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Summary. We consider the problem of online planning for a mobile robot among
obstacles, where it is impractical to test all possible future paths. One approach is
for the runtime task to test some subset of the possible paths and select a path that
does not collide with obstacles while advancing the robot toward its goal. Performance
depends on the choice of path set. In this paper we assume the path set is fixed and
chosen offline. By randomly sampling the space of path sets we discover effective path
sets—comparable or superior to the best previously suggested approaches. In addition,
testing large numbers of randomly generated path sets yields some insights on the
relation of robot performance to the choice of path set.

1 Introduction

This paper empirically explores the relation between path sampling strategies
and mobile robot performance. Many autonomous vehicles, including winners
of the DARPA Grand Challenges [I3], [I4], employ path sampling as part of a
hierarchical planning strategy. In this context, a local planner performs obstacle
avoidance by considering possible actions (corresponding to workspace paths)
in a tight plan/execute cycle (around 10 Hz), while a low-update-rate global
planner provides overall guidance.

Hard time constraints dictate that the local planner evaluate only a few paths
per cycle. One approach is to define a fixed path set—a finite subset of the possi-
ble paths—which the local planner will evaluate on every cycle. Some examples
of fixed path sets for a car-like robot are pictured in Figure[Il Many fielded local
planners have achieved mixed results by employing a path set comprising fixed-
curvature arcs (Figure[Id) [3, 4 [7, 12]. Recent work has demonstrated improved
performance using other path set choices [II, [, [§]. There has also been some
investigation of how tessellation can extend a carefully-designed set of paths to
the global planning context [I1].

While it is clear from previous work that performance varies substantially
with the choice of path set, little else is known. Green and Kelly [5] argue that
lowering dispersion in the space of paths improves performance, and they present
a greedy algorithm to generate such path sets. A great deal of work has been done
in planning with random sequences, which are inherently low-dispersion when
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Fig. 1. Path sets: (a) The full 2,401-path data set; (b) The best randomly-generated
24-path subset; (c¢) The 24-path subset generated by the Green-Kelly algorithm; (d)
The 24-path set of constant-curvature arcs

the sample size is large enough. A common approach to roadmap construction
for global planning employs randomized state sampling, which in turn generates
a low-dispersion roadmap [6 [9].

Such a randomized approach has also been applied in the context of local
planning [I0], but this stochastic action selection process introduces an undesir-
able element of uncertainty to the resultant vehicle motions. Nevertheless, we
take inspiration from thees randomized approaches and explore offline random
sampling in the space of path sets. By testing large numbers of random path sets,
this paper explores the relation of path set to overall mobile robot performance.

Using the tools described here, we are able to estimate upper bounds on path
set performance, measure the performance of previously proposed path sets, test
hypotheses on path set performance, and search for high performance path sets.
We began this investigation by hypothesizing that the full path set depicted in
Figure[Ih would outperform any path subset sampled from it, therefore providing
an upper bound on performance.

2 Technical Approach

We want to determine experimentally how planner performance depends on
choice of path set. We evaluate each candidate path set by trying it on sev-
eral representative tasks. The main challenge is that the space of all path sets
is large, consisting of about 1037 members in our case, and evaluating each path
set requires several experiments. We address this challenge by combining phys-
ical experiments with simulations, attempting to gain the speed of simulation
without sacrificing the rigor of physical experimentation.

Our approach was therefore to develop a planner on a real robot (discussed
in more detail in Section Bl below) and then to switch to simulation for the
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large-scale tests. A crucial part of the planner is the high-fidelity vehicle model,
which predicts the robot’s response to control inputs. It is this model (explained
in Section3.2)) that enables the planner to ensure that each considered trajectory
conforms to all kinodynamic constraints.

After achieving simulation results sufficiently similar to real robot behavior,
we moved the experiment into simulation in order to conduct 150,000 test runs.
Since exhaustive search of the path set space is not practical even in simulation,
we sample the space of all path sets.

To characterize the performance of a path set, we run the local planner in
simulation with a randomly generated task comprising start, goal, and arrange-
ment of obstacles. We use two metrics: success rate and execution time. Since
the robot replans continuously while moving, plan time and execution time are
equivalent.

All of our path sets are subsets of the “full path set” (Figure [[h). Each path
in the full path set is a sequence of four connected path segments. Each path
segment is a curve of constant curvature. We assume seven different choices of
curvature, i.e. seven different choices of path segment. Hence the full path set
contains 74 or 2,401 different paths.

