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Abstract— We present a distributed collision avoidance al-
gorithm for multiple mobile robots that is model-predictive,
sampling-based, and intuitive for operation around humans.
Unlike purely reactive approaches, the proposed algorithm
incorporates arbitrary trajectories as generated by a motion
planner running on each navigating robot as well as predicted
human trajectories. Our approach, inspired by human navi-
gation in crowded pedestrian environments, draws from the
sociology literature on pedestrian interaction. We propose a
simple two-phase algorithm in which agents initially cooperate
to avoid each other and then initiate civil inattention, thus
lessening reactivity and committing to a trajectory. This process
entails a pedestrian bargain in which all agents act competently
to avoid each other and, once resolution is achieved, to avoid
interfering with others’ planned trajectories. This approach,
being human-inspired, fluidly permits navigational interaction
between humans and robots. We report experimental results for
the algorithm running on real robots with and without human
presence and in simulation.

I. INTRODUCTION

Sampling-based planners have often been employed to
enable robots to avoid obstacles, both static and dynamic [2].
If the obstacle is an intelligent agent, such as a human or
another robot, this problem is complicated by the difficulty in
predicting the agent’s reaction to the robot’s own movements
(Fig. 1). A number of multi-robot collision avoidance algo-
rithms have been proposed that can incorporate the reactions
of fellow robots. However, many of these, such as potential
fields [27] and reciprocal velocity obstacles [28], are purely
reactive and therefore cannot incorporate general predictions
about an agent’s intended trajectory.

We describe the first distributed, sampling-based, coopera-
tive collision-avoidance algorithm that is predictive, reactive,
and reciprocal, thus leaving the system of robots free from
instability. We have demonstrated a mixed human-robot
team performing interactive collision avoidance smoothly
and safely. The key insight—stemming from observations of
humans navigating in pedestrian traffic—is that people nor-
mally perform pairwise mutual avoidance by reacting to each
interfering person only once. This simple behavior, which
enables humans to smoothly avoid one another, can be easily
recreated within the sampling-based planning paradigm.

A. Prior Work

From a motion planning perspective, intelligent, dynamic
obstacles open up many avenues for investigation. Many have
noted that multi-agent collision avoidance is a cooperative
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Fig. 1. Four robots cooperate with each other and a human at an assembly
task [24] in a confined space. The robots’ navigation and collision avoidance
algorithms draw inspiration from human social conventions for moving in
crowded pedestrian spaces.

pursuit, leading to reciprocal algorithms in which an agent
can expect its co-agents to cooperate in avoiding each
other [13, 23, 26]. Trautman and Krause [26] recognize that
if agent trajectory prediction is done for the purpose of robot
navigation, then it is vital to perform joint collision avoidance
by incorporating the robot’s own planned motions into the
prediction to avoid deadlock.

The reciprocal velocity obstacle concept and its vari-
ants [23] represent a reactive approach to collision avoid-
ance in which moving objects are assumed to possess a
desired constant velocity. Under a naive assumption that
other robots do not react, an oscillation termed reciprocal
dance can arise as robots repeatedly react to changes in each
others’ actions. To solve the resulting oscillatory behavior,
the reciprocal velocity obstacle (RVO) approach assumes that
all other agents are also running the RVO algorithm and
will cooperatively react to avoid the collision. Each robot
then commands the constant velocity that deviates minimally
from its preferred trajectory. The hybrid reciprocal velocity
obstacle is an enhancement on the RVO concept, in which
moving to the right is preferred by allowing 50% avoidance
to the right but requiring 100% avoidance to the left.

Wilkie et al. [29] propose a sampling-based implementa-

2012 IEEE RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication.
September 9-13, 2012. Paris, France.

978-1-4673-4606-1/12/$31.00 ©2012 IEEE 94



tion of the velocity obstacle concept, which assumes constant
velocity on the part of all moving obstacles. They sample in
the space of controls, as we do, and they apply the velocity
obstacle concept to nonholonomically constrained mobile
robots. Reciprocal behavior is not addressed.

