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ABSTRACT
Humans expect their collaborators to look beyond the ex-
plicit interpretation of their words. Implicature is a com-
mon form of implicit communication that arises in natural
language discourse when an utterance leverages context to
imply information beyond what the words literally convey.
Whereas computational methods have been proposed for
interpreting and using different forms of implicature, its role
in human and artificial agent collaboration has not yet been
explored in a concrete domain. The results of this paper pro-
vide insights to how artificial agents should be structured to
facilitate natural and efficient communication of actionable
information with humans. We investigated implicature by
implementing two strategies for playing Hanabi, a cooper-
ative card game that relies heavily on communication of
actionable implicit information to achieve a shared goal. In
a user study with 904 completed games and 246 completed
surveys, human players randomly paired with an implica-
ture AI are 71% more likely to think their partner is human
than players paired with a non-implicature AI. These teams
demonstrated game performance similar to other state of the
art approaches.
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1 INTRODUCTION
An important area of human-computer interaction research
involves enabling collaborative behavior for artificial agents
working in close partnership with humans. Teamwork re-
quires communication for planning and coordination, and
the content communicated during this form of coordina-
tion is complex and multifaceted. In particular, a significant
amount of communication in human groups goes through
non-explicit channels [73]. These channels can range from
non-explicit verbal statements to other means as subtle as
eye gaze or gesture [71].

The impact of implicit communication is ubiquitous. It can
be found in applications from robot motion [25] to language
input [84]. In many domains involving teamwork, implicit
communication is vital for good performance. In order to
be effective partners and integrate well with human teams,
robots and AIs need to understand and generate this kind of
actionable implicit communication that results from actions
being situated in context [9, 18, 27].

One area in which implicit communication is particularly
important is human-AI interaction in video games. While
there has been significant progress in creating AIs that can
play games such as chess [16] and Go [78], AIs are still inca-
pable of playing many kinds of games because they cannot
effectively deal with social elements [64]. For example, con-
sider the cooperative card gameHanabi. In this game, players
must cooperate to play a set of cards in a certain order. Each
player can see all of the other players’ cards, but they cannot
see their own. Although players need to inform other players
about what cards they should play, they are prohibited from
communicating anything other than direct facts such as “this
card is red”. Therefore, in this highly restricted communica-
tion space, players routinely use direct facts to communicate
actionable intent implicitly, such as saying “this card is red”
to convey the action “play this card now” [61]. Capturing
implicit information of this form is crucial for designing AIs
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that can collaborate with humans in many HCI scenarios
such as playing these kinds of games. However, implicit com-
munication is rarely incorporated into AI design, effectively
omitting a large component of team game experiences.
Previous work in building AIs that can collaborate with

humans, both for Hanabi [26, 60] and for other games [77],
has generally centered onmodeling teammates’ mental states
and exhaustively searching all potential states. However,
these approaches are inefficient. Furthermore, although the
artificial agents resulting from these approaches perform
well when playing against each other, they reason in a way
that most human players do not, resulting in interactions
that are insufficiently natural.

Modeling implicit communication is difficult because it is
hard to generalize a set of principles that transcends domain
and context. For our study, we draw inspiration from the
field of pragmatics in linguistics in order to interpret and
make use of implicit communication in human conversation.
Specifically, this paper takes a step towards this goal by
using a type of implicit communication called conversational
implicature [33]. Our key insight is that in a teamwork setting
such as Hanabi, implicit communication typically focuses on
conveying actionable information.

In this paper, we detail the landscape of communication for
teamwork and subdivide the communicated content into dif-
ferent categories of implicit communication. We take a prin-
cipled approach to studying effective modes of information
transfer among teammates by investigating two methods of
communicating information. We provide a computational
approach to the theory of implicature by using Gricean max-
ims and describe an AI that we built that uses these strategies
to play the cooperative card game Hanabi. We conducted a
study in simulation comparing the AI that uses implicit com-
munication strategies to a baseline AI that only uses explicit
communication; the results of this study demonstrate that
the former AI consistently outperforms the latter. Using an
online interface of our design, we conducted a user study in
which users completed 904 games and 246 follow-up surveys.
From this study we found that the AI that used implicit com-
munication performed comparably with other state of the
art Hanabi AIs in terms of game score, but human teammates
were 71%more likely to believe that their partner was human
when playing with an AI that used implicit communication.

2 RELATEDWORK
In our work, we employ actionable implicit communication
as a hint-giving strategy in Hanabi. Aspects of implicit com-
munication, though not always actionable, arise in research
in many fields. We survey its forms and applications here.

Forms of Implicit Communication
There exists a rich body of work that explores how commu-
nication can establish varying forms of shared context or
common ground. Ways to reach consensus about context
range broadly from demographic information about partic-
ipating agents [46] to converging on an understanding of
game playing strategy for multiplayer online battle arena
games [47]. Many of these areas refer to a form of implicit
communication, often verbally-restricted or entirely non-
verbal, to reach these consensuses.

