
Multirobot Pushing — How Many
Robots are Sufficient?

Laura Lindzey Howie Choset Siddhartha S. Srinivasa
Ross A. Knepper

CMU-RI-TR-12-15

May 2012

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Abstract
This paper asks how many cooperating homogeneous robots are required to per-

form a block pushing task in a known environment. This task is particularly challeng-
ing in the presence of a highly cluttered obstacle field where the connectivity of the
robots’ free configuration space depends on the block’s configuration. In order to sim-
plify the problem, we define an equivalence relation over block configurations based on
the connectivity of the robots’ free configuration space. We build a data structure that
captures the relationships among the resulting equivalence classes, and then we encode
constraints into the data structure that must be satisfied for the robots to be able to push
the block between equivalence classes. We present an algorithm that operates on this
data structure and uses existing optimization techniques to solve several variants of the
minimum sufficient robots problem. Next, we give an implementation of this algorithm
for an environment consisting of axis-aligned rectangles. Additionally, we provide a
complete planner that finds a feasible path for the block in this environment.

I

Contents
1 Introduction 1

2 Related Work 2

3 Definitions and Problem Statement 3

4 Approach 5
4.1 Equivalence Graph . 6
4.2 Reachability Graph . 7
4.3 Algorithm Overview . 7

5 Implementation 9
5.1 Enumeration of Equivalence Classes 9
5.2 Reachability Graph Generation . 12
5.3 Equivalence Graph Generation . 12
5.4 Constraint Generation . 13
5.5 Constraint Grouping . 13
5.6 Constrained Minimization . 14

6 Planning 15

7 Discussion and Future Work 16

III

1

2

3

4

5

6

Figure 1: Example environment for block pushing. We show a block path (blue) that
would require 6 robots (green), numbered in the order that they push the block. Inter-
mediate robot and block positions are shown in lighter colors. A dashed square shows
the initial block position.

1 Introduction
We are interested in problems where a group of robots work together to push a block
from a starting configuration to a goal. Examples of this are shown in Figs. 1&2. This
multirobot block pushing problem is challenging because in highly cluttered environ-
ments a path planner for the block must keep track of how robot positions affect the
block’s possible motions, and a path planner for the robots must look ahead and reason
about which connected component each robot needs to occupy as the block’s motion
partitions the robots’ free space.

While other researchers have looked at how to plan for a team of robots pushing
a block, the focus of this paper is not an algorithm to do that. Instead, we derive a
bound on how many robots are required to push the block along any feasible path in a
given environment. The resulting bound applies to the solution found by any planning
algorithm. Consider the environment shown in Fig. 1. Whereas the illustrated block
path only requires six robots, there exist paths that require up to nine robots.

This paper provides a solution to the following problems:

• P1: Given an environment with static obstacles and shapes for the block and

1

robots, determine the minimum number of robots required to push the block
along any feasible path in the environment.

• P2: Given the same setup as above and a known initial block configuration q0,
determine the minimum number of robots required to push the block along any
feasible path starting at q0. This may require fewer robots than P1 because there
may exist portions of the environment that are not reachable from every initial
position.

We then provide an implementation that solves these problems in an environment with
axis-aligned rectangles, and we solve the block planning problem in this environment.

We are able to solve these minimum sufficient robots problems by reformulating
block pushing as a constrained minimization problem with constraints derived from
two properties of the environment. First, we require that robots obey the semantics
of pushing, which we term manipulability.1 Next, as the block’s motion changes the
connectivity of the robots’ free space, we require that each robot must move consis-
tently between merging and splitting connected components. We call this conservation
of robots. These properties induce constraints on the number of robots occupying each
connected component. We provide a bound on the minimum sufficient robots needed
in any environment for which we can enumerate these constraints. By grouping con-
straints based on which pushes are feasible in tight spaces, we can guarantee a tight
bound.

2 Related Work
Approaches to manipulation planning often consider a set of alternating navigation
and manipulation actions. This makes it difficult to apply typical motion planning
algorithms. Under some conditions, the manipulation planning problem can be split
into two steps: first choosing a path for the block, and then finding robot paths that
cause the block to follow that path [16]. This decomposition is similar to Koga and
Latombe’s [5] division of multi-arm manipulation problems into transit and transfer
tasks. Our work focuses exclusively on what is required to find a feasible block path,
instead of on solving the navigation problem for individual robots. Once a path for the
block has been found, it imposes a set of constraints on individual robot positions and
motions. Robot paths obeying these constraints can be found using existing multirobot
planning algorithms [4, 15].

