-
cision with which we know the obstacle-/free space bound-
aries directly relates to the size of narrow corridor we expect
to find.

The task space comprises a set of points divided into two
categories: obstacle and free. The function

obs : W → β, (3)

where β = {true, false}, reveals the outcome that a particu-
lar task space point x is either inside (true) or outside of an
obstacle. Building on such outcomes, we then describe an
event of interest. A path collision test takes the form

collides : P → β, (4)

which returns the disjunction of obs( x) for all x within
the swept volume (or swath) of the path. A result of true
indicates that this path intersects an obstacle. Note that
it is not important here precisely how collides is imple-
mented, although it typically possesses the characteristic of
being costly to invoke. For details on our implementation of
collides for experimental purposes, see Section 8.1.

Using the above concepts as a basis, we pose two related
problems:

1. Pure exploitation. We are given a set of task space
points inside obstacles, C = {x1, . . . xm} and a set of
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untested paths Punknown = {p1, . . . pn}. Knowing only a
finite subset of the continuum of obstacle points, find
the path that minimizes the probability of collision:

pnext = argmin
pi∈P

Pr( collides( pi, C)) . (5)

2. Pure exploration. Suppose we have a model of uncer-
tainty U(Psafe, C) over the collision status of a set of
untested paths, Punknown, in terms of a set of tested
paths and known obstacle points. Find the path pnext ∈
Punknown giving the greatest reduction in expected
uncertainty:

Uexp( pi) = U(Psafe ∪ {pi}, C) Pr( ¬ collides( pi, C))

+ U(Psafe, C ∪ {ci}) Pr( collides( pi, C))
(6)

pnext = argmax
pi∈Punknown

U(Psafe, C) −Uexp( pi) . (7)

These two problems are effectively to maximize the charac-
teristics encapsulated in the utility functions of Burns and
Brock (2005c) (see Section 2.3). Pure exploration and pure
exploitation are both inherently forms of search, but they
have different goals. Pure exploration strives to fully under-
stand the search space, whereas pure exploitation seeks
to utilize all currently available information to greedily
concentrate search.

5. Locality

Thus far, we have demonstrated how a single failed colli-
sion test may serve to eliminate an entire set of untested
paths from consideration because they pass through the
same obstacle point. We may extend this approach one step
further using the principle of locality.

Definition 2. The principle of locality states that, given a
robot state c in collision with an obstacle, there exists a
neighborhood ball of obstacle points containing c. �

Two contributing factors combine to produce the locality
effect. First, the non-zero volume of the robot means that
even a point obstacle results in a set of robot states cs( t)
in collision with that point. The second factor is that real-
world obstacles occupy some volume in space. That is, both
obstacles and free space tend to be ‘thick’.

Given a known collision point, we employ the principle
of locality to define a function expressing the probability
that a new path under test is in collision with the same
obstacle. A locality model takes the following general form:

loc( pi | C) = Pr( collides( pi) | C) (8)

Here, C may be a single point collision outcome or a set of
collisions. If omitted, it is assumed to be the set of all known
collisions.

This function depends on many factors, including the size
and shape of the robot as well as the distribution of the size

Fig. 4. The robot (red disc, left) considers two paths. First, the
bottom path fails its collision test. The locality model does not
know the full extent of the obstacle (gray), but it can approximate
the obstacle using a probability distribution (concentric circles)
and can estimate the likelihood of the top path colliding.

and shape of obstacles in the environment. The most impor-
tant parameter, however, is the distance between the new
path and the known collision site. Thus, we may establish
a rapidly computable first-order locality model in which we
abstract away the size and shape of obstacles using a single
distribution on radius, as in Figure 4.

We discuss several intermediate locality model formu-
lations before coming to the final form. These interme-
diate steps serve three functions. First, after giving the
exact locality model formulation, we then approximate it
in a way that is efficient to compute online. Second, we
make a probabilistic independence assumption in order to
simplify attribution of multiple path collisions to multiple
obstacles. Finally, we add an adaptive aspect that incorpo-
rates collision-test successes as well as failures. This adap-
tive aspect compensates for the conservatism introduced by
the independence assumption, and it efficiently utilizes all
available information.

5.1. General locality model

By explicitly modeling locality, we may reason about which
paths are more or less likely to be in collision with any
known obstacle, even with only partial information about its
location. A path-sampling algorithm informed by a local-
ity model provides a path sequence ordered by likelihood
of collision, given currently known collision sites. We pro-
pose here a general model of locality that can be expected to
produce collision-free path samples with high probability.

In constructing a general locality model, we abstract
away many parameters; we consider both the robot and
obstacles to be balls (in R

2 or R
3), and the obstacles are

assumed uniform in radius. We relax some of these assump-
tions later, in Section 5.4. For now, these restrictions permit
us to simplify the model by removing bearing from con-
sideration. Thus, the general model’s prediction of future
collisions is purely a function of range from the known
collision site to the path. The fixed radii of both the obsta-
cles (ro) and the robot (rr) result in the intuitive notion of
locality—that its influence is over a limited range only.