One form of implicit communication that has been ex-
plored in the realm of emotional understanding is affective
grounding, which tends to focus on converging on a shared
knowledge or understanding of mental state [42] in regard
to an agent’s internal emotional state. Another area in which
implicit communication is crucial is tacit coordination. Tacit
coordination is focused on establishing consensus about ex-
pected behavior and responsibilities of others on a team
when working to achieve a shared goal [20]. It is cited as
an important factor in scenarios from team dynamics for
multiplayer game team coordination [88] to effectiveness of
crowdsourced teams in achieving tasks [91]. Some means
of communication for tacit coordination in these contexts
are explicit, but there are others, such as use of an annota-
tion system in distributed multiplayer games, that are highly
context-dependent and implicitly communicated [1].
Linguistics literature describing the phenomenon of con-

versational implicature [11, 35, 37, 38, 51, 67] originated with
Grice [33]. Work in natural language processing has sought
to build artificial agents able to generate and understand
utterances containing implicature. Generalizable techniques
are difficult to put into practice in a computational system
due to dependency on context representation [72]. More
tractable techniques isolate specific and far more restricted
types of implicature, such as the technique proposed for
scalar implicature [31]. The full complexity of the implicature
understanding and generation problems has been explored
as well [84] but remains intractable.

Foundations of Implicit Communication
The mechanism of implicit communication, including impli-
cature, leverages context to allow messages to convey more
information content than the raw message contains. This is
possible because actions (the messages) are interpreted in
context, from which added meaning can be derived. In social
settings, this mechanism is mediated by an innate human
mental capability, called teleological reasoning, which con-
nects goals and actions. People perceive both humans [24]
and robots [74] to be goal-oriented. If a person can correctly
predict an action that somebody will take to achieve a known
goal, we would say that the action is predictable; if a person
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can infer the goal based on her observation of an action, then
we say that the action is legible [25]. The fact that humans
perform teleological reasoning automatically explains how
many Hanabi players are able to adopt an implicature-based
hinting strategy without explicitly conferring with the other
players about strategy.
At an even more basic level, teleological reasoning is a

form of abductive inference [62], sometimes called “infer-
ence to the best explanation”. Just as deduction leads from
a general principle (A → B) and an observation (A) to a
consequence (B) and induction leads from a pair of specific
observations (A and B) to a prediction about a general prin-
ciple (A → B), abduction takes a general principle (A → B)
and an observation (B) and returns an explanation (A). It is
an everyday human practice. For example, if Zach notices
that his car key is in a different place than he left it, his
mind will immediately compare possible explanations: his
wife borrowed his car, the cat knocked the key on the floor,
or there was an earthquake. Abduction has been studied in
AI [13, 15, 30, 36, 41, 50, 58, 63, 65] and employed to solve
a variety of real-world problems [36, 57, 66, 81, 82] and to
perform plan recognition [5, 21, 85]. Mirroring results in im-
plicature however, it was found that abduction is generally
intractable [2, 14, 15, 28, 30] to exactly compute.

Partially Observable Games
There are many strategies for partially observable games
[32, 43, 79], but the cooperative nature ofHanabi has inspired
different kinds of playing strategies. We specifically consider
the impact that Gricean conversational implicature can have
on Hanabi-playing logic [52, 86].
Osawa [60] proposes a series of strategies that consider

the state of a teammate’s hand in a two-player game of
Hanabi. The final strategy, titled the “self-recognition strat-
egy”, outperforms the other strategies by modeling the other
player’s knowledge of their hand before providing each hint
and considering the inverse when interpreting hints. Osawa
implements the self-recognition strategy using an entropy-
minimization approach and demonstrates the superior per-
formance of this approach in computer simulations against
less advanced models.

Eger et al. [26] uses two of the Gricean maxims (Relation
and Manner) in the context of Hanabi to construct an AI that
employs “intentionality”, using implicature in addressing
goal-directedness. Their “intentional” AI also employs an
alternative discard policy and other resource management
techniques as modifications over Osawa’s prior work. Their
AI is geared toward improving the Hanabi game experience
as well as optimizing the AI for game score performance.
Results indicate that for a limited score range, player engage-
ment and enjoyment is correlated with the intentionality
level of the AI. However, their AI does not exclusively or

wholly investigate the impact of Grice’s maxims, and their
hypotheses are not focused on how conversational impli-
cature affects the extent to which the gameplay of the AI
reflects the gameplay of a human. We study the full score
range from our user study participants and specifically in-
vestigate how the AI is perceived by human players.