Helbing and Molnár [8] offer an alternative type of reactive
model for pedestrians moving in crowds. Like the potential
fields [11] of robotics, their social fields incorporate repulsive
forces to avoid other pedestrians and an attractive force to
pull an agent toward its goal. This model can also incorporate
penalties for walking in non-preferred areas. The work of
Treuille et al. [27] employs such social field concepts to
simulate thousands of believable pedestrians in real time.

These social field methods are inherently “zeroth-order”
models of pedestrian behavior in the sense that an individ-
ual’s velocity is governed by only the position of neighboring
agents—as though their motions are a surprise. The recip-
rocal velocity obstacle methods, which anticipate a collision
avoidance reaction, are still only first-order reactive methods
in that they otherwise expect indefinite constant velocity
among all agents.

Kirby [12] argues that “appropriate social behavior re-
quires optimal global planning for obstacle avoidance, rather
than locally reactive behaviors.” We introduce such a global
planning approach to collision avoidance, but a commensu-
rate pedestrian prediction algorithm is required to empower
robots to operate amongst humans.

The prediction of pedestrian trajectories has been well
studied. Even the problem of predicting a single pedestrian
in isolation can lead to sophisticated solutions [16, 25, 31].
Another approach has been to model pedestrian behavior in
aggregate within crowds [4, 9].

In planning robot motions near people, there has been
work in incorporating human social comfort into robot mo-
tions [12, 21, 22]. These planners understand that pedestrians
move, and they incorporate human factors like proxemics,
visibility, and passing side. However, none of these human-
aware planning approaches is capable of utilizing more than
a first-order model of pedestrian prediction.

This paper contrasts with prior work by incorporating
the human practice of civil inattention to make robot mo-
tions more socially acceptable. Furthermore, it employs a
sampling-based motion planning algorithm that is simulta-
neously predictive and reactive and thus is compatible with
human environments. By employing a reciprocal planner, we
ensure consistent, intuitive behavior so long as other agents’
motions can be predicted.

II. DYNAMIC OBSTACLE AVOIDANCE ALGORITHM

Dynamic obstacle avoidance is contingent on two separate
capabilities. First, the robot must be able to predict the
future trajectory of a dynamic obstacle, or agent, passing
through the robot’s environment. For other robots running the
algorithm, prediction is performed by by exchange of time-
parametrized planned trajectories. When interacting with
other robots or humans, it is necessary to run a prediction
algorithm. Second, the robot must define a control strategy

Fig. 2. Cooperative collision avoidance from the left agent’s perspective.
Top: The agent detects another agent on a colliding trajectory. Middle: The
agent plans a maneuver that avoids at least 50% of the impending overlap.
Bottom: The pedestrian bargain requires that the oncoming agent plan a
similar maneuver, thus separating the agents’ centers by at least 100%.

that is both optimized for the predicted trajectory and safe
in any other outcome. We begin this section with a brief
overview of the sociology literature concerning pedestrian
avoidance models.

A. A Primer on Human Avoidance Models

In navigating through personal spaces, humans make fre-
quent, minor corrections to their trajectory in response to
the predicted motions of other people. In so doing, we
follow a social convention, or pedestrian bargain, designed
to distribute responsibility for altering one’s trajectory in
recognition of another’s intentions. Wolfinger [30] describes
the pedestrian bargain as comprising two rules: “(1) people
must behave like competent pedestrians, and (2) people must
trust copresent others to behave like competent pedestrians.”

In describing unfocused interaction [7, P. 24], Goffman
illustrates one key aspect, civil inattention: following ac-
knowledgment of a person, one looks away “so as to express
that he does not constitute a target of special curiosity or
design” [7, P. 84].

The following procedure, based on observation of pedes-
trians, encapsulates the above concepts. We portray the
procedure from the point of view of a person (the self), who
is interacting with a single pedestrian (the other).