1238 The International Journal of Robotics Research 31(11)

Fig. 5. In the general locality model, obstacles are treated as discs of radius ro. (a) Given a point c known to be in collision with an
obstacle, the disc O of radius ro represents possible locations of the centroid of the obstacle. The larger disc E of radius 2ro comprises
points possibly occupied by some part of the obstacle. (b) The probability that a new candidate robot path is collision free equals the
fraction of possible obstacle centroids outside a swath of radius ro + rr. The region Op represents the set of possible obstacle centroids
consistent with the collision-free hypothesis, while the region Ep depicts corresponding obstacle extents. The probability that the new
path is safe is obtained by computing the measure of Op as a fraction of O. Here, that probability is approximately 40%.

The precise formulation of the general locality model, as
depicted in Figure 5, is based on maintaining a probability
distribution on possible locations of the obstacle centroid,
given a known collision site. In this naïve model, the loca-
tion of the centroid is described by a uniform distribution
over B( ro), a ball of radius ro centered at the colliding posi-
tion of the robot. A path pi sweeps out a swath S( pi) of
radius ro + rr. Any non-empty set B( ro) ∩ S( pi) repre-
sents some probability of collision. This general model then
predicts that the probability of collision is

locgeneral( pi | c) = |B( ro) ∩ S( pi) |
|B( ro) | . (9)

Note here that although we are treating the robot as a disc,
a slightly more complex computation allows the use of other
shapes. Since this computation is performed offline, we can
actually permit arbitrarily complex robot shapes, so long as
we can compute its intersection with a disc-shaped obstacle
as in equation (9).

If we regard pi as a straight line, then in 2D the probabil-
ity of collision is the ratio of the area of a circular segment
to the area of the whole circle, which is (Beyer, 1991):

fsegment( r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
πr2

e

(
r2

e cos−1 r−re
re

−( r − re)
√

2rer − r2
)

if 0 ≤ r ≤ 2re

0
otherwise,

(10)
where r is the range between the path and the collision
point. We call re the range of effect, which we set equal
to ro here.

Definition 3. The range of effect of a known collision point
describes the radius around that point at which paths are
regarded to be at elevated risk of collision with the known
obstacle. �

Fig. 6. For a straight-line path, the the general locality model
closely resembles the simple locality model. The latter is based
on the raised cosine distribution applied to the range of closest
approach.

5.2. Simple locality model

We now propose an even simpler locality model, which
closely approximates equation (10) but makes use of the
existing PLUT. Instead of total path area, we consider only
the point on the prospective path under test that most closely
approaches the known collision point. This new locality
model employs the raised cosine distribution:

frcd( r, re) =
{

1
2re

[
1 + cos

(
π r

2re

)]
if 0 ≤ r ≤ 2re

0 otherwise.
(11)

For a straight or gently curving path, this approximation is
very good (Figure 6). Then, the probability that a new path
pi will collide with the same obstacle represented by the
previous collision c = ( pj, s) is simply

locsimple( pi | c) = frcd( PLUT( pi, pj, sM) −rr, re( c)) . (12)
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Fig. 7. Two collision sites c1 and c2 are located in close proxim-
ity. Intuition suggests that c2 should be ignored when computing
the risk of collision of path ptest. Either the two sites belong to
the same obstacle, or else the obstacle at c2 is ‘blocked’ by the
obstacle at c1.

Note that with the simple locality model we are no longer
maintaining an explicit probability distribution on the loca-
tion of an obstacle but instead a heuristic estimate of the
risk of a single path relative to a single collision site.

5.3. Handling multiple collision sites

Given a known collision site, both equations (9) and (12)
provide a tool for selecting a candidate path to minimize the
probability of collision. However, we have not yet addressed
the issue of multiple known collision sites. Naturally, the
principle of locality applies among obstacle points just as it
does between an obstacle and a path,

Pr( obs( c1) | obs( c2) = true) ≥ Pr( obs( c1)) . (13)

In particular, the likelihood that two task space points have
the same obstacle outcome correlates strongly with the dis-
tance between them, by virtue of describing the same obsta-
cle. The estimate of collision likelihood for an untested path
depends on what statistical independence assumptions we
make among known collision points.

Figure 7 depicts a situation in which two collision sites
appear to be correlated. However, many possible policies
for estimating statistical independence among a set of col-
lision points, such as clustering techniques, are complex to
compute and implement.

In contrast, we may conservatively assume that all col-
lisions are independent, in which case basic probability
theory states that

loc( p) = loc( p | {c1, . . . , cn})
= 1 −

∏
i∈{1,...,n}

( 1 − loc( p | ci)) . (14)

If some collision sites are actually part of the same obsta-
cle, then we are overestimating the likelihood of collision
for p. In the absence of any knowledge regarding correla-
tion, however, the most conservative policy is the safest.
In the next section, we explore an information theoretic
approach to safely adjusting this pessimistic model.

5.4. Adaptive locality model

The locality models presented in Sections 5.1 and 5.2 incor-
porate only positive collision-test outcomes. Those static
models conservatively estimate an obstacle distribution
spread over a large but finite range of effect. We now con-
struct an adaptive locality model capable of incorporating
both positive and negative collision-test outcomes.

