
Human Expectations of Social Robots
Minae Kwon, Malte F. Jung, and Ross A. Knepper

Computing and Information Science, Cornell University, Ithaca, NY, USA

Abstract—A key assumption that drives much of HRI research
is that human-robot collaboration can be improved by advancing
a robot’s capabilities. We argue that this assumption posits a
major challenge to developing social robots. Increasing social
capabilities in robots can produce an expectations gap where
humans develop unrealistically high expectations of social robots
due to generalization from human mental models. By conducting
two studies with 674 participants, we examine how people develop
and adjust mental models of robots. We find that both a robot’s
physical appearance and its behavior influence how we form these
models. This suggests it is possible for a robot to unintentionally
manipulate a human into building an inaccurate mental model
of its overall abilities simply by displaying a few capabilities that
humans possess, such as speaking and turn-taking. We conclude
that this expectations gap, if not corrected for, could ironically
result in less effective collaborations as robot capabilities improve.
In this paper, we first describe our research and then discuss
related challenges that can arise in real-life settings.

I. INTRODUCTION

Given the difficult nature of integrating robots into tasks that
need human collaboration, the advance of anthropomorphic
and sociable robots has made significant progress. The effec-
tiveness of human-robot collaboration is limited by the lack
of robot skills, both technical and social. By increasing skills
in both areas, it is believed that interaction will be deeper,
tighter bonds will form, and the collaboration will proceed
more smoothly [2].

Often, however, socially intelligent robots give the impres-
sion that they are more intelligent than they really are. For
example, research has found that perceptions of animacy and
intelligence are closely related and simply making a robot
more human-like in its appearance and behavior increases
perceptions of intelligence [1]. It is therefore likely that in
many situations people’s perceptions of a robot’s intelligence
and its actual capabilities are not well aligned. The question
of how a robot’s embodiment and behavior shapes perceptions
of specific capabilities is underexplored. We therefore intro-
duce the term expectations gap to describe this under-studied
phenomenon that occurs when humans encounter complex
engineered systems and form expectations that are misaligned
with the system’s capabilities. Today’s engineers build robots
to be good at specific capabilities. In contrast, humans are
generally adept at a broad set of capabilities. Humans also
have a tendency to assign agency to, or anthropomorphize,
human-like objects [5], including robots [7]. When seeing
robots that seem sociable or anthropomorphic, it is easy for us
to generalize human mental models to robots [2]. We normally
trust others to be able to perform a common set of core
capabilities, such as speaking or walking. Therefore, when
attributing a human mental model to a robot, we hypothesize

Fig. 1: Anthropomorphism in robots is a double-edged sword,
leading to both smooth interaction with humans and unreal-
istically high expectations due to human mental models that
generalize capabilities from humans to social robots.

that humans will initially overestimate the robot’s actual
breadth of capabilities.

The harm lies in the fact that incorrectly generalizing capa-
bilities creates misplaced trust due to false expectations, setting
people up for disappointment and eventually mistrust [4]. A
lack of trust has been shown to impair team performance [8]
[3] and an expectations gap could even provoke dangerous
situations as robots increasingly support safety-critical tasks
in surgery or search and rescue.

Through a prolonged interaction, people do figure out and
adapt to a robot’s idiosyncrasies. However, there is a whole
class of tasks involving brief interactions (such as customer
service) in which the interaction is over before the human user
has been able to recognize the robot’s true capabilities, much
less adjust to them. We therefore hold that the expectations gap
is a genuine problem in human-robot interaction that must be
better understood.

In this paper, we present two studies that contribute prelim-
inary evidence in support of the hypotheses that (1) humans
construct distinct theory of mind models of machines and
people, (2) people attribute more human mental models to
more social robots, and (3) mental models can be changed by
the robot’s behavior. We then address the implications of these
findings on the methodology required to support real-life HRI
scenarios deployed long-term outside of the lab.

II. STUDY 1: MEASURING EXPECTATIONS

In a two (Context: industrial vs domestic) by three (Level
of anthropomorphism of agent: industrial robot vs. humanoid
robot vs. human) between subjects study with N=600 partic-
ipants from Amazon Mechanical Turk (AMT), we examined



Fig. 2: Users’ trust of robots performing social tasks in industrial (top) and
domestic (bottom) settings. Robots were better discriminated by social tasks
in the kitchen setting.

the impact of varying levels of anthropomorphism on people’s
trust that an agent is capable of performing specific tasks.

