
On the Completeness of Ensembles of Motion Planners
for Decentralized Planning

Ross A. Knepper and Daniela Rus

Abstract— We provide a set of sufficient conditions to es-
tablish the completeness of an ensemble of motion planners—
that is, a set of loosely-coupled motion planners that produce
a unified result. The planners are assumed to divide the
total planning problem across some parameter space(s), such
as task space, state space, action space, or time. Robotic
applications have employed ensembles of planners for decades,
although the concept has not been formally unified or analyzed
until now. We focus on applications in multi-robot navigation
and collision avoidance. We show that individual resolution-
or probabilistically-complete planners that meet certain com-
munication criteria constitute a (respectively, resolution- or
probabilistically-) complete ensemble of planners. This ensem-
ble of planners, in turn, guarantees that the robots are free of
deadlock, livelock, and starvation.

I. INTRODUCTION

Decentralization is an important tool for enabling scalable
and simple designs. Some well-intentioned efforts to decen-
tralize motion planning and collision avoidance algorithms
lead to brittleness: such algorithms may fail to find a solution
when one exists—that is, they are not complete. Provable
guarantees on correctness and completeness are often restric-
tive. In this paper, we present a set of sufficient conditions
to enable a decentralized ensemble of complete motion
planners to cooperatively generate a plan that is complete
in the combined space across all planners. We use the term
completeness here to refer to planners with guarantees of
resolution completeness or probabilistic completeness.

In an ensemble of planners, the various sub-planners
typically have distinct responsibilities that may interact with
each other. For example, the planners may select motions
for a single robot at different points in time, plan motions
for different joints of a single robot, or plan for different
robots moving in a shared space. To the extent that some
fraction of the work performed by one planner does not affect
the outcome of the others, efficiency can be gained by such
decentralization through parallelism.

This paper contributes the following:
• the formulation of decentralized ensemble motion plan-

ning,
• sufficient conditions for the completeness of the collec-

tive action of a set of motion planners associated with
individual robots in a group, and

• instantiations of the theory to multi-robot navigation
tasks where complete planners that meet certain com-
munication criteria constitute a (respectively, resolution-

*This work was supported by The Boeing Company.
The authors are with the Computer Science and Artificial Intelli-

gence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
{rak,rus}@csail.mit.edu

Fig. 1. An example application of an ensemble of planners. Three planners
operating in orthogonal dimensions cooperate to solve a maze, with its
solution color-coded according to which of three planners contributes each
individual edge. The planners are X (red), Y (green), and Z (blue).

or probabilistically-) complete form of ensemble of
planners with deadlock, livelock, and starvation guar-
antees.

In addition, we provide several examples of decentralized
planning, including a simple Cartesian grid planner, a manip-
ulator arm, a model-based hierarchical planner, and a large
team of mobile robots performing decentralized collision
avoidance and navigation.

A. Related Work

Ensembles of planners have been employed (without ex-
plicit reference to the concept) for decades. An early example
is Handey [20], a motion planner for a manipulator arm
in which planning is decoupled to achieve computational
efficiency. Handey employed separate planners for the hand
and the arm/shoulder. Their operation was only loosely
coupled, in that the output of the arm planner fed into the
planning problem for the hand.

Around the same time as Handey, the Autonomous Land
Vehicle was developed by Daily et al. [8] to accomplish
outdoor autonomous navigation in off-road terrain. This
ensemble of planners includes a four-level hierarchy ranging
from reactive and local planning at the bottom to route
and mission planning at the top. Although the levels are
qualitatively different, they all represent motion in the world.
Commands are fed down the chain in response to accumu-

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 4112

lated sensor input resulting from actions planned at those
lower levels.

An analogous decoupling occurs in systems employing
hierarchy to simultaneously solve task and motion planning
problems [11, 13, 21, 22]. Given a symbolic problem state-
ment in a geometric environment, situations can arise in
which both the task and motion planning problems must be
solved simultaneously to arrive at a correct solution. These
two disparate planners are inherently decoupled.

In these and similar multi-planner systems, little effort was
put into the general problem of ensuring that decentralized,
coupled planners each achieve their goals. Instead, the de-
signers dictated a prioritization, such that one planner effec-
tively becomes the slave of another. In this paper, we examine
that general question of how decentralized, coupled planners
can achieve completeness guarantees without prioritization
schemes.

The subject of completeness has a long history within the
robotic motion planning community. A necessary condition
of completeness is the configuration space, first described
by Lozano-Perez [19]. The Cspace enables planners to
uniquely and precisely describe every possible configuration
of a robot. Soon thereafter, Brooks and Lozano-Perez [4]
described a system in which a regular, discrete sampling
of states within the Cspace enabled a motion planner to
exhaustively search for a collision-free path in a grid at
a fixed resolution. The guarantee of finding an existing
path with such a search would later be termed resolution
completeness.