Pedestrian Avoidance Procedure:
1) The interaction begins when the self perceives a possible

future collision with the other.
2) If the other appears competent and engaged, then the self

makes a visible move to correct their trajectory by about half
of the amount required to fully avoid collision with the other.

3) Otherwise, the self makes a full effort to avoid the other.
4) Finally, the self resolves the interaction by initiating civil

inattention.

Most often, this sequence occurs simultaneously on the
part of both pedestrians engaged in an interaction, who
thus both fulfill their half of the bargain (Fig. 2). However,
the procedure is robust to various circumstances. Suppose
one pedestrian is distracted (i.e. practicing civil inattention).
The alert person, A, must estimate whether he believes
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the distracted one, D will eventually fulfill his half of the
bargain. If A chooses to fully avoid D, then the interaction
is resolved (at the cost of A thinking D rude). If, on the
other hand, A believes that D will come around in time
to interact, then A may perform the half-correction. By the
time D does notice the incipient collision, A has begun to
exercisers civil inattention, thus failing the engaged qualifi-
cation. Consequently, D must make 100% of the effort to
avoid collision—that amount being the original 50% effort,
had D been paying attention.

B. Dynamic Agent Control Strategy

The decentralized control strategy for an agent navigating
among other moving agents can be derived directly from
Table I. The policy prescriptions in the right column dictate
the amount of the total initiative that agent A should assume
on the basis of the assumption stated in the left column. The
ReactAlone algorithm assumes that the other agent will
make no reaction. In contrast, ReactCooperatively
behaves as though the other agent will also react (as dictated
by the pedestrian bargain). Concretely, a cooperative reaction
means that two agents share responsibility for avoiding each
other—they should each make half of the total effort.

TABLE I
DISTRIBUTED COOPERATIVE REACTION POLICY

If agent B ... , then agent A should ...
did react ReactAlone
will react ReactCooperatively
will not react ReactAlone

The greatest challenge in implementing this policy comes
in classifying the intention of other agents. For the case of
robot-robot interaction, the robots can simply communicate
their intended trajectory and with what other agents they are
currently interacting.

In the case of a human and robot interacting, the robot
must track and predict the motion of the pedestrian. So-
phisticated pedestrian predictions that represent arbitrary
trajectories, such as the work of Ziebart et al. [31], are
supported. At present, we employ a simpler constant-velocity
prediction algorithm as in the work of Kirby [12]. At present,
we do not attempt to communicate civil inattention on the
part of robots towards people.

We assume some maximum speed vmax and lookahead
time τ for all agents, which is sufficient to guarantee that all
agents can react to one another and prevent collision. Thus,
inevitable collision states [6] can be avoided. Together, these
parameters give rise to a neighborhood comprising all space
within the controller horizon distance of dmax = vmaxτ .
The controller calls for each robot to broadcast to others
within radius dmax a list of IDs of robots to which it
has already reacted. Robots also broadcast their own latest
planned trajectory.

III. SAMPLING-BASED IMPLEMENTATION

In this section, we describe a sampling-based motion
planning implementation for multi-robot collision avoidance.

Fig. 3. Depiction of the sampling-based planner in action. The red robot
at top left is moving towards its goal at bottom right while avoiding the
other agents’ predicted trajectories in purple. Each agent’s local planner
samples 120 controls representing possible commanded velocities. Paths
surviving the collision test are classified (colored) according to routes among
obstacles, similar to a localized version of homotopy (see [15]). The planner
selects one path for execution (red with dot). Note that the robot plans spatio-
temporally, thus the red path passes behind the purple robot. The result of
four robots executing the algorithm is an emergent traffic circle pattern.

Sampling-based motion planners operate on the principle
of rejection sampling. Time-parametrized paths are drawn
from some distribution that neglects any obstacles in the
environment. The sampled paths are then collision checked,
and any path that would result in a collision is rejected
from further consideration by the planner. This approach may
be costly in densely cluttered spaces, but it provides two
helpful attributes: (1) sampling bias is minimized because
the distribution of paths in the free space is precisely the
underlying sampling distribution within that space, and (2)
the rejection sampling algorithm is simple to implement.