Significant previous work has focused on the mechanics of block pushing and the
problem of how a team of robots can cause a block to follow a predetermined path.
Lynch and Mason investigated the controllability of point- and line-contact pushing
[7], [8]. More recently, de Berg and Gerrits [2] investigated how to compute paths for
a team of robots to push a block along a given path among obstacles. Early work on
the robot cooperation facet of this problem includes a demonstration that two robots
are able to complete an obstacle free block pushing task more efficiently than a single
robot [9] and an examination of how a group of robots can reorient blocks [11].

1This is distinct from Yoshikawa’s manipulability for kinematic chains [17]. It is more closely related,
but not equivalent, to the concepts of accessibility and controllability [1].

2

Figure 2: Example block pushing problem. The robots (green squares) must push
the movable block (blue square) to the goal configuration (dotted outline square), in
the presence of static obstacles (black rectangles). Lighter blue and green shows the
history of block and robot motions.

Caging is another method for solving the multirobot block pushing problem. Rather
than alternating navigation and manipulation actions, robot actions are chosen such that
they approach the goal while obeying constraints guaranteeing that the block remain
caged. This approach has resulted in complete algorithms for obstacle free environ-
ments [14], and moderately cluttered environments [13, 10, 3]. However, we consider
environments with narrow passages where it is not physically possible to cage an ob-
ject.

3 Definitions and Problem Statement
Throughout this paper, we work in a closed, bounded subset of R2, populated by obsta-
cles O = {Oi}. Identical robots R = {Ri} cooperate to manipulate the block B, and
are able to perform two types of actions within this environment: navigation actions,
where they move within a connected component of their free configuration space; and
manipulation actions, where they maneuver B by pushing, but not pulling. A solution
for the block pushing problem consists of a block path from a start configuration xs
to a goal configuration xg and a set of robot trajectories PR = {PR1, PR2, . . . } that
cooperate to push B along the path.

QfreeB is the free configuration space formed by the block B moving among obsta-
cles O. Let the continuous function PB : [0, 1] → QfreeB be a path for the block, and

3

DEFINITIONS

O = {Oi} obstacles
R = {Ri} robots

B manipulated block
QfreeR (x) free configuration space of robot R with B at x

QfreeB free configuration space of B
N(Q) number of connected components in space Q

N(x) shorthand for N
(
QfreeR (x)

)
for x ∈ QfreeB

PRi path of Ri
PR = {PR1, ..., PRn} set of robot paths

PB , PB path for B, set of all such paths
FB , FB feasible path for B, set of all such paths

EC Equivalence Class
EG Equivalence Graph
PG Precursor Graph
RG Reachability Graph
αi ith connected component of EC α

mαi number of robots occupying αi

the set of all such paths be PB . We define feasible paths to be the subset of block paths
that the robots are able push the block along:

FB = {p ∈ PB | ∃PR causing B to follow p}

Some paths are infeasible because robots occupy finite volume and because robots
can only push and not pull on the block (Fig. 3).

We assume that all of the robots are the same shape and therefore are only required
to keep track of a single configuration space for the robots. We define QfreeR (x) to be
the free configuration space formed by any robot Ri moving among obstacles O with
the block at position x. Additionally, we require QfreeR (∅), the robots’ free configura-
tion space in the absence ofB, to have a single connected component. When analyzing
block configurations, it is convenient to specify the number of connected components
ofQfreeB . We define a functionN(Q) that returns the number of connected components
in a configuration space Q.

In order to tractably reason about all possible block paths, we define an equivalence
relation on block positions x, such that any path can be broken down into a series of
actions transitioning among equivalence classes (ECs). We say that two block configu-
rations xi and xj are equivalent if there exists a continuous path p ∈ PB parametrized
by s ∈ [0, 1] with p(0) = xi and p(1) = xj along which N (p(s)) is held constant.
Each EC α is composed of a set of connected components {α1, α2, . . .}, as shown in
Fig. 6. Finally, we use mαi to represent the number of robots occupying the connected
component αi.