Each path set (Figure[Ib for example) has 24 paths—about 1% of the full path
set. Figure [k shows the Green-Kelly path set, and Figure [Id shows a special
path set (not a subset of the full path set) constructed to resemble prior art and
comprising 24 non-branching, constant-curvature arcs.

3 Experimental Setup

3.1 Real Robot

In order to establish a rigorous basis in real-world experimentation, we used a
differential-drive Nomad Scout robot (Figure [2)). Since perception was not of

Fig. 2. Nomadic Technologies Scout robot. The robot traverses the maze, visiting each
blue flag once.



454 R.A. Knepper and M.T. Mason

Fig. 3. The maze compares typical execution paths driven by the real (solid) and sim-
ulated (dashed) robots. The discrepancy between paths is comparable to that between
any two runs of the real robot in the maze.

interest in this test, we provided the obstacle layout to the robot ahead of time.
Real test environments consisted of mazes of robot-height cardboard walls. An
example maze is shown in Figure [2] with the robot at its start configuration.

We set out to develop a robot simulator that accurately emulates outcomes
in real-world motion planning experiments. To accomplish this feat, we faced
two main problems. First, we needed a vehicle model capable of predicting the
results of arbitrary commanded actions. To achieve this, a variety of actions were
measured and the results incorporated into the simulation. The details of this
process are explained in Section 3.2 below.

The second problem to be solved in order to achieve a close match between
reality and simulation was positioning. We permitted the simulated robot to have
perfect positioning, since localization is not a focus of this work. Because the
Scout’s dead reckoning is inadequate in these environments, we implemented
a Kalman Filter to localize the robot. State variables consisted of linear and
angular position and velocity. Besides the odometry updates, the filter used the
robot’s 16 sonar sensors to find landmarks (vertical and horizontal maze walls),
which it compared to the provided map in order to generate state corrections.

3.2 The Vehicle Model

The vehicle model mentioned in the previous section serves two roles. First,
the simulated experiments (Section B3)) use the vehicle model to determine the
robot’s trajectory through the world based on commands issued by the plan-
ner at 5 Hz. Second, during each cycle, the planner uses the vehicle model to
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anticipate where a sequence of commands issued at 1.5-second intervals would
lead the robot. Only seven distinct curvature commands are available to select
from at each iteration, which are uniformly discretized in the range of £2.1 radi-
ans/meter. This car-like steering model was selected to simplify analysis of the
results. So long as the robot sees a way to progress, it is commanded to drive at
a constant linear velocity of 0.2 m/s.

In developing the vehicle model, a variety of classes of maneuvers were consid-
ered, from straight lines and gentle curves to tight braking spins and S-curves.
We ran each maneuver on the real robot, recording odometry throughout the
event. The change in pose between start and finish was measured to verify the
reliability of odometry over short distances, and the vehicle model was tuned to
account for the discrepancies between the commanded action and actual vehicle
response.

The basic model, prior to tuning, was created based on the manufacturer’s
API, which permits the user to set acceleration and target velocity values indi-
vidually for each wheel. We modeled the robot as being essentially kinematic,
except that curvature cannot jump instantaneously because of the acceleration
limit. Internally, the model mimics the robot’s control loop on each wheel’s
speed. An Euler double-integrator generates a change in pose based on accelera-
tion, velocity, and the passage of time. While this model is no more complicated
than necessary for this experiment, it should be noted that we are modeling
momentum and other kinodynamic constraints so that, for example, the vehicle
has a measurable stopping distance that must be accounted for in planning to
assure the robot’s safety.

Tuning affected several aspects of the vehicle model. First, we noted that
latency in serial communications results in a delay averaging 87 ms from sending
a command to observing the response. This latency marks a further departure
from a purely kinematic model. Second, the measured acceleration values do
not precisely reflect what is commanded by the user. Surprisingly, a wheel’s
true acceleration is larger than commanded by a factor averaging about 2.4.
After correcting for these two phenomena, the vehicle model proved sufficiently
accurate that remaining error was overshadowed by random variation from one
trial to the next. After verifying the model in extended real world tests (such as
that shown in Figures2land B]), we carried the vehicle model into the simulation
phase of the experiment.

3.3 Constructing the Planner

The focus of this experiment, the planner, was developed and tested with the
real robot hardware before being carried over unchanged into simulation. This
hierarchical planner consists of two levels. The high-fidelity local planner re-
peatedly evaluates a fixed set of paths originating from the body of the vehicle.
Below, we discuss several methods of selecting this path set.