Canny [5] shows that complete motion planners require
time that is exponential in the dimension of the search space,
thus motivating the desire for decoupling of dimensions
where possible.

The notion of probabilistic completeness was introduced
by Barraquand and Latombe [2]. This guarantee provides
only that the probability of finding an existing path asymp-
totically approaches one. Such probabilistic planners still
obey the complexity bounds given by Canny—however
they provide two advantages over grid-based search. First,
they incrementally and uniformly refine sampling resolution
throughout the search space. Second, they solve certain
classes of “easy” problems quickly. In expansive spaces [12],
straight-line paths may cover large distances efficiently.

Comparable performance to a probabilistic planner may
be obtained along with the stronger resolution-completeness
guarantee by the use of deterministic sampling sequences, as
described by LaValle et al. [17].

II. ENSEMBLE MOTION PLANNING FORMULATION

In this section, we describe and formalize a common
scenario in robotics, wherein several motion planners op-
erate in parallel on different aspects of a motion planning
problem. Each individual planner accepts its own input and
returns its own output. Communications among the planners
connect their inputs and outputs in a manner that is carefully
constructed to produce a correct and complete global result.
In effect, the ensemble of motion planners appears as though

Global
Planning
Problem

Input

(c, s, g)

Other Planners

(t)

Global
Consensus

Output

Ensemble of Motion Planners

Planner

Fig. 2. The components of a communication graph. Two or more self-
contained motion planners comprise the ensemble. Each takes inputs first
from the global planning problem specification, followed by the other
planners. Inputs are constraints, start state, and goal state set. Output,
a trajectory, informs other planners. The planners form consensus around
a global plan that solves the global problem.

it were a single, centralized planner, although it may realize
certain benefits from distributing its computation.

Figure 2 illustrates motion planners at two scales. Let a
motion planner be a function

Pi : C× Rni × Rni → P . (1)

In the figure, the planner inputs are abbreviated (c, s, g).
Here, c ⊂ C represents the constraint set; constraints include
obstacles, kinodynamic constraints, and anything else that
restricts how a robot moves instantaneously from a given
configuration. The two parameters {s, g} ⊂ Rni represent
the start and goal state, where ni is the dimension of the state
space for planner Pi. The planner output, t ∈ P , represents
a path or trajectory of the form t : [0, tf]→ Rni , with tf the
length of time for which the trajectory executes.

In this formulation, the individual planners always return
a path. If no solution is discovered, the planner will return
a path that makes some motion. The planner attempts to
make progress towards the goal, but it is impossible to know
whether a partial plan actually makes progress. Therefore, if
the planner is repeatedly presented with the same input, it
should produce a different output every time to help explore
the full space. Cooperating planners may then be able to
improve upon these partial solutions.

A. Scope

Implicit inputs to a motion planner, not shown in Fig. 2,
describe the scope of the problem. The scope defines the
tools at the planner’s disposal to solve a planning problem.
Scope for planner Pi is composed of a tuple

Si = (Qi, Ti, Ui), (2)

which is interpreted as follows.

• Qi – state space variables (i.e. Rni)
• Ti – time
• Ui(qi, ti) – action set as a function of state and time

Each of Q, T , and U are subject to discretization or
sampling for the purpose of conducting search. A planner
produces a trajectory—that is, a series of motions within the
state space—by exploiting the full domain of each scope
parameter.

4113

B. Ensemble Motion Planning

Each individual planner in the ensemble of motion plan-
ners shown in Fig. 2 attempts to contribute a portion of the
solution to a larger problem. A motion planning problem
comprises a tuple

Mi = (Pi,Si, ci, si, gi), (3)

in which Pi indicates a motion planner and Si specifies the
scope in which the problem must be solved. The remaining
parameters represent inputs to the planner. As before, ci is
a set of constraints; si ∈ Qi and gi ∈ Qi are the start and
goal states.

We now establish the definition of an ensemble of plan-
ners. Two separate planning problems Mi and Mj form an
ensemble of planning problems Mij . They are solved by an
ensemble of planners Pij operating on the joint state space,

Qij = Qi ×Qj , (4)

subject to constraints

cij = ci ∪ cj ∪ ccoupled(Qi, Qj). (5)

The term ccoupled(Qi, Qj) represents a set of constraints
derived from the fact that certain dimensions may be coupled
between Qi and Qj .