4

a Two infeasible scenarios: (left) occupied connected component of QfreeR disappears, and (right) no robot
can access the top face of B to push it down.

b Two feasible scenarios: (left) connected component to left of B is not required to be occupied, and (right)
robot can access the top face of B to push it down.

Figure 3: Examples of feasible and infeasible paths.

Figure 4: Example of self-loop edges. The block can move left and right, but can never
leave the EC. QfreeR (x) has two connected components, each occupied by one robot.
Motion within the EC is represented by self-loop edges starting at each nodelet and
terminating at the same EC.

4 Approach

In this section, we describe the data structures that we use to encode the problem and
present Algorithm 1, which solves the minimum sufficient robots problems. In the
following section, we show how our algorithm can be implemented in one class of
environment.

5

Figure 5: Example environment where using the set of all constraints would give an
overestimate of the minimum sufficient robots.

α
1

α
2

β
1

β
2

β
3

γ
1

γ
2

η
1

ζ
1

δ
1

δ
2

ε
1

Figure 6: An EG where each node is represented by an example block configuration.
Transitions between nodes are shown by arrows, and nodelets are given alphanumeric
labels. We have omitted the self-loop arrows. In each configuration, we overlay the
workspace obstacles (black), block position (blue) and robot (green) on the robots’
C-obstacles (gray).

4.1 Equivalence Graph

The equivalence graph (EG) encodes a compact representation of the topology of the
environment and the motion of the block. The EG is a graph where each node corre-
sponds to an equivalence class (EC). Each EC contains a number of connected com-
ponents, which are represented by nodelets associated with the node, as shown in Fig.
7. Directed edges represent feasible block motions: an edge from α1 to β indicates

6

that there exists at least one block configuration within α for which a robot in con-
nected component α1 can push the block to EC β. However, it does not guarantee that
the transition is feasible from all configurations within α. Self-loop edges correspond
to block motions that do not result in the block transitioning to a new EC. Consider
the environment shown in Fig. 4, which only has one EC. If there is a robot in each
connected component of the EC, then they can push the block back and forth. This is
represented by the self-loop edges. For each edge on the EG, we compute the corre-
sponding manipulability and conservation of robots constraints.

Every edge in the EG corresponds to a potentially feasible block motion, and a
block path can be described by a corresponding walk through the EG. Thus, we have
the necessary condition that for a feasible block path to exist, the corresponding walk
in the graph must exist. However, this is not a sufficient condition, because the EG’s
edges represent that a transition is feasible from at least one configuration within the
originating EC but do not guarantee that it is possible from all configurations. In order
to guarantee that a feasible path can be followed, we need an assignment of robots to
connected components that is consistent with the constraints associated with every EG
transition on the path.

4.2 Reachability Graph
It is not guaranteed that all transitions between ECs can be reached from a given starting
point. For example, consider the environment shown in Fig. 5. There is no initial
block position from which it is possible to reach both the left and the right sections
of the environment. This means that considering the constraints associated with every
transition in the EG will provide an overestimate on how many robots are required.
Thus, in order to find a tight bound, we need to determine maximal sets of transitions
that can be reached from a single block configuration, and then consider only their
associated constraints.

The reachability graph (RG) encodes all feasible ways to chain together transitions
between ECs. It has two key properties: any feasible block motion must map to a
walk on the RG, and for any walk on the RG we must be able to determine which EC
transitions have been crossed. We use this information to determine which constraints
are mutually applicable. If each edge represents a locally feasible block motion, then a
transitive closure of RG edges exactly indicates a maximal set of feasible block motions
within the environment. For each maximal set of block motions, we determine the EC
transitions involved and how many robots are required by their associated constraints.

4.3 Algorithm Overview
As the first step in calculating the EG, we need to identify all of the environment’s ECs
(Algorithm 1, line 1). We do not necessarily need to find an explicit division of QfreeB

into ECs: for our purposes, it is sufficient to identify the set of all ECs and transitions
among them.

Next, we construct the EG (Algorithm 1, line 2). We create a node in the EG for
each EC calculated in the previous step. The EG’s edges are derived from feasible
transitions among ECs. Additionally, for each EC, we compute N(x), for any block

7

Figure 7: Symbolic representation of the same EG as Fig.6. Nodes are ovals, contain-
ing their corresponding nodelets. Transitions are shown as arrows, originating at the
nodelet that must be occupied for the transition to be feasible and terminating at the
resulting EC. Self-loops have been omitted.

configuration x within that EC. We represent each connected component as a nodelet
within the corresponding node of the equivalence graph.