We note that there are other rule-based techniques that
can create AIs that can successfully demonstrate high scores
in Hanabi. For example, Bouzy [8] and Cox et al. [23] use
ideas from hat guessing games to get near-optimal scores.
However, many rule-based approaches apply techniques that
would be entirely opaque to human teammates [12, 83].

Implicit Communication in Human-Robot
Interaction
Since robots can act physically in the world, they have a
greater potential than software agents to perform acts of
implicit communication and to best exploit actionable im-
plicit communication from a human. An abstract, high-level
framework for robots to automatically understand and gen-
erate implicit communicative messages was proposed [48],
although as presented it remains intractable to perform this
inference for nontrivial problems.
There are many instances of robots performing domain-

specific implicit communication. Robots have been demon-
strated communicating the weight of objects during lift-
ing [75], the intended goal of a reaching motion [25], how
a person can most effectively help the robot [49], intended
avoidance maneuvers during socially-competent navigation
[56], symbol grounding for language understanding [39],
and communicating a self-driving car’s goals to human ob-
servers [40].

Researchers have also investigated implicit robot control
by programming the robot’s environment [76, 90]. These
interfaces qualify as implicit communication in the sense that
they leverage context to interpret the meaning of symbols.
In order to function as part of an effective team, robots need
to infer human intentions and also express the internal state
of the robot, for example via affective cues [10, 29].

Conversational Implicature, Games, and HCI
Researchers have examined the role of conversational impli-
cature in human-computer interaction, such as in interpreta-
tion of multimodal interactions including eye gaze [68], lan-
guage [19, 53], and gesture [44]. Cordona-Rivera and Young
studied how conversational implicature can provide a frame-
work for game design and communication between the game
and the player [17]. We build on this work by applying con-
versational implicature specifically to human-AI teamwork
and transmission of actionable information.

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 95 Page 3



There is some work in HCI that examines board games,
focusing on topics such as fostering sustainability [6], collab-
oration [89], and identification of user interface needs [80].
Rogerson et al. studied Hanabi specifically, examining how
players cooperate and distribute cognition [71] and how eye
tracking can reveal where players are looking and what they
are paying attention to [70]. We also study Hanabi but focus
instead on how to model and improve team dynamics when
an AI player is part of the team.
There is also work on using video games as a research

platform for large-scale online experiments [3, 4, 54, 55]. We
use this experimentation method to study the impact of our
implicature AI on a large number of human players.

3 HANABI
The game Hanabi is well-suited for our problem because of
its collaborative nature and its players’ natural tendency to
adopt implicature into their playing strategies.
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Figure 1: A two-player game of Hanabi

Rules
In Hanabi, players are a team working towards a shared
goal. Although Hanabi supports more than two players, we
only consider two-player games in this paper. The players
alternate turns, creating a symmetric cooperative game. Play-
ers start with five cards each and are allowed to look at all
players’ hands except their own.
The Hanabi deck has five colors (suits) and five numbers

(ranks). Players also start with three shared fuse tokens that
function as lives and eight shared hint tokens (as depicted
in Figure 3). For each color there are three cards of rank 1,
one of rank 5, and two cards of each rank in between.

On each turn, a player must complete one of the following
moves: give a hint, discard a card, or play a card. The goal
of the game is to “complete fireworks” by playing cards of
all five colors in increasing order from one to five. The game
ends if all fireworks are complete, if all fuse tokens are lost,
or one round after all cards are drawn from the deck.

Details about each of the three moves are given below.
(1) Give a hint: Players can give only two kinds of hints:

• All cards of a color in the teammate’s hand (e.g., in
Figure 1: “These three cards are blue”).

• All cards of a number in the teammate’s hand (e.g.,
in Figure 1: “These two cards are 2s”).

The player must point to all applicable cards in the
teammate’s hand while stating the hint. Giving a hint
expends a hint token. Hints can only be given if there
are available hint tokens.

(2) Discard a card: The player puts a card into the discard
pile face-up, thereby learning the identity of the card.
The player then draws a new card from the deck. If any
hint tokens are currently spent, one is earned back.

(3) Play a card: The player picks a card from her hand to
play and sets it on the table face-up. The card is either
• next in sequence (a legal play) and is added to its
respective stack, or

• not next in sequence and is added to the discard pile.
One fuse token is lost.

The player does not need to specify which sequence
she thinks the card belongs to before playing the card.
Regardless of whether the play was successful or not,
the player draws a new card from the deck. Success-
fully playing a card of rank 5 also restores a hint token.

At the end of the game, the score is the number of cards
that were successfully played. It can range from 0 to 25.

Gameplay
InHanabi, the most significant contextual facts are the identi-
ties of currently-playable cards and the cards already played.
In addition, it is common knowledge that the most direct
way of sharing actionable information with another player
(that is, telling him which card to play) is forbidden by the
rules. By acknowledging these common-knowledge facts,
the team is often able to implicitly communicate the same
actionable information by a legal hint.