Coupling between state variables occurs when the planners
operate in partially overlapping spaces. For example, an
ensemble of two planners plans in Cartesian XY Z space,
such that the first planner controls XY and the second
controls Y Z. The Y dimension is coupled between the two
planners, bringing the number of freedoms down to the
expected three. We return to this example shortly.

To be clear, the combination of constraints between two
planners can never result in an overall reduction of total
constraints. Although the combination of scope may open
up new parts of the space for access by the robot that were
previously inaccessible due to an obstacle or a nonholonomic
constraint, those constraints persist and prevent the same
motions from the same configurations as before.

C. Communication Graph

Returning to Fig. 2, the connections joining inputs and
outputs of each planner within an ensemble form a directed
communication graph. In addition, the graph includes global
inputs and outputs to the ensemble of planners.

Completeness places several demands upon the structure
and usage of the communication graph, The most com-
mon means of inter-planner communication is to connect
one planner’s output trajectory to another planner’s input
parameters—one of constraints, start, or goal.

An alternative style of communication occurs when plan-
ners run at significantly different replan rates, one planner
may effectively invoke another planner, taking its results
as an internal parameter. We present such an example in
Section III-A, Hierarchical Planner.

There also exists a global input to all planners, in the form
of the original problem specification. Thus, any inputs not

x

zy
(a) (b) (c)

(c, s, g) txy

(c, s, g) tyz

xy

yzxz

Fig. 3. Two example communication graphs for a Cartesian grid planner.
(a) Each of the X , Y , and Z dimensions has its own dedicated planner and
the communication graph is fully connected (all plans are shared directly
with all planners). This scenario corresponds to the trajectory (t) shown
in Fig. 1. (b) Three planners exhibit some redundancy, planning in the
XY -, XZ- and Y Z-planes respectively. Although the graph is not fully
connected, progress made by any planner can still be shared indirectly with
all others. (c) The end-state of an output trajectory becomes the start state
for another planner.

provided by other planners default to these global values.
Naturally, there is also a global output in the form of a
consensus solution to the planning problem.

For planners that operate in a subspace of Qi of lower
dimension, it should be noted that uncontrolled state vari-
ables pass through unchanged to any receiving planner. State
variables not controlled by the planner take the initial value
of the global input and are later assigned the value of those
parameters passed in. We provide a simple example of this
concept in Section II-E.1, Cartesian Grid Planner.

D. Division of Scope

Next we consider several methods of dividing work among
planners. Each approach leads to a particular choice of
interface between an output trajectory and input parameters.

a) Time: Planners may plan for common state vari-
ables, or subsets thereof, at different time intervals. In this
case, a state from one planner’s trajectory typically defines
another’s start or goal state.

b) Space: Planners may occupy distinct dimensions or
regions of the state space over a common time interval.
One planner’s trajectory alters another’s constraints. This
method of coordination may involve a collection of robots, in
which each planner’s output trajectory comprises a dynamic
obstacle to the other planners. Alternatively, several planners
might control different joints of a common kinematic linkage.

c) Action: Planners may explore separate portions of
the overall action set. In such an arrangement, planners may
overlap in both time and space.

d) Disjoint: Two planners may be completely inde-
pendent of one another, in which case they partition the
global scope. If a planning problem can be decomposed into
disjoint subproblems, then an ensemble of complete planners
is trivially complete, and solutions are no harder to find
than the most difficult constituent planning problem. In this
case alone, the communication graph may be disconnected
because there is no need for consensus.

E. Examples

To help fix these concepts, we present two simple exam-
ples demonstrating ensembles of planners.

4114

Algorithm 1 Dijkstra(G, s, g)
Input: G . a connected graph to search
Input: s . the start state
Input: g . the goal state set

1: for all vertices v in G do
2: d[v]←∞
3: p[v]← undefined
4: Let PQ be a priority queue . states sorted by cost
5: PQ.insert((s, 0)) . tuple
6: d[s]← 0
7: while Q 6= ∅ do
8: (u, d) = PQ.pop()
9: if d =∞ then

10: return None
11: if u = g then
12: return Trace Back(g, s, p) . sequence of nodes
13: r ← ∅ . recent update list
14: for all v in u.outbound node neighbors() do
15: c← d+ dist between(u, v)
16: if c < d[v] then
17: d[v]← c
18: p[v]← u
19: PQ.replace((v, c)) . replace same state
20: r.append((v, c, u)) . tuple: (state, cost, prev)
21: Exchange Data(r, d, p, PQ)
22: return None

1) Cartesian Grid Planner: Suppose a set of planners
search over subsets of the full 3D Cartesian state space,
XY Z. The planners cooperate to find a path through a
maze, as in Fig. 1. Scope is divided among the planners by
state space dimension and action, as shown in the example
ensemble communication graphs in Fig. 3. No single planner
is capable of solving the maze alone, so they must exchange
partial plans. The terminus of one planner’s partial trajectory
feeds into another planner’s start state. Some efficiencies
are possible, as each planner only needs to have knowledge
of the subset of obstacles blocking motion along certain
dimensions.