The final step in constructing the EG is to associate constraints with each transition
(Algorithm 1, line 4). Recall the manipulability and conservation of robots constraints
described in Section 1. We now see that these are constraints on the number of robots
assigned to each nodelet. For example, in the environment shown in Fig. 6, consider a
transition from EC δ to β. It imposes the following constraints:

mδ1 = mβ3 (conservation of robots)
mδ2 = mβ1 +mβ2 (conservation of robots)

mδ1 ≥ 1 (manipulability).

The constraints on mαi guarantee that robots will be positioned to enable every
feasible block transition. Given a set of such constraints, we determine the minimum
sufficient number of robots by assigning robots to connected components in a way that
minimizes the total number of robots in any given EC while satisfying all constraints
(Algorithm 1, lines 6 and 7). This is an integer constrained minimization problem with
bounded variables.

When generating a list of constraints, we ignore transitions to a sink node in the
EG where a connected component of QfreeR (·) vanishes without merging with another.
See Fig. 6 (nodes η and ζ) for examples of sink nodes. A disappearing connected
component imposes a constraint of the form mα1 = 0, specifying that the connected
component is required to not be occupied. This creates a conflict if the same connected
component is required to be occupied by another manipulability constraint, as is the
case for a sink. We resolve the conflict by ignoring the constraint and the sink node.
This does not affect the number of robots required. A block path without the transi-
tion to a sink cannot require fewer robots than a path that stops one transition before,
and adding an additional upper limit on number of robots can’t increase the number
required.

8

Algorithm 1 getMinimumSufficientRobots

Input: O, B,R
Output: minNum

1: ECs← getEquivClasses(O, B,R)
2: EG← getEquivGraph(ECs)
3: RG← getReachabilityGraph(EG,O, B,R)
4: constraints← getConstraints(nodes, edges, nodelets)
5: constraintSets← getReachabilityConstraints(RG,EG)
6: {mαi,mβi, . . . } ← solveConstraints(constraintSets)
7: minNum←

∑
i numRobots(mαi)

5 Implementation
Our choice of environment is motivated by an attempt to provide as simple an example
as possible while still retaining the complex configuration space structure that we are
interested in. All objects in our environment (O, B, and R) are closed, axis-aligned
rectangles. Surface contact, including sliding, is allowed between any pair of objects,
but the intersection of their interiors must be empty. The robots R may translate freely
within their respective connected components of QfreeR (x), but rotation is forbidden.
All motion of the block B is aligned with an axis and is generated by a single robot Ri
pushing B, in face-to-face contact. The resulting B + Ri assembly can only move in
the direction of B’s inward-pointing contact normal.

We reduce the problem of partitioning QfreeB into ECs to that of classifying a set
of candidate points. Candidate points are sampled in such a way as to guarantee that
at least one point is chosen from each EC. They also need to capture all possible tran-
sitions between the ECs. In order to do this, we include endpoints of at least one
representative block motion that crosses each inter-EC boundary. We introduce an in-
termediate data structure called the precursor graph (PG) which we use to group the
candidate points into ECs and to determine feasible transitions for the EG. The PG is
an undirected graph with a node corresponding to each candidate point in QfreeB and
edges corresponding to block motions between the candidate points. We also use the
PG to generate the reachability graph (RG), which is a directed graph that encodes
information about the feasibility of block motion.

5.1 Enumeration of Equivalence Classes

Our first task is to divide QfreeB into ECs. For the axis-aligned rectangle world, this
division into ECs can be performed exactly without explicitly testing every point x ∈
QfreeB . We construct a rectangular tiling of the world where any possible EC boundary
is coincident with a tile’s boundary. We then use the tiling to build the precursor graph
and group PG nodes into ECs.

