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Abstract— In this position paper, we articulate and motivate
a reframing of the 2D path planning problem. This reframing
does global planning topologically and local control geometri-
cally. It avoids the computational inefficiencies of specifying a
path down to the level of a trajectory by instead specifying a
homotopy class. This paper illustrates several of the benefits
from this reframing, as well as the corresponding research
questions that must be answered to make the realization of
this reframed path planning pipeline possible.

I. INTRODUCTION

In this paper we will describe a reframing of the 2D path
planning problem. This reframing is designed for efficient
computation by trading off responsibilities from the path
planning stage to the control stage to do global planning
topologically and local control geometrically. In doing this,
we do not specify a path down to the level of a trajectory,
but rather, specify a homotopy class. This reframing is par-
ticularly suited for dynamic environments and applications
with less precise sensor input.

II. THE PLANNER TODAY

Generating a motion plan is computationally expensive.
The problem with traditional motion planners is that the
motion plan specification output by the planner is overly
precise. Even though there are many valid motion plans for
any given problem, traditional motion planners specify down
to one precise trajectory. Committing to a specific path runs
the risk of the path becoming infeasible before it can even
be executed by the robot.

Consider a robot in the room in Figure 1. The robot starts
at the green point and the goal point is the red point. Before
trying to navigate to the goal, the robot might first generate
a global map of its space, or perhaps it is even provided
with a map. Then, with this map, the robot must generate
some precise trajectory through the space that will get the
robot from the starting point to the goal point; this is often
done with some sample based planner. Once this trajectory
is computed, the robot’s control must ensure that the robot
sticks to this path as strictly as possible.

However, if that original provided map is discovered to
be wrong at execution time such that the planned precise
trajectory cuts through an obstacle by just a hair, then the
robot would have to adjust its map and restart the process
of selecting a trajectory before proceeding.

Or, consider a scenario where the map is entirely accurate,
but only captures the static obstacles in the space. When
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Fig. 1. An imagined room with obstacles to navigate. The starting point
is the green point and the goal point is the red point.

the robot is actually navigating the space, it might observe
an unaccounted-for dynamic obstacle. This problem may be
resolved by allowing for reactive control, but the robot may
lose guarantees about its ability to return to the precise,
preplanned trajectory. Alternatively, the robot might replan a
trajectory similarly to the prior case, but depending on the
motion of the dynamic obstacle, the additional computation
could become intractable rapidly.

A way to compensate for the rigidity of selecting a precise
trajectory would be to select multiple trajectories, in case one
does not work out [4]. The selection of this set of trajectories
is important, because if one trajectory fails, it may be a
monumental task to transition to another. For example, it is
likely much easier to follow a new trajectory that lies within
the same homotopy class as the original trajectory.

One could use topology aware sampling to generate a
set of trajectories that fall in the same homotopy class [1].
However, the size of the set and sampling strategy would
have enormous impact on the real performance of the robot
and would need to be re-tuned per scenario.

III. THE ALTERNATIVE

To evade the issues that result from an overly precise plan
specification output, we can instead specify to the level of
homotopy classes rather than trajectories.



Instead of adapting current planners to use metrically
defined trajectories to capture the topology of the robot’s
space, we can avoid doing some of this inefficient work
in the first place. There’s no need to do the process of
narrowing down all the way to one specific trajectory mul-
tiple times, then sorting through them to see if they satisfy
our topological constraints. Instead, we could modify our
planning and control to specify up to the homotopy class
rather than a candidate trajectory within that homotopy class.
Figure 2 illustrates the redundant costs of generating multiple
candidate trajectories on the left versus generating a more
generous, topologically-defined class specification on the
right.

Fig. 2. Left: Generating multiple trajectories which each have the same
cost of computation Right: Generating a homotopy-class level specification
has a lower and non-redundant cost

As a consequence, the controller’s job gets more difficult.
Instead of following one trajectory, it now has much more
freedom. However, as the controller operates during run-
time, it is also the best equipped for handling the real-
time unforeseen obstacles or errors that were not captured
in the initial static map and adjusting along the way. For
example, the trajectory depicted in Figure 3 would require
no additional redundant computation and the robot would be
free to avoid the three unforeseen obstacles depicted.

Fig. 3. The robot would be able to avoid the unexpected obstacles in the
scene without having to recompute its path

In the following sections, we will motivate the benefits we
gain from creating a path planner that generates a homotopy
class rather than a trajectory. Furthermore, we will list the
specific research questions that need to be answered to make
this system possible.

IV. BENEFITS

1. If we reconsider the two scenarios where the original
provided map is inaccurate or there are unexpected dynamic
obstacles, having the path planner specify a homotopy class
allows for the flexibility of a controller that can optimize and
react in real time whilst proceeding along to the goal.

2. Specifying homotopy classes caters particularly well for
environments where humans might be dictating directions
to a robot. Human directions are often landmark based or
topological in nature. For human users, a homotopy class
specification may align better with their desired behavior for
the robot than a single trajectory would [6].

3. Not requiring the metric specificity of a trajectory
means that topological SLAM generated maps are partic-
ularly suited as input for planning (whereas they may not
have been as suited for trajectory based planning, since they
lacked the specificity necessary for obstacle avoidance [3]).
A step beyond this, it may be possible to get away with less
metric specificity in general, thus requiring less sensor input
from the very beginning [5], [2].

V. RESEARCH QUESTIONS

1. The controller now has power to wander and roam,
how does the planner impose the restrictions necessary to
force the controller to adhere to a homotopy class (or set of
classes)? We want to instead find a way to convert an entire
homotopy class in a space into a control policy. This step
is vital for the clean transition between a global topological
specification and local metric behavior.

2. Furthermore, the specification of a homotopy class also
needs to be practical. After all, one can loop around an
object an unreasonable amount of times and easily fall into
a specified homotopy class. If loops around obstacles are to
be considered, is it best done at the path specification stage?

3. Since the planner does not need the metric precision to
create a trajectory, how little sensing can we get away with
for our map and still allow us to plan? What guarantees do
we need from our map to be able to plan?
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