As the planners operate in parallel, each offers partial
solutions for the others to build upon. The basic Dijkstra’s
algorithm [10] can be extended by augmenting each state’s
back pointer with the identity of the planner that reached that
state, so that the whole ensemble of planners can reconstruct
the path leading to the goal. Alg. 1 gives the basic Dijkstra’s
search. The only change is Line 21, which adapts the
algorithm for an ensemble of planners. The implementation
of Exchange Data() is given in Alg. 2.

2) Arm Planner: Similar to the Cartesian planner, we can
decompose a robot arm into the separate joints or groups
of joints. Precedent for such a decoupled arm planning
approach goes back at least to Handey [20], which planned
for the arm’s shoulder and elbow separately from the hand.
By separating out the hand planning, Handey’s planning
problem remained efficiently computable for computers of
the day. In order to decouple the motion of the hand,

Algorithm 2 Exchange Data(r, d, p, PQ)
Input: r . recent updates
Input: d . table of shortest inter-node distances
Input: p . table of actions to reach states
Input: PQ . priority queue

1: for all n in outbound planner neighbors() do
2: send(n, r)
3: for all n in inbound planner neighbors() do
4: i = receive(n) . inbound list
5: for all (v, c, u) in i do . tuple: (node, cost, prev)
6: if c < d[v] then
7: d[v] = c
8: p[v] = (u, n) . augmented with source planner
9: PQ.replace((v, c)) . replace same state

(c, s, g) thandarm(c, s, g) t

Fig. 4. The communication graph for Handey. The arm planner is
completely decoupled from the hand planner, thus the graph is not strongly
connected.

a large enough bounding box was maintained around the
hand when collision checking to accommodate all possible
hand orientations. As presented, Handey’s planning ensemble
actually represents two disjoint planning problems, although
the arm planner’s output places a kinematic constraint on the
hand planner. This decoupling is practical only because the
total swept volume of all possible hand motions encompasses
a relatively small fraction of the total reachable volume of
the arm.

One can imagine a modification to Handey in which
the two planners do communicate bilaterally. The arm and
hand planners might each assume a particular trajectory for
the other, iteratively exchanging plans until two mutually
agreeable trajectories can be achieved. Such an approach
would enable Handey to reach into tight spaces prohibited
by the bounding box.

III. APPLICATIONS

Now we move on to some more complex applications of
the ensemble of planners.

A. Hierarchical Planner

In a hierarchical planner, responsibility for planning parts
of a path to the goal is divided spatially, as in Fig. 5,
or in time. The motivation for such a division is to make
motion planning tractable at large scales. At short range,
kinodynamic constraints are important, but the combination
of such constraints with obstacle avoidance scales poorly.
Thus, planners at larger scales trade lower fidelity for in-
creased scalability.

Planners at different scales have different replan rates.
The local planner replans often to stay reactive. Larger-scale
planners replan less frequently and return responses more

4115

(b)

(a)

Distant
goal

Local Regional Global

t t

c
s
g

c
s
g

Local Reg.

c
s
g

t

Global

Fig. 5. Communication graph for a hierarchical planner. (a) Planning
authority is divided in time between the immediate future (local planner),
intermediate future (regional planner), and the more distant future (global
planner). (b) The planners run at different rates. Larger scale planners
employ less fidelity, and their plans therefore are quicker to compute and
change less often, enabling greater reuse. Each pair of neighboring planners
includes two communication cycles. Within a single local replan iteration,
the global planner is invoked repeatedly to provide many completions of
the local plan that begin where it ends. Then, as each local replan cycle
terminates, the robot executes a part of the output trajectory. The local
planner then begins planning from a new start state.

quickly to queries based on the most recent replan results,
thus providing scalability.

The model-based hierarchical planner (MBHP) [15] is one
example of a hierarchical planner with two levels – local
and global. This planner utilizes action-space sampling at the
local level, bounded by a fixed-time planning horizon. The
planner integrates sampled actions through a high-fidelity
motion model to compute output trajectories. At the global
level, D* [16] quickly computes a path from the endpoint
of each local trajectory in a discretized square grid search
space. With bounded robot velocity, all queries to the global
map occur in spatial proximity and so D* leverages previous
results in responding to local planner queries. The ensemble
of planners selects the combined local+global path with
minimum length.