There are two types of EC boundaries: those imposed by the boundaries of QfreeB

and those created by transitions between ECs. For our axis-aligned environment, the
boundaries of QfreeB are a set of vertical and horizontal line segments. Transitions
between ECs can only occur when the block’s edge is exactly a robot width or height

9

a Potential EC boundaries derived from tran-
sitions: For the given obstacles (black), block
(blue) and robots (green), the boundaries corre-
sponding to the environment’s edge are dotted,
the ones for the left obstacle are dash-dotted, and
for the right obstacle are dashed.

b Potential EC boundaries derived from QfreeB :
For the given obstacles (black), we show the C-
obstacle (gray) and its boundary line segments
(solid lines)

c Division of QB into tiles. Lines are drawn in
the same style as the line segment from a or b that
they are extending. Tiles in QfreeB are labeled
with N(x): 4 for 3, ∗ for 2, ◦ for 1.

d Division of QfreeB into ECs. Black indicates C-
space obstacle, and each different shade of grey
is a different EC.

Figure 8: Calculation of Equivalence Classes

away from an obstacle. This is because, by definition, any block displacement ∆x
that results in the block crossing one EC boundary requires that N(x) 6= N(x+ ∆x).
This corresponds to “pinching off” or “opening up” a previously (im)passable corridor
for the robot. We show an example of potential EC boundaries for all obstacles in an
environment in Fig. 8a.

We now have a set of horizontal and vertical line segments that are guaranteed to
cover every EC boundary. In order to generate a rectangular tiling of QfreeB we extend
each line segment to span the environment, as shown in Fig. 8c. The resulting tiling
informs our choice of candidate points.

10

Algorithm 2 getEquivClasses
minX(O) and maxX(O) are the minimum and maximum coordinates of O. Bx and By are
the B’s width and height, and Rx and Ry are Ri’s dimensions.

Input: O, B,R
Output: PG = (Np, Ep), ECs

// Part 1: lists of x and y coordinates for tile boundaries
1: x, y← ∅
2: for all O ∈ O do
3: // add C-space boundary coordinates
4: x← x ∪ {minX(O)− 1

2
Bx, maxX(O) + 1

2
Bx}

5: y ← y ∪ {minY (O)− 1
2
By , maxY (O) + 1

2
By}

// add potential EC transition coordinates
6: x← x ∪ {minX(O)−Rx − 1

2
Bx, maxX(O) +Rx +

1
2
Bx}

7: y ← y ∪ {minY (O)−Ry − 1
2
By , maxY (O) +Ry +

1
2
By}

8: PG = (Np, Ep)← (∅, ∅)
9: for all tiles defined by x and y lines do

10: Np ← Np ∪ {tile’s centroid, edge midpoints, corners}
11: Ec ← Ec ∪ {centroid↔midpoint, midpoint↔corner}

// Part 2: remove nodes in collision with obstacles
12: for all n ∈ Np do
13: if n /∈ QfreeB then
14: Np = Np\n
15: Ep = Ep\{all e with n as endpoint}
16: else
17: n.label← N(QfreeR (n))

// Part 3: group candidate points based on N(x)
18: numEC ← 0
19: while ∃n ∈ Np|n.ec = ∅ do
20: S ← {n}
21: numEC ← numEC + 1
22: n.ec← numEC
23: while S 6= ∅ do
24: u← an element from S
25: S ← S \ {u}
26: for all v ∈ Np | (u, v) ∈ Ep do
27: if v.ec = ∅ ∧ u.label = v.label then
28: v.ec← numEC
29: S ← S ∪ {v}

Recall that the PG’s nodes are required to provide an oversampling of both ECs and
endpoints of feasible transitions among ECs. We guarantee that every EC is sampled
by adding the centroid of each tile to the list of candidate points. We additionally need
to guarantee that we have included start and end points for any feasible EC transition.
Any feasible block motion must allow space for the pushing robot behind the block
throughout the push. The feasible start and end points are exactly the same as the
coordinates that were used to find potential EC boundaries. Thus, we guarantee that any
feasible transition is represented by adding the corners of every tile and the midpoints

11

Algorithm 3 getReachabilityGraph

Input: PG = (Np, Ep)
Output: RG = (Nr, Er)

1: (Nr, Er)← (Np, ∅)
2: for all e ∈ Ep | e = (p1, p2) do
3: if p1 → p2 is feasible then
4: ER ← Er ∪ {(p1, p2)}
5: if p2 → p1 is feasible then
6: Er ← Er ∪ {(p2, p1)}
7: return RG

of all four bounding line segments to the list of candidate points. The PG’s edges
are formed by connecting candidate points corresponding to edge midpoints to those
corresponding to the centroids of the same tile, as well as connecting corners to edge
midpoints.