For example, in Figure 1, suppose that Bernard is the one
with the visible hand and that Annie is providing him a hint.
Suppose Annie says “You have one red card” to Bernard and
indicates a card in his hand about which he has received no
previous hints. Even an intermediate Hanabi player imme-
diately recognizes this hint as “play the red card”. Bernard
quickly reasons about this hint. He realizes that providing
this hint costs resources (a game turn and a hint token) and
that Annie will want to pack immediately usable informa-
tion into it. In addition, given the current game state, it is
probabilistically unlikely for Annie to provide a hint about
only one card unless she intends for it to be playable. This
type of thought process is intuitive, and new players pick up
on it as they play. However, in order to create an AI that is
capable of this form of implicit communication, we need to
formulate a methodology that is suited for a computational
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approach. We can use an established theory from the field
of pragmatics, the linguistics subfield that studies language
in context, and adapt it to develop a policy for this form of
implicit communication.

4 CONVERSATIONAL IMPLICATURE
The term implicature, coined by Grice [33], is used to describe
information that is not explicitly stated but is intentionally
conveyed. Grice focused primarily on implicature that occurs
in conversation due to what he calls the cooperative principle,
meaning that speakers are expected to contribute what is
required by the accepted purpose of the conversation [87]. He
gives four maxims that constitute the cooperative principle
and describe how to conduct cooperative speech [34]:

• Quality: only contribute information that is true.
• Quantity: provide all necessary information, but not
more.

• Relation: make your contribution relevant.
• Manner: avoid ambiguity; be clear, orderly, and brief.

Implicature arises when any of the maxims are violated.
Consider the following example from Recanati [69]:

• Annie: “Can you cook?”
• Bernard: “I am French.”

In order to make sense of Bernard’s response, Annie must
apply the following deductive inference steps:

(1) Contextual premise: Bernard is able to answer the ques-
tion of whether he can cook.

(2) Contextual premise: It is common knowledge that the
French are known for their ability to cook.

(3) Assume Bernard adheres to the cooperative principle
and the four maxims.

(4) By (1), Bernard can completely resolve Annie’s ques-
tion, and by (3), he will.

(5) Only the propositions that Bernard can or cannot cook
can fully resolve the question.

(6) By stating a fact seemingly irrelevant to the proposi-
tions of (5), Bernard flouts the maxim of Relation.

(7) Thus Annie must search over a plausible set of facts
in the relevant common ground to find fact (2) and
conclude that Bernard is implicating that he is able to
cook.

There is also a well-known cancellability test to gauge
whether an instance of implicature is conversational impli-
cature [7]. The reasoning in Lines (4)-(7) depends on the
concepts of shared trust, consensus in a team, and recep-
tivity of teammates. These dependencies are described in
greater detail by Knepper et al. [48].

We can then apply this set of rules to Hanabi.

5 AI DESIGN
The core strategy in Hanabi occurs during the giving and
interpretation of hints. A key distinction in the strategic
use of hints involves the issue of who decides what cards
to play. If the team is viewed as a set of individual decision-
makers, then each player is in charge of her own hand and
actions. In this view, the best hinting strategy is to maximize
information about the teammate’s hand so that she can make
the best decisions. We call the AI that uses this hint strategy
the entropy AI, which serves as our baseline.

A contrasting hinting strategy stems from the perspective
that good teamwork requires working together. Since each
player has complete knowledge of her teammate’s cards,
it is logical that each player should decide what card her
teammate should play next. In this case, the hints serve to
direct the teammate’s attention to which (singleton) card
should be played next via implicature. We call the AI that
uses this hint strategy the implicature AI.

Figure 2: Decision tree illustrating the logic of the different
hint strategies.

The overall AI structure is shown in Figure 2. The AIs
share significant gameplay infrastructure, termed “resource
management strategy” in the figure. The shared strategy is
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as follows. First, if the AI knows that it can play a card, it
does so. Second, there is logic to special-case the hinting and
playing of 1s, since it is desirable to give a maximal entropy-
reduction hint about 1s even in the implicature condition.
Third, the AI considers whether it should discard a card. If it
knows for certain that one of its cards can be safely discarded
(for example, if a blue 2 has already been played successfully,
and it knows that it is holding the second blue 2), it will
discard that card. Otherwise, if it is not certain whether any
cards in its hand can be safely discarded but there is only one
hint token left, it tries to discard a card that it suspects can be
safely discarded. Lastly, if there are no hint tokens available,
it will discard the card that it knows least about. From there,
the AI takes a different course of action depending on which
hint strategy the AI implements.

Implicature AI
Broadly, the logic of the implicature hint-giving strategy
proceeds as described in Section 4. According to that section,
the actor triggers an implicature interpretation by flouting
one of the Gricean maxims. Since the observer assumes that
the actor is being cooperative, she infers that there must exist
some hypothetical actionable information that is unknown
to her but would be known to the actor. She then searches
over possible messages containing actionable information
that the actor could be implicating. With a good choice of
actionable information, a maxim violation can be interpreted
as a cooperative behavior instead.