B. Decentralized Collision Avoidance

Multiple robots frequently operate in a shared task space
and must avoid collision with each other as well as with static
obstacles. We address a particular mobile robot collision
avoidance algorithm [14] inspired by human navigation.

In this paradigm, each mobile robot runs its own instance
of MBHP. Let us assume that each robot communicates with
another only if their local planners generate interfering paths,
which they can determine based on observed proximity. Each
robot communicates bidirectionally with those neighbors
within range of its local planner. Robots may be spread out
over a wide space, such that no single robot can directly
communicate with all others (Fig. 6). However, each robot

ED F

A

(b) (c)

(c, s, g) tB

(c, s, g) tF

B

(a)

C

Fig. 6. Example communication graph for distributed collision avoidance.
(a) A possible configuration of robots with communication radii shown.
Robots can directly exchange plans only with others inside of the commu-
nication radius. (b) The communication graph corresponding to the above
configuration. Encircled nodes are shown zoomed. (c) An output trajectory
informs constraints of neighboring planners by defining a dynamic obstacle.

only needs to reach consensus on its own state variables
before proceeding to execute its own planned trajectory.
Planners exchange local trajectories output by MBHP until
a mutually agreeable set of trajectories with one’s neighbors
has been discovered.

In selecting trajectories, it is difficult to converge in a
single step to a set of non-colliding plans. In order to allow
the robots to make forward progress while continuing to
search, the initial threshold allows up to 50% overlap with
other robots’ planned trajectories. We say that two robots’
trajectories overlap only if they result in the robots occupying
some space at the same time. The concession to permit
overlap recognizes the need for robots to incorporate one
another’s response to their own presence. In particular, all
robots can be expected to make equal effort to avoid a
collision. Thus, if both robots avoid each other 50%, then the
robots smoothly avoid one another entirely [23]. However,
this algorithm alone does not result in a complete motion
planner.

Completeness requires sufficient planning time to conduct
a full search. If the robots must plan while following an
earlier partial plan, then there is no guarantee that multiple
robots will find a joint solution before they collide with each
other. Consequently, we require that the robots must possess
a contingency plan, as described by Bekris et al. [3].

In the contingency plan framework, the planner actually
produces two trajectories each cycle. The first is a conven-
tional proposed path to reach the goal, whereas the second
is a contingency plan that has no end time—it can continue
to be executed as long as necessary for the ensemble of
planners to converge to a solution. For mobile robots, this
contingency trajectory typically brings the robot to a halt.
The main plan can be violated by other robots until the
final plan is found, but the contingency plan cannot. Each
robot must absolutely avoid another’s contingency trajectory,

4116

executing its own contingency plan if necessary to do so. The
ability to “park” the robots for arbitrarily long enables them
to execute a complete planning algorithm.

Additionally, some memory is needed to ensure com-
pleteness, which entails a minor modification to MBHP.
Specifically, each robot’s local planner must remember what
actions it has proposed in the past in response to the
proposals of other robots. If the set of a robot’s neighbors
proposes the same set of actions as in a previous replan
step, then the robot must propose a different action than it
has proposed before. This policy guarantees that the joint
state space of all the robots will be explored, thus ensuring
resolution completeness.

IV. COMPLETENESS

We prove a set of sufficient conditions for the com-
pleteness of an ensemble of motion planners. The basic
completeness notion requires that a motion planner will
always return a solution path if one exists within the scope
of the motion planning problem. We consider two limited
forms of completeness.

A. Resolution Completeness

A resolution-complete motion planner is guaranteed, in
finite time, to find a collision-free path to the goal whenever
one exists (up to the resolution of the discretization), and
otherwise to return failure when there is no solution at that
resolution [2]. Discretization applies to the attributes of state
space, action space, and time.

If a given choice of discretization results in a failure
to find a solution to a motion planning problem, then the
algorithm can try again with a finer discretization in one or
more attributes. Repeated refinement of the resolutions of
discretization leads to a sampling that is dense in the limit.

B. Probabilistic Completeness

If a planning problem has a solution, then a probabilisti-
cally complete motion planner’s probability of failing to find
a solution approaches zero as time goes to infinity. If no
solution exists, then the planner may either run forever or
terminate after some iteration count with the response that
the existence of a solution is unknown.

Probabilistically complete planners often sample from a
random distribution that is dense in the underlying space.
Note that a resolution-complete planner that automatically
refines its sampling resolution is also probabilistically com-
plete.