The final step in partitioning QfreeB into ECs is grouping the PG’s nodes. We cal-
culate N(x) for every node in the precursor graph, where x is the node’s workspace
coordinate. We are then able to generate a labeling of ECs by grouping all nodes xi,
xj such that N(xi) = N(xj) and [xi, xj] is an edge in the PG. Each of these groups
corresponds to a single EC. An exact partition of QfreeB into ECs is shown in Fig. 8d.

5.2 Reachability Graph Generation
In this environment, the PG’s nodes provide a sufficient set of nodes for the RG—they
include coordinates in each EC, and due to the construction of the PG, if a feasible
transition between two nodes exists, there will also be one that follows the edges of the
EG. However, the PG is an undirected graph encoding adjacency, while the RG needs
to be a directed graph describing reachability. Thus, we test both possible motion
directions for each undirected edge in the PG, and create a directed edge in the RG
for every feasible transition. According to our motion model, a block transition from
configuration x1 to x2 is feasible if the block does not collide with an obstacle and if a
robot can reach the proper side of the block to execute the push.

5.3 Equivalence Graph Generation
First, we need to find the EG’s nodelets. For each EC, we choose a representative

block configuration x. Nodelets are found by decomposing QfreeR (x) into a grid of
four-connected tiles, similar to the decomposition shown in Fig. 8c, and performing
repeated flood fills starting at unlabeled tiles until every tile in the grid has been labeled.
Each connected component is assigned an identifier that allows it to be associated with
any equivalent connected components in the same EC, independent of the block con-
figuration used to generate the tiling. Next, we need to find the directed edges of the
EG, which correspond to the existence of feasible transitions between and within ECs.
Feasibility calculations have already been performed in order to create the RG’s edges.
Since we already know the EC of each node in the RG, an edge connecting two nodes

12

Algorithm 4 getEquivGraph

Input: RG = (Nr, Er), numEC
Output: EG = (Ne, Ee)

// Part 1: add node for each EC
1: Ne ← {α, β, γ, δ, . . . }
2: Ee ← ∅

// Part 2: add nodelets for each Ne
3: for all ν ∈ Ne do
4: νi ← connectedComponents(ν)
5: ν.nodelets← νi

// Part 3: add all feasible transitions to Ee and update PG to only include feasible edges
6: Ep ← ∅
7: for all e ∈ Er | e = (p1, p2) do
8: Ee ← Ee ∪ {(p1.ec, p2.ec, dir(p1, p2))}
9: return EG

in the RG can be mapped into the EG by connecting their corresponding ECs in the
EG. Self-loop edges are allowed in the EG, and they indicate that block motion can
result in the block remaining in the same EC.

5.4 Constraint Generation

Recall that we have two types of constraints: manipulability and conservation of robots.
Every edge in the EG has constraints of both types associated with it.

Manipulability constraints require that every nodelet, or set of nodelets, responsi-
ble for generating a transition is occupied. We say that a nodelet is responsible for
a transition if a robot occupying the corresponding connected component would be
able to push the block in the required direction. This leads to constraints in the form of
mαi ≥ 1. In the case of multiple nodelets able to execute the push, we only require that
one of them be occupied, and the constraint takes the form (mαi ≥ 1) ∨ (mαj ≥ 1).

Conservation of robots constraints deal with the splitting and merging of connected
components of QfreeR (x) when the block moves from EC α to EC β. These constraints
take three different forms. In the case of merging components, we have mα1 +mα2 =
mβ1. For splitting components, we have mα1 = mβ1 + mβ2. When neither merging
nor splitting has occurred, we have mα1 = mβ1.

5.5 Constraint Grouping

We have just described how constraints are assigned to edges in the equivalence
graph. We now translate those constraints to the reachability graph, which is designed
to propagate constraints throughout the environment in order to find a tight bound on
the minimum sufficient number of robots. We begin by labeling RG edges with con-
straints from the EG. The construction of the graphs is such that every EG constraint
maps to some RG edge, and every RG edge receives constraints from exactly one EG
edge.

13

Algorithm 5 groupConstraints
lookupC(EG, α, β, dir) finds the constraints associated with a transition from EC α to β with
the block moving in direction dir. dir(n1, n2) for n1, n2 ∈ Ne returns the direction of motion
required to transition between the input nodes.