A. Model-Predictive Hierarchical Planner

We build on our implementation of the model-based
hierarchical planner [14]. Hierarchical planners have a long
history in navigation [1, 5, 17, 19]. Many sampling-based
planners are amenable to the ideas we present, but the
hierarchical planner is particularly suited to local pedestrian
avoidance. Its path samples are limited to the local neighbor-
hood around the robot—the same space with which humans
are concerned while navigating through pedestrian traffic.

In the planner hierarchy, planners are arranged in levels
that trade off predictive fidelity against range. This archi-
tecture is motivated by the notion that the majority of
computational cycles should be spent on the most immediate
future. Kinematics and dynamics are the most constraining
over short intervals of space and time, thus making planning
the most challenging at this range. Also, the robot is most
certain about the position and trajectory of other agents in
the space closest to its sensors.

At the local level, the planner is fully aware of the robot’s
kinodynamic constraints based on a predictive model. It
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ensures feasibility of local trajectories by sampling controls
from the action set and integrating them forward in time.

Figure 3 shows the candidate paths in several colors to in-
dicate a classification of the paths according to the predicted
motion the robot would make with respect to obstacles. This
equivalence relation [15] allows the planner to cluster similar
paths that permit a continuous deformation in path shape,
resembling homotopy. However, these path deformations
obey all robot motion constraints and are restricted to a
limited area around the robot’s current state.

This equivalence relation is valuable for collision avoid-
ance. Given a nominal path, the planner is able to substitute
a variety of alternative paths with the knowledge that each
trajectory would pass each other agent on the same side as
the original, thus not provoking a major change in others’
plans. In particular, we use this capability to select among a
variety of safe paths that are equivalent to the shortest path
to the goal. The shortest path tends to graze obstacles, which
is undesirable both for safety and social acceptability. The
robot therefore prefers to execute a path that is in the same
equivalence class as the shortest path but is appropriately far
from the closest obstacle (whether static or dynamic). An
additional benefit of this approach is that the shared-initiative
collision avoidance algorithm tends to converge quickly.

At the global level, a long-range grid-based motion planner
abstracts away kinodynamic constraints but retains awareness
of the topology of the free space. The global planner thus
provides a value function that guides the robot in the direc-
tion of the goal.

In order to mediate between the local and global planners,
the local planner possesses a time horizon similar to that
of model-predictive control. Beyond this horizon, the global
planner serves as a heuristic to estimate time to the goal. We
assume that the local planner’s horizon, τ , is sufficient to
safely avoid other moving agents. This assumption, coupled
with robot dynamics, constrains the speed at which robots
may safely move through space.

In order to react to changing conditions and maintain a
safe reaction distance as the robot moves through the world,
the local planner must replan at a regular rate r � 1

τ .
For pedestrian-scale dynamics, a replan rate on the order
of 10 Hz is typically sufficient. At the conclusion of each
replan cycle, the planner must select a single path to execute
from among those that survived a collision check. The path
selected is that which minimizes the sum of local and global
time to the goal.

B. Sampling-Based Cooperative Collision Avoidance

As with conventional rejection sampling, our planner
collision checks a sequence of paths and rejects any sample
predicted to result in a collision with a static obstacle in the
environment. This planner additionally models and avoids the
trajectories of dynamic obstacles (agents) in the environment.
Agent models include human predictions as well as planned
trajectories communicated from other robots.

Unlike static obstacle collisions, we do not necessarily
reject a path sample that is predicted to collide with a moving

agent’s current trajectory—after all, that agent should be
expected to cooperate in the avoidance maneuver.