C. Conditions for Completeness

We are specifically concerned here with demonstrating
the completeness of an ensemble of planners, given the
corresponding completeness of the constituent planners. We
therefore briefly lay out several conditions on how the en-
semble of planners is connected together and how it conducts
search of the joint state space.

In general, a complete ensemble E need not comprise the
largest possible connected graph of planners, G. Instead, we

may select any subgraph E ⊂ G and scope SE consistent
with a planning problem ME over that scope such that the
following criteria are met.

1) Monopoly on State Variables: Consensus requires that
E must have a monopoly within G on the state variables of
QE . A monopoly implies that no planner outside of E

• have control over any state variable within QE , nor
• have influence over the inputs of any planner with

control over some state variable in QE .
2) Strongly Connected Communication Graph: In addi-

tion to monopoly, consensus algorithms place requirements
on the connectivity of the communication graph. Planners
in E that plan in SE must be strongly connected. A graph
E is strongly connected if for every pair of nodes p and
q in E, p is reachable from q and q is reachable from
p [1]. Any remaining planners in E do not plan in SE but
influence the inputs of planners that do. Such planners must
be at least weakly connected (i.e. unidirectionally). They
are not required to receive inputs back because they do not
participate in the consensus algorithm.

The particular protocol for establishing consensus is not
the focus of this paper. An established consensus protocol
such as Paxos [6] might be employed for this task.

3) Scope Coverage: Completeness requires that the union
over each element of SE (that is state dimensions, time, and
actions) must cover the entire search space in each respective
domain of the ensemble planning problem. In general, this
requirement means that the ensemble of planners must search
over all dimensions in QE for all time TE = [0,∞) and all
valid actions UE of the robot.

4) Countable Combinatorics: We consider motion plan-
ning as a search over a tree of actions parametrized by time.
LaValle [18, pp 691-2] gives two properties that are sufficient
to show resolution completeness:

• the same motion primitive is never applied twice from
the same vertex, and

• the planner varies discretization resolution as needed.
Here, a motion primitive comprises some finite-length se-
quence of actions available from a given state.

5) Probabilistic Combinatorics: For probabilistic com-
pleteness, a looser guarantee is sufficient. We require only
that there is some positive probability of taking any fea-
sible action from any state. This requirement imposes an
independence condition on all of the planners’ samplers.
Note that the countable combinatorics listed above satisfy
these criteria, and so every resolution-complete planner is
inherently probabilistically complete as well.

D. Completeness Theorems

Lemma 1: Assume an ensemble of motion planners PE

with scope SE and communication graph E, whose connec-
tivity remains fixed over the length of motion planning pro-
cess, and that each constituent planner Pi ∈ PE is provided
with a common global specification of the planning problem.
Given conditions 1 and 2, PE is capable of producing any
output trajectory that an equivalent centralized planner with
scope SE could generate.

4117

Proof: In order to behave as a centralized planner, PE

must be capable of discovering and forming consensus on
any possible trajectory over the full scope of the ensemble,
SE . Each planner Pi must be capable of proposing any plan
within SE , by a combination of internal search and external
communication. To the extent that Pi does not internally
plan over SE , it must receive partial plans covering the
complement of its own internal scope, Sc = SE \ Si. Strong
connectedness guarantees that any partial plan can be relayed
to where it is needed in the graph, and scope coverage
guarantees that such a partial plan is available through
some combination of other planners in the graph. Forming
consensus requires strong connectedness and monopoly.

Theorem 1: Let PE be an ensemble of resolution-
complete planners satisfying the conditions on monopoly,
strong connectedness, scope coverage, and countable combi-
natorics outlined in Section IV-C. The motion planner PE is
resolution-complete.

Proof: A centralized motion planner with count-
able combinatorics is resolution complete by definition. By
Lemma 1, a decentralized ensemble of resolution complete
planners behaves like a centralized planner. The individual
planners, being resolution complete, never apply a single
motion primitive more than once. Since they are aware of
the full scope, they can apply this guarantee to the full
scope as well, thus never repeating actions from the same full
state. Since each planner can individually vary discretization
as needed, the ensemble can do so as well. Therefore, the
ensemble of planners is resolution complete.

Theorem 2: Let Pe be an ensemble of probabilistically-
complete planners satisfying conditions on monopoly, strong
connectedness, scope coverage, and probabilistic combi-
natorics outlined in Section IV-C. Pe is probabilistically
complete.

Proof: A centralized motion planner with probabilistic
combinatorics is probabilistically complete by definition. By
Lemma 1, a decentralized ensemble of probabilistically-
complete planners behaves like a centralized planner. The
individual planners, being probabilistically complete, apply
every motion primitive with non-zero probability. They can
apply this guarantee to the full scope as well, thus sampling
all actions from the same full state with non-zero probability.