The implicature AI’s connection to the Gricean maxims is
based on several observations. First, giving hints uses up hint
tokens, making it a costly move not to be made frivolously.
Second, circumstances in Hanabi do not always permit im-
plicature hints: either there may be no card with actionable
information or there may be no way to isolate the card by
color or number. The hinter may need to fall back on the
explicit hint strategy, which may not be worth the hint token.
Players need to detect if a given hint is intended to be inter-
preted explicitly or implicitly. A Gricean maxim applies here
based on a statistical argument. Under an explicit entropy-
reduction strategy, the best hint on average reveals the color
or number of about 2.5 cards, and about 99.85% of hands per-
mit a hint about two or more cards. An implicature hinting
strategy should be able to give more immediately useful and
therefore more efficient hints by communicating actionable
information. Thus, a hint about a single card flouts themaxim
of Quantity, so the hint implicates actionable information
rather than merely conveying identity information.
The implicature AI does not perform Gricean reasoning

directly. Instead, we built a decision tree that encodes the
application of the Gricean maxims to giving and receiving
hints (see Figure 2). The first two of the three decisions in the
implicature hint strategy involve Gricean reasoning, and the

third decision ensures that unintended implicit meaning is
not conveyed. Details of the three decisions are given below.
(1) The first Gricean decision addresses whether the AI

can give an actionable hint that would cause its team-
mate to successfully play a card. Qualifying conditions
are that the teammate must have a playable card that
she does not know about and that there must be a hint
that can be given about that card alone. The AI will
give that hint if these conditions are met.

(2) The second Gricean decision involves conservation
hints, which are given to prevent a player discarding
a valuable card rather than to play a card. In our im-
plementation, only 5s are considered for conservation
hints since they are each unique in the deck. If the
teammate is holding a 5 that she is unaware of, then a
conservation hint is given.

(3) Finally, the implicature AI takes care to account for the
maxims by only providing a hint about a singleton card
if that card is actionable or unambiguously conservable.
As a result, the AI will only give a maximal entropy-
reduction hint if the hint concerns more than one card,
thereby avoiding hints that could be misinterpreted as
a suggestion to take an action with a card.

Figure 3: When generating a hint, the AI simulates how the
teammatewill interpret the hint based on the shared context
and what it knows about the teammate’s knowledge. For ex-
ample, the light gray robot, using the implicature AI, might
think: “My teammate’s leftmost card is a purple three. My
teammate knows nothing about it. We both know that the
purple three is next in sequence. Since my teammate has
only one three, if I hint that it is a three, he will infer that it
must be the purple three and will therefore play it.”
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In order to interpret hints, the AI assumes its teammate
uses the same process of reasoning and therefore the same
hint strategy. The AI can then use the decision tree as a way
to simulate its teammate’s mental model and make sense of
the hints it receives. Figure 3 depicts the way the AI simulates
its teammate’s thought process to determine whether there
is implicature behind the hint [84]. The AI is unable to see
its own hand and therefore relies entirely on the hints its
teammate provides to narrow down the identity of its cards.

The AI knows for each card in its hand which colors and
which numbers are possible given the current state of the
game. When the AI receives a hint, it considers each possible
hand and the flow of the decision tree in Figure 2 to determine
what kind of hint it would give if its teammate was the one
with that possible hand. The AI can then use this process
to determine the likely identities of the cards in its hand by
checking if the hint it would have given aligns with the hint
it actually received from its teammate. For example, if the AI
receives the hint “you have one 2”, then only the possibility
of the hinted card being actionable aligns with this hint. All
possible hands that would result in this hint being generated
require that the card be playable. Therefore the AI interprets
the hint it received as “play this card.”

Entropy AI
As a baseline comparison to the implicature AI, we created
an entropy-minimization AI that reflects the hinting strategy
of prior work without introducing confounding factors.

An obvious strategy for Hanabi is to view one’s partner’s
ignorance about the identity of his cards as the primary
obstacle. The more a player knows about his own hand, the
more likely he can make an informed decision about the
appropriate move to take with it.
We can think of this strategy in terms of entropy mini-

mization. The less one knows about a card, the higher the
entropy, so attempting to minimize entropy in the context of
Hanabi is equivalent to trying to inform one’s partner about
as many cards as possible per hint.
For example, suppose in Figure 1 that Bernard is the one

with the visible hand and Annie has to provide information:

(1) Annie wants Bernard to be able to make the best move
he can from his own knowledge.

(2) Bernard has no knowledge about his current hand.
(3) Annie’s goal is to maximize the difference in knowl-

edge between his current hand and his hand at the
next turn. That is, she seeks to minimize how much
he does not know as of the next turn.