There are two phases of interaction as indicated by the
presence or absence of civil inattention. Before the onset of
civil inattention, we compute the maximal expected overlap
between the trajectories of the robot and oncoming agent
as a fraction of agent diameter. Overlap fraction is used as
a proxy for the expected contribution of the other agent to
collision avoidance. Trajectories that overlap by more than
some fraction are rejected by the planner. The rejection of
samples with overlap above 50% would result in balanced
initiative between the robot and agent.

In practice though, the agent may be unable to avoid
the robot by 50%, perhaps because of another obstacle.
The planner therefore follows a progression, in which the
threshold for rejection reduces overlap with each successive
iteration. Let the overlap rejection threshold at replan itera-
tion i be denoted fi. With the first iteration since initiating
an interaction, let f0 = 1

2 . Subsequent thresholds are defined
by a progression fi+1 = fi

r , with r > 1. The rate of
the progression, r, can be tuned as appropriate for a given
response time based on the replan rate. This progression
enables the robot to rapidly adapt to the agent’s intentions,
while still behaving socially with agents that follow the
protocol. Note that at each step, the use of path equivalence
classes often leads the robot to prefer paths with less overlap,
as they are also safer to execute. Thus, the process generally
converges quickly.

After one agent initiates civil inattention with respect to
another, the second agent must only execute trajectories that
entirely avoid the first. That is, all future fi = 0. Once it has
found a collision-free path, the second agent would naturally
also initiate civil inattention with respect to the first. Being
unable to detect civil inattention in humans, we currently
assume humans always engage in civil inattention towards
all robots, causing robots to defer to humans.

Finally, it should be noted that two robots that have already
reacted to one another and initiated civil inattention may need
to reinitiate an interaction at a later time. One such scenario
occurs when the robots depart and reconverge. In such a case,
they could view each other as novel agents.

A separate case for turning off civil inattention occurs
when something unanticipated changes in the environment.
For instance, the action of some third agent may eliminate
a robot’s prior plan, leaving it only paths that would collide
with some other agent. In such a case, the robot would be
forced to re-engage with all its neighbors.

C. Passing Convention

The above algorithm results in both agents nudging their
trajectories sufficiently sideways in order to avoid collision.
However, it is important that the agents do not move to
the same side. Thus, a convention is needed for passing. In
evaluating two agents’ trajectories, we examine their points
of closest approach. Agent A considers the side of agent B on
which it passes. We follow the North American convention
that A passes on B’s left, as shown in Fig. 4.
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Fig. 4. A passing convention is needed that covers diverse situations.
We adopt the convention that agent A prefers to pass to co-agent B’s left
side. This rule fits expected behavior for both oncoming passes (left) and
overtaking passes (right) in North America.

We implement the side preference using overlap fractions.
A sampled path that passes on the preferred side is subject to
the aforementioned threshold of fi ≤ 1

2 , whereas trajectories
passing on the nonpreferred side are subject to an elevated
threshold of ei = fi − 1. An overlap of − 1

2 indicates
that a gap of one robot radius must exist between the two
agents. This asymmetry causes the robot to prefer to pass to
another agent’s left because it results in a smaller, less costly
deviation from the desired trajectory.

D. Contingency Plans

As a parallel distributed system, occasions will arise in
which the robots must iterate several times before resolving
an interaction—just as pedestrians sometimes reach a stale-
mate in which they both attempt to move to the same side
several times. In such instances, the stochasticity introduced
by the sampling-based planning algorithm is a valuable asset
in breaking the symmetry and resolving the stalemate.

To guarantee safety, however, it is insufficient to rely on
stochasticity. In addition to computing the primary preferred
trajectory, we ask the planner to supply a second, contin-
gency trajectory with two properties. First, the contingency
trajectory is free of collision under the more conservative
assumption that the opposing agent does not cooperatively
alter its trajectory. Second, the contingency trajectory shares
its initial control input with the primary trajectory, then devi-
ates to avoid collision. The contingency is constructed so that
if no viable trajectories are found in the subsequent replan
cycle, then the contingency trajectory may still be safely
executed. Bekris et al. [3] describe a similar contingency-
based distributed motion planning algorithm with safety
guarantees. For mobile robots, the contingency trajectory
generally correlates to a stop. Any contingency trajectory
has the property that it can be executed in perpetuity. Thus,
the planners on each robot have sufficient time to work out
any situation to avoid deadlock.