Next, we prove that MBHP is resolution complete for
a class of robot called small-space controllable (SSC) [9].
Small-space controllability stipulates that for any configu-
ration q and radius ε > 0, there exists a neighborhood
N(q) around q such that for all configurations r ∈ N(q)
there exists an admissible trajectory from q to r that is
contained within an ε-ball centered at q. Such a robot is
capable of following a given trajectory with arbitrarily small
error if permitted to arbitrarily reparametrize time. Examples
include true omnidirectional drive, differential drive, and a
manipulator arm. Note that this requirement is looser than a
prohibition on nonholonomic constraints.

Theorem 3: MBHP is resolution complete when control-
ling a SSC robot model.

Proof: The local planner is involved in two loops: an
intra- and inter-cycle loop. The intra-cycle loop involves calls
to the global planner to quickly provide a low-fidelity path
to the goal. The inter-cycle loop operates more slowly and
involves the robot moving and the local planner beginning
anew from a slightly different start state. The path ultimately
executed by the robot comprises a series of trajectory inter-
vals generated by the slow inter-cycle loop. The quick intra-
cycle path serves as a proxy (i.e. an existence proof) for the
true path that is eventually executed.

Each planner is individually resolution complete over its
own scope. Given a SSC motion model, the robot could at
any time simply execute a path produced by the global plan-
ner. If no other path but the global plan exists, a resolution-
complete local planner may continue to sample at finer
action discretizations until an acceptably close approximation
of the global path is reached1. Thus, for a SSC motion
model, the completeness of the individual planners implies
completeness of the resulting MBHP hierarchy.

It is worth noting that this proof holds only when the
robots maintain a fixed communication graph. This stipula-
tion occurs because of the difficulty in achieving consensus
in the case of an arbitrarily changing graph topology. In the
context of multirobot collision avoidance, the robots are only
guaranteed sufficient time to find a new plan while executing
their contingency plan, thus we feel this is a reasonable
restriction.

We also restrict the proof to SSC robots. We do not mean
to suggest that other motion models cannot be made complete
within the MBHP framework. However, the challenge is that
the global planner must generate paths that fulfill the role of
a proxy for an eventual local path. In practice, it is difficult
to make a global planner scalable while also generating
approximable paths.

V. COLLISION AVOIDANCE PROPERTIES

We now turn our attention towards the more general con-
sideration of the distributed collision avoidance application
described in Section III-B. In particular, we show that a
variety of useful properties can be demonstrated for the
whole system based on the completeness of its constituent
motion planners.

Theorem 4: Any solution path returned by a (resolution-
or probabilistically-) complete motion planner (or ensemble
of planners) is free from deadlock, livelock, and starvation
over the scope of its problem specification.

Proof: Coffman et al. [7] enumerate the four conditions
necessary for deadlock to occur: mutual exclusion, resource
holding, no preemption, and circular wait. In the case of a
robot motion planner, the resource under contention is the
set of points occupied by the volume of the robot in the
task space over time. A complete planner is able to break
a circular wait condition by preemption—for example, one
robot moves out of the way of another.

1The local planner normally chooses not to execute the global path
because it is capable of representing smoother, more optimal trajectories
than the global grid path.

4118

When a complete planner (or ensemble of planners) re-
turns a plan, that plan gives a trajectory utilizing the full
scope of the problem connecting the start and goal states.
No situation that can be modeled by the planning problem
will prevent the robot(s) from executing the trajectory in the
joint state space until the goal state is reached. Thus, in the
full state space, all robots have reached their desired location
without livelock or starvation.

Corollary 1: A single SSC robot executing MBHP pro-
duces behavior that is free of deadlock and livelock.

Corollary 2: Multiple SSC robots executing MBHP with
collision avoidance form an ensemble of planners whose
behavior that is free of deadlock and livelock.

VI. DISCUSSION

In this paper, we formalize the concept of an ensemble
of motion planners that are decentralized but coupled to
some degree. Such planners must coordinate in order to
solve larger planning problems by combining each of their
capabilities.

Decentralization often results in significant improvements
in efficiency when compared to a single centralized planner
that must solve the joint planning problem in the full state
space. We show that these benefits can be gained with-
out sacrificing completeness of the ensemble of planners.
Completeness requires in essence only two properties: the
combinatorics of completeness and communication suitable
to reach consensus. The combinatorics of completeness re-
quire only that every combination of partial plans reported
by each planner will eventually be tested. Completeness,
in turn, provides a number of important guarantees for
decentralized multi-robot algorithms. A complete planner
avoids the problems of deadlock, livelock, and starvation.