If we should happen to discover a safe path psafe passing
within collision site c’s range of effect, then we may use
this new information to refine the obstacle model of c. We
adjust the locality function to act over a smaller range in the
direction of psafe in order to be consistent with observations.
As Figure 8(a) shows, no path ptest that is separated from c
by psafe can possibly be at risk of collision with this obsta-
cle. This adaptive model effectively relaxes the earlier, rigid
assumptions of obstacle size and independence of collision
sites. In modeling geometric relations between safe paths
and obstacle points, we depart from prior work addressing
locality.

Following an update to the model in the form of a safe
path, all future probability estimates involving collision
point c incorporate this new information. Although the
independence assumption may initially make nearby paths
like ptest appear riskier than they should (Figure 7), the
adaptive model rapidly cancels out this effect after finding
a safe path to shrink each collision point’s range of effect.
This approach, pairing an independence assumption with
an adaptive model, is well suited to real-time path sampling
because it scales at worst linearly in the number of col-
lisions detected. With clever organization of the collision
points into a KD-tree or similar data structure, logarithmic
complexity is achievable.

In addressing the problem of how to adaptively adjust
obstacle distributions in reaction to a collision-free path,
a variety of approaches present themselves. One possible
approach is to shrink the range of effect for the obstacle
at c, as in Figure 8(b), which supposes that the obstacle is
smaller than initially thought. Another approach, to shift the
entire distribution away from the safe path as in Figure 8(c),
assumes that the obstacle size was correctly estimated, but
its position was off.

We adopt a compromise position. We prefer that the colli-
sion site remains the center of a distribution in order to keep
range checks efficient via a look-up table. However, we also
prefer to avoid altering the range of effect of the opposing
side, about which we have no new data. We therefore split
the range of effect into several regions of influence (‘sides’)
centered around each collision site. In 2D, we have left and
right sides of the obstacle, as in Figure 9. In 3D, the division
is topologically more arbitrary, although it is geometrically
expedient to split the obstacle into four sides.

In splitting the locality model into several directions, we
require a rule to consistently associate each path with a par-
ticular side of the collision point in order that similar paths
will be associated to each other. The sides are defined rel-
ative to the pose of the robot before executing the path.
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Fig. 8. (a) Given a collision point c and a neighboring collision-free path psafe, the circle represents a distribution on obstacle locations,
some of which are invalidated by psafe. The more distant candidate path ptest is not at risk of collision with the obstacle represented by c.
(b) and (c) are two simple hypotheses on obstacle scale and position that explain these two results. The distribution shown in Figure 5(b)
is simpler to represent during online path sampling.

Fig. 9. The range of effect on each side of collision site c is main-
tained separately. The left range began at 2ro, but it was reduced
after successfully collision-testing path psafe.

The sides meet at the line a, an axis running through the
start pose and the collision point. We assign names to the
sides describing their position relative to the robot’s frame
of reference. Sides are determined by

left = sgn( t × p · u) (15)

top = sgn( t × p · a × u) , (16)

where u denotes the robot’s up vector, p the projection of
c onto the path, and t the tangent vector of the path at this
point, as in Figure 10. These sides may be precomputed for
each path. In 2D, it is particularly convenient to augment
the PLUT with a sign indicating on which side of the path
each possible collision point lies.

Figure 11 shows a family of paths on the left side of an
obstacle. We deem each path equally likely to collide with
the obstacle because they each approach equally near to the
collision point, c. This assignment of paths to a single side
of an obstacle places assumptions on the path’s shape. We
assume here that curvature is bounded and that paths are
reasonably short. Our previous work (Knepper et al., 2012)
thoroughly discusses these assumptions.

6. Modeling negative space

Thus far, we have focused entirely on constructing a model
of the distribution of obstacles in space. In this section, we
introduce a complementary model of negative space—that

Fig. 10. For a rigid-body robot in three dimensions, such as an
unmanned aerial vehicle or autonomous underwater vehicle, the
adaptive locality model’s range of effect is split into four sides. The
robot’s up vector, u, and the vector pointing toward the collision
point, a, are used to define which of four sides the path ptest is on.
As illustrated, the path is on the top-left side.

Fig. 11. A family of paths, all of which pass to the left of the
collision site, c. Despite the variety of shapes, each path intrudes
equally into the left range of effect of c, and thus they would each
reduce its left range of effect equally.

is, space that the robot can travel through. To provide data
about negative space, we draw on recent results in the clas-
sification of local paths (Knepper et al., 2012). That paper
discusses an algorithm for clustering paths that are equiva-
lent in the sense that one can be continuously deformed to
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another (akin to homotopy) while respecting kinodynamic
and length constraints. The result is a small set of intu-
itive clusters of paths indicating the corridors that avoid
obstacles. This classification comes at an extremely low
overhead.

In order to better inform the planner’s search for viable
paths, we take the results of the previous replan cycle as
input, under the assumption that a small time has elapsed
between cycles, and consequently the results from the previ-
ous cycle remain informative (Knepper and Mason, 2009).
Often, the corridors look approximately the same as they
did a moment before. For each class of paths, we find an
approximate center path as well as an approximate radius—
each as measured by the Hausdorff metric, which gives the
greatest separation between two paths. Specifically,

μH( pi, pj) = max

(
max
xi∈pi

min
xj∈pj

d( xi, xj) , max
xj∈pj

min
xi∈pi

d( xi, xj)

)
,

(17)
where d( xi, xj) gives the Euclidean distance between two
points in the task space.

