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Abstract Planning formultirobotmanipulation indense clutter becomesparticularly
challenging as the motion of the manipulated object causes the connectivity of the
robots’ free space to change. This paper introduces a data structure, the Feasible
Transition Graph (FTG), and algorithms that solve such complex motion planning
problems. We define an equivalence relation over object configurations based on
the robots’ free space connectivity. Within an equivalence class, the homogeneous
multirobot motion planning problem is straightforward, which allows us to decouple
the problems of composing feasible object motions and planning paths for individual
robots. The FTGcaptures transitions among the equivalence classes and encodes con-
straints that must be satisfied for the robots to manipulate the object. From this data
structure, we readily derive a complete planner to coordinate such motion. Finally,
we show how to construct the FTG in some sample environments and discuss future
adaptations to general environments.

1 Introduction

Much research has focused on manipulating objects using groups of small general-
purpose robots, rather than the traditional large single-purpose machines in a context
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such as manufacturing [1–5]. There are a number of scenarios in factories and ware-
houses for which using a team of robots can save time or even perform a task that
was impossible with a single robot. Examples include maneuvering a cargo pallet in
an area packed with boxes and performing precision assembly of large products like
airplanes.

In the first example, in a cluttered environment, transporting a bulky object can be
quite awkward. Consider a forklift trying to make a 90◦ turn among tight corridors.
It may be more efficient to set down the load, reposition, and then drive in the new
direction. However, this repositioning could be physically infeasible due to the load
blocking a lone forklift’s free space or logistically infeasible given the time required
to drive around other obstacles. In these cases, an additional forklift must already be
in position to efficiently pick up and transport the load.

In the second example, we observe that current strategies for manufacturing large
objects require factory fixtures called jigs. The goal is to have teams of robots replace
the jigs and carry large parts in and around the assembly area, bringing them into
contact when the assembly operation calls for it. This would allow themanufacturing
plant to become operational more quickly as well as be more flexible for reusing
the infrastructure for other tasks. However, this will require robots that are able to
maneuver large objects in a busy, cluttered factory floor.

One key challenge of these scenarios is that they require reasoning about how the
manipulated object’s location affects the manipulating robots’ ability to move freely.
They share that requirement with the multirobot object manipulation domain, which
considers a class of problems where a group of mobile robots must work together to
move an object from a start to a goal configuration (detailed in Sect. 3).

Consider cluttered environments such as in Fig. 1, with several robots pushing a
large object in a maze-like environment. The motions of robots and the object are

Robot

Movable Object

Obstacle

Robot’s C−obstacle

Object’s C−obstacle

Fig. 1 Example environment for object pushing. The same color scheme is used throughout the
paper



The Feasible Transition Graph … 303

coupled both by obstruction and by rules for manipulating the object. In this paper,
we explore the following questions:

P1—Existence: Given start and goal configurations for the object, does a feasible
plan exist for the robots to move the object?
P2—Synthesis: Find a plan to move the object from a start to a goal location for
given initial robot locations.
P3—Optimization: What is the minimum number of robots required to push the
object between two specific positions? What is the path-length-optimal feasible
object path between two specific positions?
P4—Minimalism: What is the minimum number of robots required to perform
any feasible object path in the environment?

We introduce a novel representation, the Feasible Transition Graph, and algorithms
operating upon it that allow us to answer the above questions. We then discuss an
implementation that solves these problems for a few simple types of environment
and manipulation models.

We achieve these results by reformulating object pushing as a constrained mini-
mization problem with constraints derived from two properties of the environment
(Sect. 4). First, we require that robots obey the semantics of pushing, which we
term manipulation constraints. These constraints determine how robots are able to
maneuver the object. Next, as the object’s motion changes the connectivity of the
robots’ free space, we require that each robot must move deliberately among merg-
ing and splitting connected components. We call this conservation of robots. These
two properties induce constraints on the number of robots occupying each connected
component.

We organize these constraints in a graph-like structure called the Feasible Transi-
tion Graph (Sect. 7), which makes it possible to solve multirobot planning problems
(P1, P2, P3) with a graph search (Sect. 5). General minimum sufficient robots prob-
lems (P4) require an optimization over this graph (Sect. 6).