(4) The maximal entropy-reduction hint Annie can give
Bernard is about blue cards (since he has three).

We observe that the entropy strategy fundamentally in-
volves the player with more knowledge (the hint-giver) en-
trusting her partner to make a good decision about which
card to play. The bottleneck is the lack of information about
the identities of the hint recipient’s cards.

A shortcoming of this hint strategy is that hints intended
only to minimize entropy are unnatural for human Hanabi
players as they are not actionable information. If Bernard
receives the hint that he has three blue cards, he will not
know what to do with those blue cards and therefore cannot
derive his next move from this hint alone.

6 EVALUATION HYPOTHESES
The goal of our study is to address two hypotheses about the
use of implicature in Hanabi.
H1. Teams playing with the implicature AI achieve overall

better scores than teams playing with the entropy AI.
H2. Humans will perceive the implicature AI to be more

human-like than the entropy AI.

7 EVALUATIONWITH AI-AI GAMES
This section describes a simulation-only study designed to
explore hypothesis H1.

Simulation Setup and Execution
We evaluated each hint-giving strategy described above by
teaming each AI with a copy of itself. We ran 1000 trial games
with the implicature AI-AI team and 1000 trial games with
the entropy AI-AI team, using final score as our metric for
collaborative effectiveness. H1 predicts a higher average final
score for the implicature AI than for the entropy AI.

Figure 4: Final scores of games played by an AI-AI team em-
ploying either the implicature-based strategy (red) or the
entropy-minimization strategy (blue).
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Results
Our AI-AI results (Figure 4) show that our implicature-based
AI achieves scores that are on average 46% higher than the
AI employing entropy minimization (18.9 points on average
for implicature games and 13.0 points on average for entropy
games). A Student’s t-test with two-sample unequal variance
is significant (t = 57.967, p < 0.001). The Cohen’s D value is
2.592381.

Discussion of Simulation Results
Both AIs are implemented statically, so they do not adapt
to their teammate’s playing style. Each AI played with a
teammate that had the exact same hinting strategy, and it is
likely that this hard-coded consensus is a big factor in good
score performance. However, in reality, human players are
not static: they adapt to their teammate’s playing strategy. In
order to truly investigate the impact of using implicature in
our AI design, it is necessary to explore whether non-static
agents demonstrate a difference in performance similar to
that of our statically-implemented AIs.

8 EVALUATIONWITH HUMAN PLAYERS
In this section, we present a web-based human user study
designed to explore both hypotheses. We study how humans
perform in play with and perceive the AIs.

A dilemma with humans Hanabi players is that they often
communicate through side-channels during gameplay, such
as by conveying information through facial expression. In
order to focus strictly on implicit communication conveyed
through hints, we created an online environment for two-
player games that inherently removed these other forms of
implicit communication from the game experience.

Interface
The interface presented in Figure 5 is meant to be as close
to natural in-person gameplay as permitted by the Hanabi
rules. In addition, we intentionally designed the interface to
isolate communication of informational content, removing
emotion from the game entirely. Due to its online nature,
we added additional features to compensate for some of the
advantages in real-life games.
When the game is administered, the user is directed to a

starting lobby. After deciding to start the game, the user is
automatically paired up with a “teammate” who is selected
randomly from one of our two AIs. We divulge nothing about
the teammate’s identity (whether it is a human or an AI) nor
do we prompt them to consider this when playing the game;
the user can only observe their teammate’s selected moves
as the game unfolds. Whether the user or the teammate goes
first is randomly chosen. After the user is paired with their

Figure 5: Online Hanabi playing interface. An example of a
rotated card is shown in (1). The remaining hint tokens, fuse
tokens, and cards in the deck are given by (2). The history
of all moves made by both players throughout the game is
recorded in (3).

teammate and the game begins, they are presented with the
interface shown in Figure 5.

When it is the player’s turn, they can either select a card to
play or discard, or they can provide a hint to their teammate.
When receiving a hint from a teammate, the cards that are
being hinted about are highlighted. All plays, discards, and
hints are recorded in the log on the interface. The interface
also allows players to rotate cards in their hand and shuffle
them around in case they want to use orientation or ordering
of their cards to recall information. However, the other player
cannot see how the cards have been moved, so this feature
is solely used for keeping track of one’s own knowledge.
Aside from playing cards, discarding cards, and giving

hints, players are not provided any means communication
with their teammate. As a result, there is no side-channel
communication that could introduce confounding factors.

User Study Setup and Execution
We recruited participants for our user study through online
forums, namely fromReddit (r/boardgames and r/cardgames),
and linked them to our online Hanabi implementation. Our
user study consisted of 904 completed games of Hanabi from
online users, 463 of whom played with our implicature-based
AI and 441 of whom played with our entropy-based AI. All
users were prompted to continue to our survey after complet-
ing their first game, and we collected 246 completed surveys
(127 of these survey-takers played with the implicature AI
and 119 with the entropy AI).