The corridor center and radius parameters can be com-
puted inexpensively because the classification algorithm
already computes and utilizes the Hausdorff metric in find-
ing path equivalence. Let pcenter be the center of a path
equivalence class E from the last replan cycle with radius
rE. To find the center, we first find two paths representing
approximate edges. Note that there is not necessarily one
path in the set that forms a right or left envelope of the cor-
ridor. We start with an arbitrary path, from which we find
the most distant member of the set. We then find the most
distant member from that, and these two paths approximate
the boundaries. The path most nearly equidistant becomes
pcenter, and the mean distance to the two edges is called rE.

The effect of these path classes on locality is to miti-
gate nearby failures. If the path sampler is unlucky while
searching for a narrow corridor, then it may discover many
collision points along the walls to either side of the corri-
dor. Due to the conservative independence assumption, the
model subsequently predicts an extremely low probability
of any path within the corridor being safe, as depicted in
Figure 12.

In contrast, the combined locality model places a positive
prior survival probability on paths in the neighborhood of
the previously chosen corridor. Consider a known collision
point, c under the simple, adaptive locality model described
in Sections 5.2–5.4. Suppose we have an untested candidate
path, pi, that is within range of both c and pcenter. We may
combine positive and negative obstacle data as

loccombined( pi | c) = 1 − [
1 − locsimple( pi | c)

]
frcd( μH( pi, pcenter) , rE) . (18)

This model places a high likelihood on path survival if the
path is far from the collision point or if it is near the center
of the previous corridor. We call this model the combined
adaptive locality model (CALM).

Goal

Fig. 12. The simple locality model is sensitive to the sequence in
which path samples are tested. Given a gap between two obsta-
cles (black rectangles), a few collisions (red stars with blue cir-
cles indicating their ranges of effect) can make a desired path
(dashed path) look extremely unsafe due to the conservative inde-
pendence assumption. Instead, the model sometimes drives sam-
pling towards areas of the space that are less useful (solid paths),
leading to failure. The combined adaptive locality model (CALM)
addresses this problem by introducing an elevated prior probabil-
ity for path safety in the neighborhood of a group of paths that
were safe in the previous replan cycle.

7. Path selection

In this section, we discuss several approaches to path
selection based on the tools provided by a locality model.

7.1. Pure exploitation

Given a locality model, we have the means to address
Problem 1, pure exploitation:

pnext = argmin
pi∈P

loc( pi) . (19)

Such a policy rapidly generates many paths with a high
likelihood of successful collision test. This set of paths may
not be the most useful for motion planning, though, as they
tend to all closely resemble each other in shape. In order to
encourage the path sampler to explore more widely, we may
restrict the set P in equation (19) to a subset of, for exam-
ple, 10% of the total path set. We construct a ‘bag of paths’
that is drawn from the low dispersion sequence in order.
Paths are sampled from the bag with replacement. This
approach forces some amount of path diversity, although
the pure exploitation approach still produces paths that tend
to cluster closely together. As a side-effect, the exploita-
tion strategy produces few failed collision tests and so the
locality model remains poorly learned.

7.2. Pure exploration via path entropy

Next, we reap maximal advantage from the adaptive local-
ity model in order to solve Problem 2, pure exploration.
It is important to select paths for collision test that cause
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the model to rapidly converge to an accurate description
of obstacles, while simultaneously minimizing failed colli-
sion tests. Given a set of collision sites, the path that best
improves the model is that path with maximum entropy
according to the current model parameters.

Definition 4. An untested path’s entropy (sometimes called
Shannon entropy) refers to the expected amount of infor-
mation about the path’s safety that would be gained from
collision-testing it. A path’s entropy is

H( collides( p)) = − Pr( collides( p)) log Pr( collides( p))

− Pr( ¬ collides( p)) log Pr( ¬ collides( p)) . (20)

�

In order to maximize our understanding of the true dis-
tribution of obstacles with the fewest possible samples, we
choose to sample the maximum entropy path:

ptest = argmax
pi∈P

H( collides( pi)) . (21)

Based on current knowledge, the maximum entropy path
has maximal uncertainty with regard to its collision with
obstacles; its probability of collision is nearest to 50%.
Testing this particular path will therefore increase total
knowledge more than any other. The result will be either
a path that significantly reduces the range of effect for some
known collision point(s) or a new collision point that is
far from known collisions. In either case, model accuracy
increases with maximal efficiency.

Shannon (1948a, 1948b) introduced entropy as a measure
of the uncertainty associated with a random variable. He
applied this notion to the prediction of English text trans-
mitted through a noisy communication channel, noting that
the information content of a given string is much lower than
is suggested by the number of possible symbols, since some
symbols are more likely than others.

The principle of maximum entropy was identified by
Jaynes (1957), who addressed the problem of estimating
a probability distribution given only partial knowledge. In
that work, the maximum entropy belief is chosen for the
unknown variables. Such a distribution is maximally non-
committal on those variables and so it is the least biased
hypothesis.