Meanwhile, the low-fidelity global planner provides a heuristic estimate of
the cost-to-go in order to evaluate the available paths and choose the best one.
As in most hierarchical planning systems, this global planner uses simplifying
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approximations and assumptions to avoid the combinatorics of an exhaus-
tive search. Specifically, it assumes an omnidirectional robot moving on an 8-
connected grid. Prior to the first run of the local planner, the brushfire algorithm
runs backwards from the goal state to populate the entire freespace grid with
cost values. Besides providing an estimate of the cost-to-go, we can also filter out
those planning problems that have no solution. The existence of an 8-connected
grid path does not ensure success using any path set, though, because the paths
are subject to kinodynamic constraints. In practice, success rates top out at
about 80%.

Most of the path sets we tested in simulation were obtained by uniform ran-
dom sampling from the full path set of 7 = 2,401 paths. For each path selected,
its mirror-symmetric path was added as well. In total, each tested path set con-
tains 24 paths. A few special case path sets—constant-curvature arcs and the
Green-Kelly path set—were generated by special means. The arc-based path set
contains 24 discrete curvatures spanning the same range as the full path set.
However, this tree only branches once at its root. The Green-Kelly path set is
constructed according to the algorithm described in [5].

Each planning cycle consists of a breadth-first traversal of the path tree. As
each segment is expanded, a robot-shaped disc is tested for collision with obsta-
cles along the path. If that segment survives, then its endpoint, ¢, is evaluated
using the scoring function. This function estimates the total runtime from the
robot’s current pose to the goal via ¢. The time required to traverse the path,
¢p, is known. The global guidance navigation function offers a time-to-go value
function, c4. Since the global guidance cost is computed in a grid, it does not
consider heading. Therefore, the bearing to the goal, 0,4, is added as an extra
cost term, weighted based on the maximum angular velocity, wyq.. The overall
cost function is

cost(q) = ¢p(q) + ¢cg(q) + 04(q)/Wmaz

Once the tree has been elaborated to depth 4, the best scoring node in the
tree is selected. The initial command which led to that position in the tree is
then sent to the robot for execution.

3.4 Experiments

The goal of the simulation experiments was to evaluate the planning performance
of a large number of diverse path sets. To measure path set performance, a large
number of planning tasks of comparable difficulty were needed. Toward this
end, one hundred world/query pairs were generated. Each world consisted of a
100 x 100 grid with obstacles sampled randomly from a uniform distribution at
a density of 2.5% coverage. The boundary of the world was also considered to
be an obstacle. Queries consisted of a start and goal locations separated by a
Euclidean distance of about 70 cells.

Each path set was evaluated by running it on all one hundred world/query
pairs. Each simulated run began with the robot located at the start state and
oriented in the direction of the brushfire gradient. The run ended in failure either
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Fig. 4. Example simulation world. The small discs indicate the start and goal positions.
Grey-scale shading indicates a navigation function generated by brushfire from the goal.
Point obstacles are expanded by the robot’s radius. Candidate paths are expanded from
the robot’s current pose every 0.2 sec.

when the robot came to rest after several successive iterations with no available
path options or when the maximum simulated time of 400 seconds was exceeded.
The run terminated successfully when the robot shape overlapped the goal.

We tested 1,500 different random path sets on each of 100 random tasks, such
as the example depicted in Figure [l Since this is such a small fraction of the
overall space of path sets as we defined it, we did not expect to get an accurate
picture of the total space of path sets. However, this sample size proved to be
large enough to generate interesting results.

Having an objective means to compare path sets, we also evaluated several
that had been discussed in other works. Constant-curvature arcs have a long
history in local planning, while Green and Kelly recently proposed a more prin-
cipled path set. Besides these two sets, we tested the full path set, which would
normally be disqualified for having too many paths to evaluate in 0.2 seconds.
Since the tests were conducted in simulation, we permitted the full path set to
“cheat” with the expectation that providing it this unfair advantage would result
in superior performance. That turned out not to be the case.
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4 Results

4.1 Metrics on Path Sets

In comparing path sets with each other, we require at least one objective metric.
The simplest, most obvious metric is success rate, which aggregates performance
over all 100 worlds. A histogram of success rates for various path sets is depicted
in Figure [Al The next obvious metric is simulated runtime. This metric is more
nuanced since it reports 100 separate runtimes, and simple statistics may obscure
trends.

These two metrics may be combined by plotting the cumulative distribution
of all 100 runs for a given path set, counting failed runs as infinite runtime.
This approach produces a curve from which both runtime and success rate are
easily interpreted. Figure [ shows highlights from the 1,503 tested path sets. The
top-left curve depicts the best random path set we tested, and it also happens
to represent an approximate envelope for achievable performance based on the
sample of paths taken here.