Method. We created six surveys that each presented partici-
pants with a vignette describing a human worker collaborating
on a task with one of our three featured agents in either an
industrial setting or a domestic setting. The industrial setting
pictured a team in a factory working to install a speaker into
a car door and the domestic setting pictured a team cooking
dinner in a household. Levels of anthropomorphism were
manipulated by displaying a picture of either an industrial
robot named “KR-6,”, a humanoid robot named ”Baxter,”
or a human named ”Fred” at the start of the survey. As
dependent variables, we asked participants to rate how much
they would trust the featured teammate to accomplish six
related tasks using a 5-point Likert scale (1-”Completely
Distrust”, 5-”Completely Trust”). These tasks all involved
social interaction such as handing speakers to a teammate or
taking turns. Of the six tasks, three were “observed tasks” that
were included in the task description in the survey and three
were “unobserved” but related tasks.

Results. To analyze our data, we conducted Single-Factor
Analysis of Variance (ANOVA) and Tukey’s Post Hoc tests.
ANOVA tests comparing scores for Fred, Baxter, and KR-
6 in the industrial setting revealed a significant difference
between groups, p<0.01, for all tasks except for ”Hand
speaker,” F(2,288)=1.52, p>0.05. Similarly, ANOVA tests
for the domestic setting show significant differences between
the three groups for all tasks except for ”Hand vegetable,”
F(2,297)=2.98, p>0.05. From the Tukey’s Post Hoc tests,

Fig. 3: Mean scores of participants’ confidence levels in the featured
teammate’s ability to complete the seven tasks. Confidence scores were
recorded for each video segment[1-5], including the initial still shot[0].

we found significant differences between Baxter and KR-
6 in the ”Understand request,” ”Take turns,” ”Empathize,”
and ”Recognize need” tasks, p<0.01, in the domestic setting.
However, there were no significant differences for any trait
between Baxter and KR-6 in the industrial setting, as shown
in Fig. 2. The results indicate that people seem to generalize
capabilities for a humanoid robot more than an industrial robot
when in a domestic setting. This suggests the importance
of designing robot behavior in a way that will be able to
mitigate high expectations when interacting with humans in
less industrial settings.

III. STUDY 2: DEFYING EXPECTATIONS

After gaining support for the idea that people generate dif-
ferent expectations based on appearance-based preconceived
mental models, we wanted to see how behavior can alter these
preconceived expectations. We conducted a between subjects
survey-study (N = 74) on AMT with type of team partner
(robot vs. human) as our independent variable.

Method. For this study we created two video clips of a
human-robot team (with Baxter as a humanoid robot partner)
and a human-human team each completing a simple block-
building task (Fig. 1). The task involved stacking blocks in an
alternating color sequence. In both videos, each partner was
responsible for one color of blocks. In order to defy precon-
ceived expectations, we programmed Baxter to be incapable
of stacking blocks. The human team-mate needed to help it
stack blocks, suggesting that the robot’s set of capabilities
was narrow. The human-human team followed the same script



as the human-robot team, including exhibiting the same lim-
itations. The videos showed the interactions in chronological
segments with each segment introducing a new limitation or
skill. Dependent on the experimental condition, AMT workers
were presented with either the series of segments of the
human-human, or the human-robot video. To measure people’s
preconceived expectations based on appearance, we included
a still shot of the featured teammate at the beginning of the
survey. For the still shot and each consecutive video segment,
we asked participants to rate, on a 5-point Likert scale, how
well they thought the featured teammate would be able to
perform a list of observed and unobserved tasks with 1 being
”Not at all capable” and 5 being ”Extremely capable.”

Results. We took the mean confidence scores for each task
and plotted them for each video segment (Fig. 3). For both
teams, people’s expectations of task completion fluctuated
based on each newly demonstrated skill or limitation. In order
to measure variance across the six segments for each task, we
conducted Single-Factor ANOVAs on the confidence scores.
Although both results were significant, the robot-human team
displayed greater variance for the observed tasks, ”Speak-
ing English,” F(5,594)=16.7, p<0.01 and ”Stacking blocks”
F(5,594)=32.82, p<0.01, compared to the human-human team
who had F(5,594)=5.19, p<0.01 and F(5,594)=30.58, p<0.01
respectively. For the rest of the tasks, the human-human
team displayed greater variance. This finding suggests that
people are more willing to modify their expectations based
on a robot’s perceived capabilities compared to a human.
Furthermore, by the end of the survey, people’s expectations of
the human dropped for all tasks while expectations for Baxter
dropped for all but one of the tasks, “speaking English.” This is
presumably because speaking was a skill Baxter exhibited that
people did not initially expect. Overall, participants seemed to
modify their expectations based on behavioral evidence for
both robot and human.