Maximum entropy has also been specifically applied to
decision theory, as we employ it here. When forced to make
a decision on the basis of partial information, Grünwald
and Dawid (2004) show that the decision that maximizes
entropy also minimizes the worst case expected outcome.
In our application, the worst outcome corresponds to a
collision-test result that would have been predicted from
prior information. This worst-case outcome takes one of
two forms: a path passing through a known collision site
is certain to collide, whereas retesting a known-safe path
is certain to give a collision-free result. By instead choos-
ing to test the maximum-entropy path, this �-minimax

approach (Vidakovic, 2000) is capable of reasoning simul-
taneously about an entire family of probability distribu-
tions, called �—in our case, a range of theories about
possible obstacle locations.

If the maximum entropy policy is pursued repeatedly,
path selection proceeds to discover a sequence of safe paths
and collision sites that are progressively nearer to each
other, thus establishing precisely the boundaries separating
the obstacles from free space. Knowing these boundaries
may accelerate the process of sampling and testing paths
densely within the free space.

7.3. Hybrid path-sampling strategy

We utilize a separate strategy to combine the characteris-
tics of exploration and exploitation in a hybrid approach.
Rickert et al. (2008) stress the importance of balancing
between these two activities during planning. We do not
believe that these two goals are inherently in conflict, as
a naïve combination of Problems 1 and 2 might suggest.
Instead, we are solving a third search problem involving the
joint maximization of the utility functions describing explo-
ration and exploitation characteristics. In order to succeed
at the ultimate motion planning goal, the path sampler must
deliver a large, diverse set of collision-free paths. The most
efficient approach thus samples paths that simultaneously
explore and exploit to varying degrees.

In the absence of any uncertainty from our locality model
(such as before the first collision site has been discov-
ered), we sample from a low-dispersion sequence (Green
and Kelly, 2007). Until one of these paths collides with an
obstacle, our locality model is completely uninformed, and
so we can only explore with maximum diversity.

After the locality model has been informed by one or
more collisions, our approach thresholds based on the local-
ity model’s estimate of collision. Drawing once again from a
bag of paths (Section 7.1), the sampler immediately returns
the first path found in the low-dispersion sequence that is at
least 50% likely to survive. In the event that the bag con-
tains no paths meeting this criterion, the path most likely to
survive is then selected for collision test.

This strategy combines exploration and exploitation in a
principled manner. The precomputed diverse sequence of
paths is allowed to proceed to collision test uninterrupted,
so long as we believe the paths are a good investment. As
the maximal survival estimates drop below the point of
maximum entropy, exploitation of the model shows dimin-
ishing returns, indicating that either there are few viable
paths or the model is inadequately informed. Thus, the sam-
pler transitions to an exploratory strategy by selecting the
path nearest to 50% likelihood of survival. Paths that are
just above 50% survival probability fulfill both the explo-
ration and exploitation goals, and so the transition between
strategies is seamless.

Figure 13 visualizes a snapshot of the locality model dur-
ing a replan cycle, while sampling with a hybrid strategy.
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Fig. 13. Visualization of locality model, showing: obstacles
(black squares), a mobile robot (red notched disc) collision-free
paths (emanating from robot), known collision sites (stars), and
their ranges of effect (concentric semicircles). Note that the red
stars correspond to the nearest edge of each C-space obstacle—the
point most relevant from the robot’s current pose. Many obstacles
are irrelevant to the current local plan and thus are neglected by the
model. Some safe paths appear to intrude into the model’s obstacle
regions due to approximations in the PLUT, which assumes a per-
fectly kinematic motion model. Highly dynamic systems require a
higher dimensional PLUT indexed by start state.

Indicated in the figure are known collision sites, ranges of
effect, and surviving paths. Note that only four failed colli-
sion tests were sufficient to achieve a model that adequately
summarizes all salient obstacles in the vicinity of the robot.

8. Experimental analysis

We conducted a set of experiments in simulation in order to
obtain a sufficient quantity of trials to recognize statistically
meaningful trends. Here we report results for a class of car-
like mobile robot.

8.1. Setup

Experimental trials comprise sets of 100 simulated plan-
ning problems; in each one, the robot attempts to navigate
through a cluttered, fully-known 2D environment with var-
ious levels and types of task space obstacle coverage. Each
planning problem involves a randomized query comprising
start and goal poses separated by a fixed straight-line dis-
tance. The robot is a disc of 0.41 m diameter and minimum
turning radius of 0.48 m.

We present results for three environment categories. The
first two categories comprise sets of point obstacles dis-
tributed uniformly at random. The obstacles are placed at a
specified density in a 20 × 20 m room, where queries are of
length 14 m. Since they are randomly generated, it is impos-
sible to know whether all problems posed to the planner are

solvable. As the obstacle density increases, the likelihood
of a given problem being unsolvable increases significantly.
Thus, we provide results at two different densities, equating
to easy (1%) and hard (1.5%) task space obstacle coverage.1

We also provide results in a structured office
environment. The office plan of Willow Garage
(http://pr.willowgarage.com/wiki/Maps?action = AttachFile
&do = get&target = willow-full-2008-11-26-100mm.png)
sampled at a 10 cm resolution, totals 55.7 × 44.4 m. All
100 problems comprise randomized queries of straight-line
length 39 m within this office map.