While the cumulative distribution is an effective tool for comparing the per-
formance of several path sets, it is still useful to condense each path set’s overall
performance into a single score. One simple, effective method is to measure the
area beneath the curve. Thus, both a higher success rate and lower runtimes in-
crease the score. Of course, the integral of the unbounded cumulative distribution
function is infinite, so we chose to place an upper bound at 90 seconds. This upper
bound was the maximum runtime observed over all of the experiments. Recog-
nizing that the choice of upper bound trades off between the relative weighting
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Fig. 5. Frequency distribution histogram showing success rate of various path sets. A
higher success rate indicates a more robust path set in planning experiments.
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Fig. 6. Cumulative distribution plot summarizing results from several path sets. The
area under each curve translates to a general score for that path set’s performance
across obstacle configurations.

of success rate and runtime, several alternative upper bounds were considered.
In each case, the quantitative score values changed without altering the quan-
titative results relating the performance among path sets. Figure [1 shows the
frequency distribution of score values for the set of random path sets and the
special path sets mentioned previously.

4.2 Findings

Here are some of our findings on path set performance. First, it should be noted
from Figures[Bl—[7lthat the constant-curvature arc planner performed quite badly
overall. Our control, the full path set, did better. Surprisingly, many random
path sets outperformed the full set. To verify this result, we retested the best-
performing path set with 100 novel sets of 100 tasks (Figure [). The worst
and best path sets are shown in Figure 8 The best previously-generated path
set we are familiar with, the Green-Kelly path set, scored 3323, while our best
randomly-generated path set scored 8% better at 3604.

To examine the statistical significance of this finding, we reran the Green-Kelly
and best random path sets for 1000 trials (unique world/query pairs) each. The
Green-Kelly path set succeeded in 781 trails, while the best random path set
succeeded in 803 trials. A chi-squared test tells us with 98.3% confidence that
this performance difference does not result simply from random chance. Since
these two path sets are comparatively close in performance, it naturally follows
that performance differences over the full spectrum of path sets tested in over



460 R.A. Knepper and M.T. Mason

0.0025 T T T T
-+=-+--- Histogram of Random Path Sets
Best Random Path Set Score
-+ Green-Kelly Path Set Score
Full Path Set Score
0.002 k Arcs Path Set Score

. Histogram of Best Path Set Tested on New Tasks
o
—_
3
1) 0.0015
e
©
S ¥ "'-‘I-
3 o001 f
5] :
- S
= ¥

0.0005 f Ed
.‘*:
4“"
0 A 2 2 -+""""‘: o " . .'" .
0 500 1000 1500 2000 2500 3000 3500 4000

Score
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over path sets and variation over a range of planning problems for the best tested path
set. Higher scores correspond to better planning performance.

(a)

Fig. 8. Best (a) and worst (b) randomly generated path sets

150,000 trials reflect the importance of careful path set selection in obstacle
avoidance.

5 Discussion and Future Work

The first significant outcome of this work is that random path set sampling is ca-
pable of generating a fairly dramatic range in performance (approaching a factor
of three in our case). When searching for the best path sets, many bad ones must
be rejected. One might therefore argue, as Branicky and LaValle [2] observed,
that carefully constructed quasi-random sequences can have lower dispersion
than a true random sequence, and that we could therefore produce improved re-
sults with such a sequence. But as we don’t know what properties of a path set
lead to good performance, we believe it is precisely the higher variance observed
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in a random sequence (as compared with a Hammersley-Halton sequence) that
widens the tail on both sides of our frequency distribution plot in Figures[H and
[ thereby pushing out the best and worst performances.

The two most surprising outcomes are: (1) that a randomly generated path
set would substantially out-perform the Green-Kelly path set; and (2) that the
full path set would perform worse than half of the random subsets we tested.

We are still exploring the comparison with the Green-Kelly approach, by
testing additional Green-Kelly path sets, and by measuring dispersion of our
randomly generated path sets. If the difference of performance is substantiated
by further tests, we wish to explore the metric used to define dispersion in the
path space, and whether the inherently sub-optimal performance of a greedy
approach might be responsible.

The poor performance of the full path set is perhaps the most intriguing
outcome. We expected that a planner’s performance can only improve when it is
given more choices to evaluate, but instead we are seeing that more choices can
be worse. Because of the limited planning horizon and the heuristic nature of the
global planner’s guidance, more choices also means more bad choices. Evidently,
sub-sampling the full path set introduces a mechanism whereby bad choices can
be hidden from the planner. We are exploring the details of this mechanism.
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