We considered several metrics, the most important being
game score. However, we also considered the ratio of game
score to number of hints given (to measure the efficiency
of each hint) as well as the number of fuse tokens used and
the number of discarded cards that were playable at the time
they were discarded. H1 predicts the overall score for games

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 95 Page 8



played with the implicature AI to be higher. It also predicts
a higher score/hints ratio, fewer fuse tokens used, and fewer
discarded playable cards.

Our survey asked questions about users’ previous experi-
ence with Hanabi, their opinions on the interface, and their
experience overall. Users were asked to rank on a five-point
Likert scale if their perception of their team’s performance
matched up with their overall game score. We also asked
whether the player understood their partner’s moves and
if they thought that their partner understood their moves.
H1 predicts that teammates should understand one another
better with the implicature AI than with the entropy AI.
Lastly, we asked players if they thought their teammate was
a human player or a computer player. H2 predicts that the
implicature AI should more frequently pass for a human than
the entropy baseline.

Results
We found no significant differences in any of the quantitative
metrics between users who played with the implicature AI
and users who played with the entropy AI; these metrics
were score (t = 0.327, p = 0.74), ratio of game score to
number of hints given (t = 1.396, p = 0.16), total fuse tokens
used (t = 1.530, p = 0.13), and number of playable discards
(t = 0.391, p = 0.70). Figure 6 shows the final scores for all
games that were completed. The ANCOVAs using Hanabi
experience as a covariate found a p value of 0.442 for scores
between implicature and entropy teams. Therefore, there is
still no significant effect of hinting strategy on score even
after accounting for Hanabi experience.

Figure 6: Final scores of games played by a human-AI team
inwhich theAI employed either the implicature-based strat-
egy (red) or the entropy-minimization strategy (blue).

When divided into groups of implicature-AI players and
entropy-AI players, a chi-squared test found the group that

played with our implicature AI was significantly more likely
to consider our AI to be a human teammate when presented
with the options of “human” and “computer” (X 2 = 7.642,
d f = 1, p = .0057). Out of participants who played with
our implicature AI, 41% responded that they thought their
teammate was human, while only 24% of participants paired
with the entropy AI reported the same (see Figure 7).

Figure 7: Comparison of responses to “Do you think your
teammate was a human or computer player?” between
implicature-teammate and entropy-teammate subgroups.

User Study Discussion
Failure cases for the entropy AI. Some comments from our
Hanabi players who were assigned to the entropy AI specifi-
cally referenced the lack of necessity for complete informa-
tion due to implicature. One user said, “Hints are normally
given for a reason - You don’t need complete information to
play a card.” A different user cited an instance that referred to
the urgency of immediately actionable cards: “The computer
needs to let the player know when they have playable cards
by giving timely hints.” A user even explained the notion of
flouting maxims of Relevance and Quantity in their frustra-
tion with the AI: “If someone gives an unclear hint about only
one card, that’s an indication to PLAY that card.”

Failure cases for the implicature AI. Some players paired with
the implicature AI noted their confusion about our AI’s play-
ing assumptions. In one failure case, the user hinted to the
AI that they had a 1, which the AI took to mean that they
should play the card when the user actually intended the
opposite (because a card of rank 1 has a low probability of
being playable when four suits are already on the table).
They explained in the survey, “for the 1 cards, if a lot are on
the table, ideally the card should be discarded not played.” A
different user had the same concern: “It seemed like any hints
I gave were interpreted as ‘play this card.’ I tried to give a hint
about 1s when we had four 1s out (so my partner would discard
the three 1s in their hand), but my partner ended up just play-
ing 1s instead.” These instances are interesting because there
also exist cases where the hint “you have one 1” would seem
like an obvious hint to play the card when there is only one
unplayed suit remaining. The issue here is a disagreement
of the context that the human player and AI consider when
interpreting a hint using implicature.

Implications. The results from this paper demonstrate the
feasibility of implicature computationally in real collabora-
tive environments. Although implicature is not sufficient
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to capture realistic and natural collaboration, our presented
results both show the positive impact that implicature has
on a human teammate’s perception of the interaction and
point toward the next factors to consider to create an AI that
can collaborate effectively with humans.

Both AIs were implemented statically; they did not adapt
to their teammate’s preferences and playing style. This choice
was intentional to ensure that we could isolate the impact
of implicature in this domain without confounding factors.
The failure cases of the implicature AI could be addressed
by reevaluating the assumed game strategy given the team-
mate’s moves. For example, one incorrect play of a card that
sacrifices a fuse token is enough to realize that there is a
discrepancy in how teammates may prioritize their cards.