Input: PG = (Np, Ep), EC = (Ne, Ee)
Output: lists of reachable constraints

// Part 1: associate constraints with each edge in the PG
1: for all e ∈ Ep | e = (n1, n2) do
2: e.constraints← lookupC(EG, n1.ec, n2.ec, dir(n1, n2))

// Part 2: all nodes receive the constraints from their departing edges
3: for all n ∈ Np do
4: n.constraints← ∅
5: for all e ∈ EP | e = (n,m) do
6: n.constraints← n.constraints ∪ e.constraints

// Part 3: backpropagate all constraints
7: for all n ∈ Np do
8: backpropagate n.constraints
9: return maximal sets of constraints

Constraints on a directed RG edge impute constraints on the edge’s parent node
because they place requirements on the configuration of robots necessary to move the
block as described by the edge (or some downstream edge in the graph). Constraints
on a node in turn impute constraints on all inbound edges. The remaining task, then, is
to fully propagate these constraint sets backward through the reachability graph until
the graph becomes consistent (Algorithm 5).

In a consistent RG, every constraint on a node applies to some feasible block path
starting at that node. The set of constraints in effect at any node provides an immediate
solution to problem (P2).

To solve this problem for a general initial block configuration, we add its coordi-
nates to the list of tile boundaries in Algorithm 2. This forces the configuration to be
included as a candidate point, which results in it appearing in the RG and inheriting a
list of applicable constraints.

To solve problem (P1), we must examine all nodes in the RG, thus representing all
possible starting block configurations. The minimum sufficient number of robots will
be determined by the node whose set of constraints requires the most robots.

The procedure outlined above and in Algorithm 5 is conceptually straightforward
but computationally inefficient, as it can require up to |Nr| traversals of the RG. The
efficiency can be improved by decreasing the number of RG traversals or by reducing
the size of the traversed graph. One way to do this is to condense the RG to a directed,
acyclic graph whose nodes are the RG’s strongly connected components. It can also
help to choose an ordering for backpropagation based on heuristics.

5.6 Constrained Minimization
We have reformulated the minimum sufficient robots problem as a constrained integer
minimization problem. In the worst case, solving this requires a graph search over

14

all possible combinations of variable assignments [12], but our problem structure will
allow us to improve on this.

First, the total number of robots required is bounded above by the total number of
nodelets in our EG. This is because we only require a single robot to push the block at
any time, so an assignment of one robot to each connected component will be sufficient
to guarantee that all manipulability constraints are satisfied.

Next, we set up the graph search. Any of the inequality constraints that are not in
a disjunction imply a minimum on a single variable, so we set those variables to their
minimum and propagate the constraints through the equality constraints. Once we have
these minimums, we need to search over how many robots need to be added to each
connected component’s value in order to satisfy the constraints. This is a constraint
minimization problem, so we need to guarantee that we have found the most efficient
assignment, which requires searching through all possible assignments. This search
can be sped up by heuristics on which variable to explore first, as well as by noting that
once we have found a solution we can abandon any search path that uses more robots
than the current best solution.

6 Planning
Throughout this paper we have discussed how many robots are required to enable a path
for the block, but avoided discussion of any particular planning approach to generate
these paths. However, the data structures we developed to solve the minimum sufficient
robots problem are also useful when considering the problem of finding a feasible path
for the block between a given start and goal configuration.

We present a roadmap-like planner for the world with axis-aligned rectangle obsta-
cles. A roadmap planner uses a directed graph, where the nodes are configurations and
the edges represent feasible paths between the configurations. It also requires that the
graph be accessible/departible from any configuration and that it preserves connectivity
[6]. We use the RG as described in Section 5.2 as the roadmap.

However, the naive approach for connecting any points qi, qf ∈ QfreeB to the graph
does not preserve connectivity. Consider the case of a narrow hallway—if no motion
perpendicular to the hallway is feasible, it is possible that there will be a feasible path
between two configurations that can never reach a point in the graph. Instead, we
extend the graph to include nodes corresponding to the intersection of both points’
coordinates with the all other tile edges.

This operation can be performed efficiently because the RG already contains the
information necessary to check the resulting edges for feasibility. Feasible directions
of motion within a tile are completely determined by the feasible motions along its
edges. New edges that are formed by splitting old edges inherit the same feasible
direction of motion. Once the start and goal coordinates have been added to the graph,
a feasible path will be found if one exists.