For each problem, the robot moves continuously at run-
time while replanning at a fixed rate. A low-fidelity global
planner helps guide the robot to the goal using an imple-
mentation of D*-Lite running in an 8-connected grid.
Meanwhile, local paths of length 1.8 m are sampled until
the replan cycle time runs out.

Local path collision testing is performed by stepping
through many poses along the path from start to end at a
fine increment of 10 ms. At each pose, the collision tester
checks for geometric overlap of the robot with obstacles in
the full costmap. Any overlap causes an immediate return
value of true; otherwise, false is returned and the path
is marked as a survivor after reaching the end of the path
at 6.0 s.

Paths are selected for execution from amongst the sur-
vivors using a path-classification technique described in
our earlier work (Knepper et al., 2012). This technique
first finds the path that minimizes the combination of local
and global time to goal. It then performs an optimiza-
tion, returning an equivalent surviving path that passes far-
ther from the nearest obstacle, thus improving safety while
retaining goal-directedness.

In our study, the independent variable—replan cycle
time—varied between 0.0125 s and 0.2 s. This interval
reflects the amount of time during which the planner may
sample and collision-test paths before it must select one and
send it to the robot for execution. Thus, we effectively vary
the number of paths that can be sampled before making a
decision. Without overhead for computing path samples, the
reported cycle times correspond to a range between roughly
22 and 700 path samples. At a variety of points along this
range, we recorded two dependent variables: fraction of
paths surviving collision test, and overall planner success
rate.

In experimentation, we consider several path selection
strategies. See Section 7 for details.

• Low dispersion: sequence generated by the Green–
Kelly algorithm (Green and Kelly, 2007).

• Pure exploitation: sample as far as possible from obsta-
cles.

• Pure exploration: finds boundaries; selects maximum
entropy path.

• Hybrid sampling approach: selects next untested path in
the low-dispersion sequence predicted to have at least a
50% chance of survival, or else the safest available path.
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Additionally, we compare three different locality models:

• The combined adaptive locality model (CALM), as
described in Section 6.

• k-nearest neighbor voting: estimates probabilities of
collision for untested paths according to the unweighted
average outcome of neighboring, tested paths.

• Locally-weighted regression: incorporates proximity-
based weighting into the nearest neighbors estimate.

The default range of effect used by CALM is the radius
of the robot plus 10 cm, the minimal size of an obstacle.
The last two competing locality models correspond to mod-
els utilized in prior work. The k-nearest neighbor voting
method is an adaptation of the locality model used by Burns
and Brock (2005b). In this model, the likelihood of a path’s
successful collision test is estimated by the average out-
come of the k nearest neighboring paths. Path proximity
for surviving paths is measured by the Hausdorff metric,
whereas for failed paths, we utilize the PLUT to find the
distance to the actual collision site. Note that both of these
distances result from the Euclidean distance of a projection
of a point on one path onto the opposite path in the task
space, and so they are comparable.

The locally weighted regression method is also patterned
after the model from Burns and Brock (2004). It is a gen-
erative model that estimates the outcome of a particular
collision test based on the proximity of k neighboring tested
points/paths, weighted by the proximity of each to the path
under consideration. It was necessary to adapt the tech-
nique slightly in order to employ it for path sampling as
opposed to point sampling in the configuration space. To
account for the fact that we are sampling in a non-Euclidean
path space, we eliminated from this computation the notion
of a ‘mean path coordinate’, p̄, instead folding it into the
computation of the expected outcome. The equations were
adapted from Burns and Brock (2004) as follows. First, we
have a Gaussian distance weighting function based on the
weighted Hausdorff distance between paths,

w( p, pi) = e−a μH(p,pi)
2
. (22)

Next, we compute the weighted mean outcome, ȳ ∈ [−1, 1],
of our prospective path’s k neighbors, pi, using their out-
comes, yi ∈ {−1, 1}. Although we cannot write a mean
path’s coordinates, we can compute �p, a prospective path
p’s distance from the mean.

�p =
∑

i w( p, pi) ( μH( p, pi))∑
i w( p, pi)

(23)

ȳ =
∑

i w( p, pi) yi∑
i w( p, pi)

(24)

Then we compute covariance as

σpy =
∑

i w( p, pi) �p2∑
i w( p, pi)

(25)

σ 2
p =

∑
i w( p, pi) (yi − ȳ)2∑

i w( p, pi)
. (26)

Finally, we can estimate the outcome for our candidate
path, p,

ŷ( p) = ȳ + σpy

σ 2
p

�p. (27)

In their later work, Burns and Brock opted for the sim-
pler k-nearest neighbors approach over this full statisti-
cal method for computational efficiency. We compare both
methods here with the knowledge that we are considering
fewer paths at one time. Our planning architecture amor-
tizes planning time over execution time, and it can therefore
spend additional time selecting each path.

8.2. Results

We present results on each of the strategies in
Figures 14–17. In these plots, we separate out several
effects for study.

Figure 14 plots results on the effect of sampling bias
induced by collision-test feedback. Here we compare the
biased path selection strategies from Section 8.1 against
the unbiased low-dispersion path sampling approach. All
biased sampling methods use CALM to compute probabili-
ties. For sparse and dense randomized obstacles, we present
both the yield of collision-free paths as well as the overall
planning success rate.