E. Guarantees

By virtue of utilizing a complete motion planner, the
collision avoidance algorithm provides several important
guarantees when robots avoid other robots. These guarantees
include being deadlock-free, livelock-free, and starvation-
free. A brief argument follows.

Completeness is the property that a motion planner will
find a solution in finite time to every query for which a

solution exists, and it will otherwise report that no solution
exists. MBHP provides a limited form known as resolution
completeness, which provides that if a solution exists within
a given sampling resolution, it will be returned in finite time.

By exchanging planned trajectories, the individual robots
have sufficient information to guarantee resolution complete-
ness for the collection of motion planners in a local neigh-
borhood. The completeness property provides that when
convergence occurs, the collection of planners has found
a solution to the collective motion planning problem that
includes trajectories for all interacting robots.

The condition of possessing a solution to the collective
motion planning problem naturally leads to each of the guar-
antees. Unlike pure collision avoidance schemes, a motion
plan leading all the way to each robot’s goal ensures that
no robot will become stuck in an infinite wait (deadlock,
starvation) or execute a series of motions that fail to make
progress to the goal (livelock).

IV. EXPERIMENTAL RESULTS

We performed experiments on the collision avoidance
algorithm both in simulation and with real robots. We
employed ROS [20] for communication among the robots.
For the purpose of these experiments, the robots were
provided accurate localization; incorporation of localization
uncertainty into the algorithm remains a subject for future
work. We localized the real robots using a Vicon tracking
system equipped with twelve cameras. Simulated physics
and localization were provided by Gazebo as packaged with
ROS. In simulation, we studied scalability and the algo-
rithm’s ability to handle crowded circumstances. In the real
robot experiments, we examined human interaction while the
robots performed an assembly task.

A. Real Robot Results

With the real robots, we demonstrated the ability of
the collision avoidance algorithm to successfully complete
a task involving teamwork amongst robots while safely
accommodating a human moving through the environment.
The assembly task (Fig. 1) involves a team of four KUKA
youBots delivering and assembling components to build a
tower, based on the algorithm of Stein et al. [24]. During
the trials, an expert user wandered through the 5 m x 5 m
robot workspace, both aiding and interfering with the robots.

For these experiments, the human wore a hat marked
with retroreflective tracking markers tracked by the Vicon
system. A sliding window average of one second was used
to estimate the human’s current velocity. The trajectory was
then predicted by integrating ten seconds into the future.

We ran five trials of the assembly procedure over a
combined seventeen minutes. During that time, we recorded
67 instances in which a robot reacted to the human, aver-
aging one such interaction every fifteen seconds. Eighteen
interactions involved the human standing at the robot’s goal
or blocking the robot’s path. In such circumstances, the robot
has no means of progressing, and so it sits and waits for the
human to move. These behaviors are identical to the way
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Fig. 5. We performed experiments in which robots are placed in a circle
of 8 m diameter and asked to swap positions with their antipodal neighbor.
The bottom figure shows an intermediate state in a sixteen-robot navigation
scenario. Although the scene appears chaotic, a pattern of counterclockwise
traffic circle flow emerges.

that robots treat other robots. In over sixty human attempts to
block the robot, only a single contact occurred, in which the
robot brushed the human’s foot. This occurrence is believed
to be a result of lag in the prediction algorithm reporting to
the planner since the tracking algorithm runs off-board.

B. Simulation Results

We ran simulation trials in order to demonstrate statis-
tically significant results over larger numbers of trials and
also to demonstrate scalability of the algorithm beyond the
number of physical robots available to test. We performed
experimental runs on groups of robots ranging from one to
sixteen. In these results, we arranged the robots in an 8 m
diameter circle and commanded each to swap positions with
its antipodal neighbor.