In the multirobot object pushing domain, even simple scenarios reveal much com-
plexity. The FTG provides an abstraction that simplifies this complexity. A key future
challenge is to tractably construct such graphs for complex, higher-dimensional prob-
lems (Sect. 8).

2 Related Work

Approaches to manipulation planning often consider a set of alternating transit and
transfer actions. This makes it difficult to apply typical motion planning algorithms.
Under some conditions, the manipulation planning problem can be split into two
steps: first choosing a path for the object, and then finding robot paths that cause
the object to follow that path [6]. This decomposition is similar to the division of
multi-arm manipulation problems into transit and transfer tasks by [7]. Our work
focuses exclusively on what is required to find a feasible object path, instead of on
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solving the navigation problem for individual robots. Once a path for the object has
been found, it imposes a set of constraints on individual robot positions, from which
motions can be easily computed. Robot paths that obey these constraints can be found
using existing multirobot planning algorithms [8, 9].

Our multirobot manipulation task in clutter is closely related to navigation among
movable obstacles. They both require reasoning about manipulating an object whose
motion changes the connectivity of the robot’s free configuration space [6, 10]. In
this work, we use the observation that for determining whether a given manipulation
action is feasible it is sufficient to explicitly track which portions of the robot’s
configuration space are occupied.

Significant previous work has focused on the mechanics of object pushing and the
problem of how a team of robots can cause an object to follow a predetermined path.
Lynch and Mason investigated the controllability of point- and line-contact pushing
[11, 12]. More recently, [13] investigated how to compute paths for a team of robots
to push an object along a given path among obstacles.

Caging is a common method for solving the multirobot object pushing problem.
Rather than alternating transit and transfer actions, robot actions are chosen such
that they approach the goal while obeying constraints guaranteeing that the object
remain caged. This approach has resulted in complete algorithms for obstacle free
environments [14], and moderately cluttered environments [15–17]. However, we
consider environments with narrow passages where it is not physically possible to
cage an object.

Definitions

O = {Oi }, obstacles
R = {Ri }, robots
M manipulated object

EC equivalence class
EG equivalence graph

FTG feasible transition graph
C(ni ) constraints on ni ∈ FTG

mαi number of robots in αi

PRi , PR path of Ri , set of robot paths
PM , PM path for M, set of all such paths
FM , FM feasible path for M, set of all such paths

Q f ree
R (qM ) free configuration space of robot R with M at qM

Q f ree
M free configuration space of M

N (Q) number of connected components in space Q

N (qM ) shorthand for N
(

Q f ree
R (qM )

)
for qM ∈ Q f ree

M

A(ni ) possible assignments of robots for ni ∈ EG

αi i-th connected component of Q f ree
R (qM ) for qM ∈ α

3 Definitions and Problem Statement

Assume the workspace is a closed, bounded subset of R2, populated by obstacles
O = {Oi }. Identical robots R = {Ri } cooperate to manipulate the movable object
M , and are able to perform two types of actions within this environment: transit
actions, where they move within a connected component of their free configura-
tion space; and transfer actions, where they maneuver M . A solution for the object
manipulation problem consists of a path for M from a start configuration qM,init to a
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goal configuration qM,goal and a set of robot trajectories PR = {PR1 , PR2 , . . .} that
cooperate to move M along this path.

We consider the case of homogeneous robots, and define Qfree
R (qM ) to be the free

configuration space formed by any robot Ri moving among O with M at position
qM . Qfree

M is the free configuration space formed by M moving among obstacles O.

Let the continuous function PM : [0, 1] → Qfree
M be a path for the object, and the set

of all such paths be PM .
In order to tractably reason about all possible object paths, we define an equiv-

alence relation on object positions qM such that any path can be broken down into
a series of actions transitioning among equivalence classes (ECs). We say that two
object configurations qM,i and qM, j are equivalent if there exists a continuous path
p ∈ PM parametrized by s ∈ [0, 1], with p(0) = qM,i and p(1) = qM, j , along
which N (p(s)) is held constant. Each EC α is associated with a set of connected
components {α1, α2, . . .}, as shown in Fig. 2. We use mαi to represent the number
of robots occupying the connected component αi , and define a function N (Q) that
returns the number of connected components in a configuration space Q. N (q) is
used as shorthand for N (Qfree