Now, we combine the feasible block path with information from the EG to generate
constraints on where robots need to be at all times along the block path to enable
block motion and ensure that there are robots positioned in the required connected
components. These constraints on robot position can be fed into a standard multirobot

15

path planner to generate a set of robot paths that are guaranteed to push the block from
start to goal.

7 Discussion and Future Work
In this paper, we have presented an algorithm that solves the minimum sufficient robots
problem in any environment for which we can construct equivalence and reachability
graphs. In the absence of a reachability graph, we can still compute a bound, but it is
not guaranteed to be tight. We provide the required computations for the axis-aligned
rectangle world. This world model is realistic for highly-structured environments, such
as moving furniture through a typical office building, or pallets through a warehouse.

Additionally, the axis-aligned environment can be used to provide bounds on the
minimum sufficient number of robots in more general environments. Any set of planar
obstacles can be approximated to arbitrary resolution by axis-aligned rectangles. How-
ever, this approach clearly has its limits, as our algorithm’s complexity scales polyno-
mially with the number of obstacles considered. For other block shapes, we consider
the bounding rectangle and largest inscribed rectangle. The bounding rectangle will
give an upper bound on the number of robots needed for a given environment because
it can block more possible robot paths, while the maximal inscribed square will give a
lower bound on the number of robots required.

While our current work provides a complete motion planner for the block in the
axis-aligned environment, it does not provide any guarantees about the optimality of
the resulting path. We will investigate how to use the constraints represented in the
Equivalence Graph to plan block paths that minimize the number of robots required.
Similarly, we would like to be able to provide a bound on the number of robots required
to push a block between any reachable pair of points in the environment. In some
environments, this problem may require fewer robots than are required to push the
block along any feasible path.

References
[1] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Bur-

gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: The-
ory, Algorithms and Implementations. MIT Press, 2005.

[2] Mark de Berg and Dirk H.P. Gerrits. Computing push plans for disk-shaped
robots. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2010.

[3] Jonathan Fink, M. Ani Hsieh, and Vijay Kumar. Multi-robot manipulation via
caging in environments with obstacles. In IEEE International Conference on
Robotics and Automation, 2008.

[4] Russell Gayle, William Moss, Ming C. Lin, and Dinesh Manocha. Multi-robot
coordination using generalized social potential fields. In Proceedings of the IEEE
international conference on Robotics and Automation, 2009.

16

[5] Yoshihito Koga and Jean-Claude Latombe. On multi-arm manipulation planning.
In Proceedings of IEEE International Conference on Robotics and Automation,
1994.

[6] Steven M. LaValle. Planning Algorithms. Cambridge press, 2006.

[7] Kevin M. Lynch and Matthew T. Mason. Controllability of pushing. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, 1995.

[8] Matthew T. Mason. Mechanics of Robotic Manipulation. MIT press, 2001.

[9] Maja J. Mataric, Martin Nilsson, and Kristian T. Simsarian. Coperative multi-
robot box-pushing. In Proceedings of IROS, 1995.

[10] G. A. S. Pereira, V. Kumar, and M. F. M. Campos. Decentralized algorithms for
multirobot manipulation via caging. International Journal of Robotics Research,
2004.

[11] Daniele Rus, Bruce Donald, and Jim Jennings. Moving furniture with teams of
autonomous robots. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1995.

[12] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[13] Peng Song and Vijay Kumar. A potential field based approach to multi-robot
manipulation. In Proceedings of the IEEE International Conference on Robotics
and Automation, 2002.

[14] Attawith Sudsang, Fred Rothganger, and Jean Ponce. Motion planning for disc-
shaped robots pushing a polygonal object in the plane. In Proceedings of the
IEEE International Conference on Robotics and Automation, 2002.

[15] Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, and Ming Lin. In-
teractive navigation of multiple agents in crowded environments. In Proceedings
of the 2008 symposium on Interactive 3D graphics and games, 2008.

[16] Jur van den Berg, Mike Stilman, James Kuffner, Ming Lin, and Dinesh Manocha.
Path planning among movable obstacles: A probabilistically complete approach.
In Algorithmic Foundations of Robotics VIII, 2008.

[17] Tsuneo Yoshikawa. Manipulability of Robotic Mechanisms. The International
Journal of Robotics Research, 4(3), 1985.

17