Figure 15 presents the effects of several alternative mod-
els of locality. CALM is compared against k-nearest neigh-
bors and locally weighted regression (Section 8.1). In order
to maximize fairness of the comparison among locality
models, the hybrid selection method (Section 7.3) is used to
sample paths in each case. A relatively small k = 5 was nec-
essary particularly for rapid replan cycle times where few
paths can be sampled. Note that for the first k paths sam-
pled, k-nearest neighbors reduces to a tie that is resolved
using the low-dispersion sequence. Again, the yield of safe
paths and planner success rate are reported.

We also present results for planning in a structured office
environment map in Figure 16. In these plots, we present
a few of the best-performing methods for path sampling
and locality modeling. As before, results are presented for
the yield of collision-free paths as well as overall planning
success rate.

Finally, Figure 17 presents the efficiency with which each
combination of path-selection algorithm and locality model
samples paths. Low-dispersion path sampling has no over-
head and so it is 100% efficient. Other methods introduce
overhead both in computing the locality model and using it
to select the next path sample.

8.3. Analysis

Figure 14 reveals a statistically significant increase in the
number of safe paths produced per unit time using CALM
for both pure exploitation (up to 3.3× in these results) and
the hybrid path sampler (above 1.8×), compared to a fixed
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Fig. 14. Comparison of biased versus unbiased sampling. Here, we demonstrate the advantages of biased path sampling. We compare
low-dispersion path sampling against locality-based sampling approaches using pure exploration, pure exploitation, and hybrid sampling
with the combined adaptive locality model. Error bars indicate 95% confidence.

low-dispersion sequence. However, path survival rate does
not convey the entire planning story.

Most important is the motion planner’s ability to suc-
cessfully solve planning queries, and hybrid+CALM shows
good performance across the entire range of problems
examined here. It significantly outperforms pure exploita-
tion+CALM and also the two nearest-neighbor locality
methods (k-nearest neighbors and locally weighted regres-
sion). There is some indication of increased performance
relative to low dispersion. All these trends are clearest at the
low end of replan cycle time, indicating that hybrid+CALM
is able to make the best use out of limited available
information.

The nearest-neighbor locality methods require more path
samples before achieving a model of sufficient fidelity to
produce good results. This is especially so in the dense
obstacle environment, demonstrating these models’ depen-
dence on a critical mass of samples yielding safe paths;
in order for a region in path space to appear safe to
the model, a cluster of k/2 already safe paths must be
present.

The comparison between the randomized and office envi-
ronments is also revealing. In overall success rate, the

pure exploration approach dominates the randomized obsta-
cle environments, particularly at higher obstacle densities.
However, its performance flags somewhat in the office
environment. This distinction can be explained by the abun-
dance of wide open spaces in the office. The pure explo-
ration approach only samples near the edge of obstacles,
and so it produces fewer paths centrally located in rooms.
Such paths are the safest and often position the robot
best to enter corridors with proper alignment. By con-
trast, the Hybrid approach balances sampling between open
space and boundaries, thus achieving both exploration and
exploitation.

Figures 18–19 provide additional data to probe more
deeply into these results. In these figures, sets of one-
hundred planning problems were simulated in a randomized
world of density 1% with a replan cycle time of 0.1 sec.
Figure 18 depicts the fraction of paths surviving collision
test as a function of the estimated likelihood of path safety
at the time each path was tested. A perfect model would
appear as a diagonal line of slope one. Deviations from this
ideal reveal the extent of predictive power for each locality
model. Each of the models shown approximates a positive
slope, indicating general correctness.
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Fig. 15. Comparison of obstacle location models. CALM, presented in Sections 5.2–6, is compared with two methods employed for
similar purposes in the work of Burns and Brock. The two major differences in CALM are the use of safe paths to ‘block’ nearby
obstacles and the incorporation of safe path corridors from the prior replan cycle. For the methods borrowed from Burns and Brock, a
value of k = 5 was used. Error bars indicate 95% confidence.

Fig. 16. Simulated Willow Garage office environment experiments. Error bars indicate 95% confidence.

We observe that all three locality methods possess a
monotonically increasing curve with slope less than one.
CALM is on average more optimistic than the others about
the collision chances of a given path. This result occurs
despite the pessimistic independence assumption made by
CALM. We believe that the net optimism occurs due to
the simplification of locality into two sides of an obstacle.
The model fails to account for the true variety of shapes in

the obstacles encountered by the robot. Despite this appar-
ent shortcoming, we see that CALM produces qualitatively
correct predictions that lead to a high planning success rate.

At the end of each replan cycle, only one path ultimately
matters—that is, the path ultimately selected for execution.
Figure 19 examines the output of each replan cycle as a
function of the estimated survival likelihood of that path at
the time it was tested. Note that the locality estimates were
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Fig. 17. Path sampling efficiency for each combination of sam-
pling method and locality model. Overhead is introduced by both
the sampling and locality modeling processes. The low-dispersion
sequence is 100% efficient because it is precomputed.