R (q)).
We define feasible paths to be the subset of object paths that the robots are able

push the object along:

FM = {p ∈ PM | ∃PR causing M to follow p.}

For a path to be feasible, there must be sufficient space adjacent to the object for
a robot throughout the course of the manipulation. Considering the environment in
Fig. 2, no transition from ζ → α is feasible because there is no space for a robot
to the left of M . Similarly, any path from α → β → α → ζ is infeasible, despite
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Fig. 2 An EGwhere each node is represented by an example object configuration. Arrows indicate
neighboring ECs
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each individual transition being feasible. This is because earlier transitions requires
mα1 ≥ 1, but the final transition requires mα1 = 0.

Robots can move freely within Qfree
R , so chaining together feasible block paths

only requires keeping track of how many robots occupy each connected component
of Qfree

R (qM ), rather than the full cross product of |R| such spaces. Individual robot
trajectories can then be derived from the block path. This relies on two assumptions.
First, the robots are interchangeable, such that we do not have to consider how robot
positions affect the connectivity for other robots. (The robots in a conflict would
simply have their goal assignments swapped.) Second, we assume that robot packing
density is not a limiting factor, which depends on the details of the world model.

4 Approach

In cluttered spaces, constraints on manipulation and robot location interact in com-
plex ways. In this section, we present our approach to simplifying the analysis of
pushing interactions in order to solve Problems P1–P4. The first data structure, the
Equivalence Graph (EG), exposes the topological structure of the ECs as a function
of movable object position. The second data structure, the Feasible Transition Graph
(FTG), computes feasible kinematic motions, using the ECs from the EG for book-
keeping about robot occupancy. Implementation details for sample environments are
presented in Sect. 7.

4.1 Constraints

The data structures proposed here require us to associate constraints with each transi-
tion of the object across an ECboundary. Recall that we have two types of constraints:
manipulation and conservation of robots, as described in Sect. 1. These constraints
prescribe the number of robots assigned to each connected component. For example,
in the environment shown in Fig. 2, a transition from EC δ to β imposes the following
constraints:

mδ1 = mβ3 (conservation of robots)

mδ2 = mβ1 + mβ2 (conservation of robots)

mδ1 ≥ 1 (push manipulation)

mβ3 ≥ 1 (push manipulation).

Conservation of robots constraints deal with the splitting and merging of con-
nected components of Qfree

R (qM ) over time. These constraints, which are a function
of the geometry of the environment alone, take four different formswhichwedescribe
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with references to the ECs shown in Fig. 2. In the case of merging components, such
as δ → ε, we have mδ1 + mδ2 = mε1. For splitting components, such as α → β,
we have mα2 = mβ2 + mβ3. For the same transition, we have mα1 = mβ1, for com-
ponents involved in neither splitting nor merging. If a component has no associated
robots in the next EC, such as for γ → η, we have mγ 2 = 0.

Manipulation constraints require that every connected component, or set thereof,
responsible for generating a transition is occupied. We say that a connected compo-
nent is responsible for a transition if a robot occupying it would be able to push the
object in the required direction. This leads to constraints in the formofmαi ≥ 1. In the
case of multiple connected components able to execute the push, we only require that
one of them be occupied, and the constraint takes the form (mαi ≥ 1) ∨ (

mα j ≥ 1
)
.

Changing the manipulation model requires changing how these manipulation
constraints are defined and updating the feasibility checking to accommodate the
different robot positions during motion. For example, if we wanted to require one
robot pushing and one robot pulling,wewould require that the connected components
on either side of the object are occupied by at least one robot and that there is space
at the start and end of the motion for both robots. Other possible configurations
include allowing one robot to both push and pull, or requiring two robots pushing
side-by-side to manipulate the object.