A traffic circle pattern naturally emerges, although the
algorithm was not explicitly designed to do so. This result
suggests that the algorithm correctly captures the passing
semantics adopted by humans. Figure 5 shows an example
of the crowded conditions under which the algorithm ran.

Figure 6 demonstrates the scalability of the algorithm. As
the density and quantity of robots attempting to navigate
through the crowd increases, the average time for each
to reach its destination scales linearly, suggesting that our
decentralized approach remains efficient and effective even
in dense crowds. Reported times represent the total planning,
execution, and wait time. Note that since the each robot
only interfaces with others in its fixed-area neighborhood,
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Fig. 6. Simulated scalability experiment. Robots are placed in a fixed
diameter circle as in Fig. 5. As the number of robots increases, the impact
on elapsed time (sum of planning, execution, and wait time) for all robots
to reach their goal is shown. Error bars indicate range of observed times
over sixteen trials. Average time for a robot to reach its destination appears
to scale linearly with the number of robots. No collisions or deadlocks
occurred during any experiment.

Fig. 7. In this experiment, each solid robot must exchange positions with
its diagonally-opposite neighbor while avoiding collision with walls and
other robots. The robots all simultaneously reach the narrow doorway, which
permits only one robot at a time to pass through. The resulting behavior
is safe and efficient, with both robots on one side holding back (solid line
pausing at ghosted robots) while the other two (dotted line) pass through in
tandem. Once the second robot clears the doorway, the two waiting robots
proceed through.

the performance relates only to the local population within
that neighborhood—that is, the density of robots.

Finally, in Fig. 7, four robots must navigate through an
office-like environment. A narrow doorway at the center
permits only one robot to pass through at a time, thus forcing
them to take turns. As in the case of boarding a train, it is
most efficient for all agents to pass through in one direction
while the others wait for their turn, and this is precisely the
behavior we observe.

V. DISCUSSION AND FUTURE WORK

In this paper, we propose a new multi-agent distributed
collision avoidance algorithm. This algorithm avoids the
drawbacks of purely reactive collision avoidance algorithms
by anticipating entire trajectories for each agent involved in
the interaction. Trajectories are selected using a dynamics-
aware sampling-based motion planning algorithm. The avoid-
ance of moving agents—both robots and humans—can nat-
urally be integrated into this motion planning framework.
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Any dynamic system that can be modeled is supported. The
algorithm draws inspiration from human pedestrians to coop-
eratively avoid collisions without prioritizing one agent over
another. By introducing both prediction and civil inattention
into the process, we prevent chain-reactions among agents,
in which each reacts to another’s reaction.

We have demonstrated the algorithm in a mixed human-
robot setting. Future extensions of this work include the
incorporation of more social conventions, including the use
of gaze (both to and from the robots), which will result in
improved performance for the collision avoidance algorithm.
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human aware mobile robot motion planner. IEEE Transactions
on Robotics, 23(5):874–883, 2007.

[23] J. Snape, J. van den Berg, S. Guy, and D. Manocha. The
Hybrid Reciprocal Velocity Obstacle. IEEE Transactions on
Robotics, 27(4):696–706, 2011.

[24] D. Stein, T. R. Schoen, and D. Rus. Constraint-aware
coordinated construction of generic structures. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems, 2011.

[25] S. Thompson, T. Horiuchi, and S. Kagami. A Probabilistic
Model of Human Motion and Navigation Intent for Mobile
Robot Path Planning. In Proceedings of the 4th International
Conference on Autonomous Robots and Agents, Wellington,
New Zealand, February 2009.

[26] P. Trautman and A. Krause. Unfreezing the Robot: Navigation
in Dense, Interacting Crowds. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems,
October 2010.

[27] A. Treuille, S. Cooper, and Z. Popović. Continuum Crowds.
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