Fig. 18. The predictive power of each locality model is shown by
the rate of correct estimates. Each time a path is collision-tested,
the estimated probability of the path is noted and compared to
the actual collision-test outcome. The fraction of overall successes
(collision-free) out of total collision tests in each of 25 bins is
plotted across the range of collision estimates. 95% confidence
error bars are imperceptibly small.

not used here to select paths; they were only recorded in
histogram form. Rather, path selection was performed via
the uninformed low-dispersion path sequence, and so vari-
ations among the methods are directly due to the differing
locality models’ estimates.

It is clear that the nearest-neighbor-based planners do not
consistently select the safest paths for execution. In fact, a
pure shortest-path selection heuristic would show a skew to
the left in the plot because the shortest path around an obsta-
cle approaches very close to the obstacle, and thus under
uncertainty the path should be assigned a low probability of
survival.

By contrast, we employ a more sophisticated path-
selection approach for all three locality methods that opti-
mizes safety while ensuring progress toward the goal. For
the nearest-neighbor models, such a heuristic results in the

Fig. 19. This histogram depicts the rate at which the motion plan-
ner selects for execution different types of paths, as categorized
by the likelihood of a path’s survival. Path survival probability is
shown as estimated immediately before the path is selected for
collision test. The collision test returned false (safe) for all paths
shown, hence they were available to be selected for execution.
Error bars indicate 95% confidence.

selection of paths being spread out across the risk spec-
trum. This spread is likely the result of the robot passing
through corridors of varying diameter. Nevertheless, these
locality models appear to give little insight into which paths
the planner is most likely to actually select for execution. A
locality model informed by the path sampler’s preferences
could be expected to result in a higher performance planner.

In contrast, CALM rarely selects uncertain paths. The
sharp spike near 100% survival reflects the adaptive model,
which conforms to various sizes of obstacle and corridor.
Even in a tight corridor, if a gap has been established then
other paths can be expected to exist with high likelihood.

The neighbor-based methods in both of these plots use a
value of k = 24 in order to map estimates uniformly onto
the 25 bins used to generate the histograms.

9. Discussion

In real-time planning, performance is highly sensitive to the
computational cost associated with the collision-test pro-
cess. Methods that alleviate some of the computation of this
process can be beneficial, provided that such alternatives are
less costly than the collision tests they replace. In particular,
we avoid performing many of those collision tests that are
most likely to fail since they are least likely to yield a viable
path for execution on the robot.

Success at real-time planning stems from several fac-
tors, including the yield of collision-free paths. The quality
of a set of collision-free paths is reflected in the amount
of choice presented to the planner. Choice in turn breaks
down into two characteristics: quantity and diversity. A per-
fect path sampler would eliminate only colliding paths from
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consideration and would thus never impair choice. Given
the uncertainty of the process, however, it is inevitable that
some paths that would have tested collision free will be
missed. The impact of this effect on overall choice depends
on which other path is tested instead. A net increase in
choice available to the planner can be achieved if the
would-be colliding paths can be replaced with collision-free
paths without adversely impacting the overall diversity of
collision-free paths discovered by the planner. More study
is needed to understand how best to balance these factors.

In this paper, we present a strategy for informed path
sampling that guides the search away from obstacles and
towards safe or unexplored parts of the task space. Although
obstacle information is already available to the planner in
costmap form, we obtain a significant increase in perfor-
mance by representing the most salient subset of those
obstacles in a more immediately accessible form.

We utilize a proximity look-up table to accelerate this
process by precomputing the relationships among motions
that obey constraints. Even so, our statistical model describ-
ing nearby obstacles and their relationship is necessarily
simple. This model makes use of the principle of locality
to maximally reduce uncertainty by searching appropriately
far from obstacle locations already discovered in prior col-
lision tests. Using our probabilistic locality model, we trade
off between exploration and exploitation in order to dis-
cover a variety of safe paths while avoiding searching many
colliding paths.

We have demonstrated the machinery to improve the
path-sampling process by biasing search away from obsta-
cles. We must concede, however, that many in the robotics
research community will continue to utilize low-dispersion
and even random sequences for path sampling because the
machinery we describe comes at a cost in implementa-
tion complexity. Still, in the long run robots must become
smarter about how they conduct search. As robotic prod-
ucts become more widely commercialized, all computing
must fit in the limited computational budget provided by
economical embedded processors.

Additionally, robot motion planners will soon need to
evaluate paths with respect to many more factors than they
do today. Robots that operate in human environments must
be situationally aware and responsive. They must gener-
ate smooth, intuitive, spontaneous motion that considers
many more factors than most state-of-the-art motion plan-
ners, including safety, visibility, social convention, and so
on. Each of these factors comes at a computational cost.
Limits on the total number of paths the planner can evaluate
per unit time place a premium on each path tested.

Finally, to form common ground with humans, robots
must be able to reason similarly to humans about the space
they inhabit. They must regard each obstacle not as a point
cloud but as a single obstacle region, and they must con-
sider corridors of free space not as collections of paths but
as a single option for traversal. For these reasons, we believe
that a synopsis of spatial structures—both obstacle and

free—such as is provided by CALM will be increasingly
important to robotic motion planners of the future.

Notes

1. Compared to our earlier work, these problems appear harder
because we eliminate a potentially confounding variable by
disallowing path fragments shorter than the full 1.8 m path
length.
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