4.2 Equivalence Graph

TheEquivalence Graph (EG) encodes a compact representation of the topology of the
environment and the motion of the object. It is an undirected graph used to represent
how the object’s motion between ECs affects the connectivity of Qfree

R . Each node of
the EG corresponds to an EC, as defined in Sect. 3. Every EC denotes a number of
connected components of the robots’ free configuration space, given alphanumeric
labels in Fig. 2. The edges represent object motions that cause a transition between
ECs, and are labeledwith the corresponding conservation of robots constraints. Using
the EG and an exact mapping qb �→ EC , it is possible to determine the conservation
of robots constraints involved for any object path PM .

4.3 Feasible Transition Graph

The Feasible Transition Graph (FTG) describes feasible object motions in the envi-
ronment. It is a directed graph, reflecting the fact that transfer actions are not
reversible in time. The nodes are object configurations, and edges are labeled with
the constraints on connected component occupancy required for the associated object
motion to be feasible. It has two key properties: any feasible object motion must map
to a walk on the FTG, and for any walk on the FTG, we must be able to determine
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which EC transitions have been crossed. If it is possible to exactly describe all
such transitions, the resulting planner will be complete, and bounds on the number
of robots required will be exact. Otherwise, it is possible to use a sampling-based
approach to construct the FTG and obtain a probabilistically complete planner.When
constructed, the FTG’s nodes have no associated constraints; the Planning (Sect. 5)
andMinimumSufficient Robot (Sect. 6) algorithms both add annotations to the nodes
of the FTG and propagate them through the FTG. These node annotations may repre-
sent constraints on robot assignments, denoted C(ni ), or feasible robot assignments,
denoted A(ni ).

5 Planning

Given an initial object position M and robot positions R, we wish to find a sequence
of object pushes that cause the object to reach the goal location (P2). We present a
roadmap-like planner that solves this problem. A roadmap planner uses a directed
graph, where the nodes are configurations and the edges represent feasible paths
between the configurations. It also requires that the graph be accessible/departible
from any configuration and that it preserves connectivity [18]. We use the FTG as
described in Sect. 4.3 as the roadmap, and give details for connecting start and goal
positions in Sect. 7.3.

Nodes in the FTG may be labeled with an assignment of robots to connected
components and/or a set of constraints. For P2, a labeling of robot assignments
indicates that there is a feasible object path that could result in the robots moving
from their given initial conditions to the indicated locations. A labeling of constraints
indicates that if those constraints are met at that node, then there is a feasible block
path from that node to the goal. A solution has been found when there exists a node
with an assignment of robots that satisfies its constraints.

Possible robot assignments to connected components of Qfree
R (qM ) propagate

along the edges, starting with the provided initial conditions, and only change along
edges that cross an EC boundary. The child node is assigned the set of all possible
robot assignments to {mαi } that satisfy the constraints on the transition and could
result from starting with (one of) the parent node’s robot assignment(s) and reparti-
tioning the robots into connected components, if applicable. For example, consider
the planning problem shown in Fig. 7b. The initial conditions are A(n11) = {ε1 = 3}.
After a transition from ε → δ, we have A(n12) = {(δ1, δ2) = (1, 2), (2, 1), (3, 0)}.
The partition (δ1, δ2) = (0, 3) was eliminated because it does not satisfy the con-
straints for the edge. In the case of a node with two parents, we add both sets of
possible assignments to the set. This has a branching factor proportional to

( |R|
|αi |

)
.

In practice, this may be reduced dramatically by the requirement that propagated
assignments satisfy the edge constraints, and is bounded by the number of robots
that must be considered for a given environment, as discussed in Sect. 6.
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Backpropagation of constraints is based on the observation that if an edge exists
between two nodes and there are a known set of constraints that would allow a path
from the child node to the goal, then the parent node’s constraints are the union of
the child node’s and the edge’s. For the same transition discussed above, we have
C(n11) = C(n12) ∪ C(n11 → n12) If multiple paths exist from a given node to the
goal, the constraints at that node are the disjunction of those from all edges leaving
it. For example, the environment shown in Fig. 3 has two topologically distinct paths
from the initial condition to the goal, described here in terms of the ECs that must
be traversed:

η → δ →γ → β → α

η →β → α

If either path is feasible, then a feasible path exists from nη → nα , so C(nη) =
(C(nδ) ∪ C(nη → nδ)) ∨ (C(nβ) ∪ C(nη → nβ)). Determining whether a feasible
path exists requires solving at least one satisfiability problem, which is in general
NP-complete, but in practice, efficient solvers exist. Additionally, search efficiency
involving the constraints can be improved by preferentially propagating constraints
along edges in the FTG that are known to lie on a path connecting the start and goal
nodes.