The next frontier in advancingHanabi game AIs is address-
ing adaptability. Nikolaidis et al. [59] create an adaptive AI
that is able to update its strategy when interpreting and using
implicature, which would likely outperform our statically-
implemented AIs. Implicature and adaptivity particularly
suit combined use since adaptivity can update strategy for
effective implicature use. Future work will need to employ
adaptivity to progress toward a truly collaborative AI.

Prior work showed some evidence that intentionality may
make players enjoy the game experience more [26]. We ex-
amine the impact of Grice’s maxims further and specifically
determine that implicature leads players to think their AI
partner is a human. This result has broad implications for
human-AI teamwork design and game AI design because
it demonstrates that these maxims, and perhaps the use of
pragmatics in general, are a key part of what human players
use to evaluate whether their teammates think like humans.
The use of implicature extends to many applications be-

yond game playing, such as a robot that assembles IKEA
furniture alongside a human teammate. Using implicature, a
robot working with a human who needs to hammer in a nail
can correctly interpret “Hand me that red thing” as “Hand
me the red hammer closest to you because it is relevant to
my current task”. The same logic can extend further to in-
corporate nonverbal means of communication as well, such
as gesture or eye gaze.

9 CONCLUSION
Our work investigates the impact of Gricean conversational
implicature from pragmatics in linguistics as instantiated in
an AI to play the cooperative game Hanabi. We specifically
explore (1) whether teams that leverage implicature demon-
strate overall better scores than teams that do not, and (2)
whether human teammates perceive the implicature-based
AI to be more human-like than the baseline AI. We design
and implement the proposed implicature AI and the baseline
AI to evaluate performance in terms of these two questions.
Our simulation results show that implicature-based AI dyads

outperform entropy-based AI dyads in score by 46%, and the
results from our online user study indicate that humans are
71% more likely to believe their teammate to be human if the
teammate employs our implicature hint-giving strategy.

Our user study contributes human-provided evidence that
Hanabi players are more likely to find their teammates to
be more human-like when implicature is used. In addition,
our simulation study suggests that implicature has the po-
tential to enhance team performance, although the result
was not replicated in the user study. While implicature on
its own is not sufficient for an entirely convincing AI team-
mate, it is a crucial component to consider when building
the collaborative AIs of the future.
Although our AIs and studies focused on Hanabi game-

play, the principles of generating and understanding action-
able information conveyed via implicit communication have
much broader implications. Theoretical frameworks have
been proposed to describe the generic mechanism of im-
plicit communication [48] and the mental model for an agent
performing a joint activity as part of a team [22]. When com-
bined, these frameworks suggest possible uses for actionable
implicit communication at two levels: (1) at the low level
to mediate the mechanics of team interactions, and (2) at
the high level to furnish pragmatic competence in order to
facilitate achievement of shared goals.
Teams need to communicate in order to establish and

maintain common ground for the purpose of agreeing on
joint intentions and shared goals. At this low level, action-
able implicit communication can mediate a wide variety of
teamwork behaviors. A joint intention within a team is a
commitment both to coordinate performance of some action
and to inform one another about its progress. The mecha-
nism of actionable implicit communication naturally arises
to coordinate joint intentions with teammates since it effi-
ciently encodes that information atop functional behaviors
that are part of the joint activity. For example, when a robot
is helping a human assemble Ikea furniture [49], the human
might pick up an Allen wrench. This action signals to the
robot the initiation of a private intention to install fasteners.
The robot responds by picking up suitable screws and ready-
ing them to be installed, thus signalling to the human the
consensus of a joint intention to collaboratively install the
screws. In this manner, a considerable amount of coordinat-
ing communication during manual teamwork is actionable,
implicit, nonverbal, and extremely efficient.
Teams can also leverage actionable implicit communica-

tion deliberately to convey information about the task being
performed. Effective communication with human collabora-
tors requires pragmatic competence, the ability to understand
the various ways in which an action will be interpreted by an
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observer, and utilize this to achieve desired goals [45]. A ro-
bot language tutor could be programmed to select maximally-
didactic actions in response to errors made by the human
language learner. For example, if a human who is learning
Spanish mixes up verbs, she might say toma el bloque (take
the block) when shemeans dame el bloque (giveme the block).
The learner expects the robot to pick up the block and hand
it over. If the robot instead keeps the block for itself, then
the surprise reveals to the learner a contradiction between
what she said and what she meant. By forcing the learner
to confront the contradiction, the robot causes her to search
for an explanation in her word choice.
These examples illustrate the enormous potential for ac-

tionable implicit communication, in areas as diverse as ro-
botics, intelligent agents, game AIs, and personal home assis-
tants. The impact of conversational implicature as addressed
in this work points to the necessity to explore the next fron-
tier: pragmatic competence for joint intention. Tackling this
set of problems will be crucial for developing socially-fluent
artificial agents.
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