IV. DISCUSSION

Our preliminary findings suggest that (1) people tend to
generalize social capabilities more for anthropomorphic robots
in more social settings, and (2) we can override preconceived,
appearance-based notions of capabilities using behavior. The
first study implies that robots designed to work in social
settings are more likely to breed an expectations gap, which
presents a challenge when designing robots for social settings.
The second study suggests that changes in behavior can
mitigate these high expectations people have of social robots,
thus suggesting the need for new guidelines in interaction
design.

V. CHALLENGES IN REAL-LIFE SETTINGS

Developing robots that can predict what humans will expect
of them is a huge challenge in laboratory settings and even
more so in real-life. People differ along many dimensions
such as personality or past exposure to robots – all of which
inform the expectations people form of a robot’s capabilities.
Furthermore, as we have shown in our studies, the context in

which a robot is employed might play an important role in the
perceptions people form about its capabilities.

Since most HRI studies that have explored the influence
of a robot’s embodiment and behavior on perceptions of
capabilities or intelligence have been done in more or less fixed
laboratory contexts (e.g. [1], [9]) the question of how a robot
can elicit accurate perceptions of its capabilities irrespective
of the setting it is employed in is unexplored. In real life
settings, robots will be deployed not only in a wide variety of
contexts, making it important for robots to adapt to individual
differences but also to adapt dynamically to changes in context.
Building a robot that can anticipate over-generalizations of its
skills in different domains will be difficult. For example, a
household robot that helps with cooking and cleaning will
need to know a broad range of domain-specific skills in those
areas in order to predict over-generalizations.

We expect that there will also be significant methodological
challenges when evaluating the expectations gap in real-life
settings and over long periods of time. Many robots capable
of sophisticated social interaction, like Baxter, do not yet have
the social sophistication to be used outside of laboratory or
industrial settings. Thus, when testing our model outside the
lab, we will need to gather data from robots currently used
in everyday social settings, such as Paro or the Roomba, and
apply these lessons to other robots. Differences among these
robots may complicate generalization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented preliminary evidence to
support the hypothesis of an expectations gap. Specifically, we
showed experiments supporting the notions that (1) humans
construct distinct theory of mind models of machines and
people, (2) people attribute more human mental models to
more social robots, and (3) mental models can be changed
by the robot’s behavior. In addition to documenting this phe-
nomenon in crowd-sourced studies, we hope to demonstrate
its effect in more personal human-robot interaction settings in
the laboratory.

In the remaining paragraphs, we lay out important problems
that must be addressed in order to solve the problem of the
expectations gap. Their solutions will require a combination
of mathematical modeling and machine learning.

An important related question is how perceptions of capa-
bilities transfer within a mental model of a single agent based
on individual observations. For example, if we hear a robot
speaking English, then we expect it to understand English
as well, even though from an engineering standpoint these
two implementations are unrelated. We need a quantitative,
semantic metric on capabilities in order to estimate a human’s
perceived likelihood of certain capabilities based on general-
izations of similar, observed traits. Our focus for ongoing work
is on how such a metric can be designed and evaluated. We
can then revisit the questions raised in this paper about how
and when human mental models generalize.

In the longer term, we plan to build an algorithm to
predict when the human will incorrectly estimate a robot’s



capabilities. Robots could then reduce the expectations gap
by issuing corrective behavior that sets realistic expectations.
Even having these models in place, the inference problem
will be a great challenge. Humans rarely state perceptions or
assumptions about capabilities directly, since they typically
take human capabilities for granted. Instead, the robot will
need to employ a learned model of human behavioral cues
to infer capabilities. Our existing crowd-sourcing tools will
be valuable in collecting the training data for this model.
Finally, we may construct a second learned model mapping
robot behaviors onto changes in human perception. At this
point, the inverse semantics [6] technique will implement an
effective controller to adapt the robot’s behavior to fine tune
human perceptions of the robot’s capabilities.
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