In closing, it should be emphasized that not all planning
problems are equally amenable to the decoupling approach
enabled by an ensemble of planners. In the worst case, the
countable combinatorics requirement can lead to memory
usage that is exponential in the size of the planning problem.
Such queries are better addressed in a centralized fashion.

The expansiveness property of an environment [12] pro-
vides an indication of the potential for decoupling the plan-
ning problem. In an expansive environment, many possible
solutions exist, and so the problem of joining a set of partial
plans diminishes in difficulty compared to the problem of
generating the paths.

REFERENCES

[1] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms
and Applications. Springer Monographs in Mathematics,
London, 2009.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A
distributed representation approach. International Journal of
Robotics Research, 10(6):628–649, 1991.

[3] K.E. Bekris, D.K. Grady, M. Moll, and L.E. Kavraki. Safe
distributed motion coordination for second-order systems with
different planning cycles. International Journal of Robotics
Research, 31(2), February 2012 2012.

[4] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm
in configuration space for findpath with rotation. IEEE

Transactions on Systems, Man and Cybernetics, SMC-15(2):
224–233, March/April 1985.

[5] J.F. Canny. The Complexity of Robot Motion Planning. MIT
Press, 1988.

[6] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live –
an engineering perspective. In Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing, 2007.

[7] E.G. Coffman, Jr., M.J. Elphick, and A. Shoshani. System
deadlocks. Computing Surveys, 3(2), June 1971.

[8] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser,
J. Rosenblatt, D. Tseng, and V. Wong. Autonomous cross-
country navigation with the ALV. In Proceedings of the In-
ternational Conference on Robotics and Automation, Philadel-
phia, PA, 1988.

[9] S. Dalibard, A. El Khouryz, F. Lamiraux, M. Taix, and J.P.
Laumond. Small-space controllability of a walking humanoid
robot. In 11th IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids), pages 739–744, 2011.

[10] E.W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[11] C. Dornhege, P. Eyerich, T. Keller, M. Brenner, and B. Nebel.
Integrating task and motion planning using semantic attach-
ments. In Workshops at the Twenty-Fourth AAAI Conference
on Artificial Intelligence, 2010.

[12] D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic
foundations of probabilistic roadmap planning. International
Journal of Robotics Research, 25(7):627–643, 2006.

[13] L.P. Kaelbling and T. Lozano-Perez. Hierarchical planning in
the now. In Workshops at the Twenty-Fourth AAAI Conference
on Artificial Intelligence, 2010.

[14] R.A. Knepper and D. Rus. Pedestrian-inspired sampling-based
multi-robot collision avoidance. In Proceedings of the IEEE
International Symposium on Robot and Human Interactive
Communication, Paris, France, September 2012.

[15] R.A. Knepper, S.S. Srinivasa, and M.T. Mason. Hierarchical
planning architectures for mobile manipulation tasks in indoor
environments. In Proceedings of the IEEE International
Conference on Robotics and Automation, Anchorage, USA,
May 2010.

[16] S. Koenig and M. Likhachev. D*lite. In Proceedings of
AAAI/IAAI, pages 476–483, 2002.

[17] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On
the relationship between classical grid search and probabilistic
roadmaps. International Journal of Robotics Research, 23
(7/8):673–692, July/August 2004.

[18] S.M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[19] T. Lozano-Perez. Spatial planning: A configuration space
approach. IEEE Transactions on Computers, C-32(2):108–
120, February 1983.

[20] T. Lozano-Perez, J.J. Jones, E. Mazer, P.A. O’Donnell, W.E.L.
Grimson, P. Tournassoud, and A. Lanusse. Handey: A robot
system that recognizes, plans, and manipulates. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation, volume 4, 1987.

[21] B. Marthi, S.J. Russell, and J. Wolfe. Angelic semantics
for high-level actions. In 17th International Conference on
Automated Planning and Scheduling (ICAPS), Providence,
USA, 2007.

[22] C. McGann, E. Berger, J. Bohren, S. Chitta, B. P. Gerkey,
S. Glaser, B. Marthi, W. Meeussen, T. Pratkanis, E. Marder-
Eppstein, and M. Wise. Model-based, hierarchical control
of a mobile manipulation platform. In ICAPS Workshop
on Planning and Plan Execution for Real-World Systems,
Thessaloniki, Greece, 2009.

[23] J. Snape, J. van den Berg, S. Guy, and D. Manocha. The hybrid
reciprocal velocity obstacle. IEEE Transactions on Robotics,
27(4):696–706, 2011.

4119