Since the FTG is complete by construction, so long as we use a complete graph
search algorithm the resulting planner is also complete. The resulting plan includes
an assignment of robots to connected components for each EC that the object passes
through. These constraints on robot position can be fed into amultirobot path planner
to generate a set of robot paths that are guaranteed to push the object to the goal.

We have discussed a solution to P2. This is a special case of P1, which asks if
any solution exists independent of initial robot assignments. For P1, only backprop-
agation of constraints is used, and it is necessary to check if a satisfying assignment
of robots to connected components exists at the start node. Optimizing for object

Fig. 3 Environment with topologically distinct paths to the goal, requiring different numbers of
robots. Goal is shown as dashed outline; ECs are labeled and different shades of gray
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distance or number of robots (P3) can be achieved by ordering the FTG traversal
based on these metrics.

6 The Minimum Sufficient Robots Problem

In this section, we derive a bound on howmany robots are required to push the object
along any feasible path in a given environment (P4). We term this the minimum
sufficient robots (MSR) problem. The resulting bound applies to the solution found
by any planning algorithm. It is of interest for determining how many robots to
purchase or deploy and for classifying how challenging a particular environment is
for multirobot object manipulation tasks.

An important distinction is that we are considering every feasible path in the
environment, not just the path-length-optimal ones. The environment shown in Fig. 4
demonstrates why it is necessary to propagate the constraints through the FTG, rather
than simply consider the union of all constraints in the EG. It is not possible for the
object to travel from the left half to the right half of the environment, so the full set of
constraints would lead to an overestimate of howmany robots are required. Consider
the environment shown in Fig. 5. The object path shown requires six robots to be
executed. However, there exists a path between the same initial and final positions
that requires only four robots, and there is a path in this environment that requires
nine robots. Thus, the MSR bound is the least upper bound to the number of robots
required to solve all point-to-point object motions, disregarding the path taken.

The FTG is designed to propagate constraints throughout the environment, which
allows us to find a tight bound on the minimum sufficient number of robots. Just as
in the planner, constraints on a directed FTG edge impute constraints on the edge’s
parent node. The two problems differ with respect to how constraints are joined when
there are multiple edges leading from a node. In the planner, we only require that
a feasible path exists to the goal; in the MSR problem, we require that all paths be
feasible. Thus, rather than taking the disjunction of constraints from outgoing edges,
we take the conjunction. A solution to the MSR problem can then be found by fully
propagating these constraint sets backward through the FTG until the graph becomes

Fig. 4 Environment where
using the set of all
constraints would give an
overestimate of the
minimum sufficient robots
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Fig. 5 Example
environment for object
pushing. We show an object
path that would require 6
robots, numbered in the
order that they push the
object. Intermediate robot
and object positions are
shown in lighter colors. A
dashed square shows the
initial object position

1

2

3

4

5
6

consistent. By consistent, we mean an assignment of constraints to each node that
will not change upon any further constraint propagation. In a consistent FTG, every
constraint on a node applies to some feasible object path starting at that node.

In order to solve P4, constraints must be propagated from every node, not just
the goal. After achieving a consistent set of constraints, the minimum sufficient
number of robots will be determined by the node whose set of constraints requires
the most robots. We have now reformulated the minimum sufficient robots problem
as a constrained integer minimization problem with bounded variables. In the worst
case, solving this requires a graph search over all possible combinations of variable
assignments [19], but the problem structure will allow improvement using heuristics
to guide the search.

The procedure outlined above is conceptually straightforward but computation-
ally inefficient, as it can require up to |Nr | traversals of the FTG to make the graph
consistent. This can be eliminated by preprocessing the FTG to condense it into a
directed, acyclic graph whose nodes are the FTG’s strongly connected components.
The initial constraints on each new node are the union of all constraints in the cor-
responding strongly connected component. This acyclic graph will only require one
additional traversal to propagate all constraints.
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7 Implementation

Wepresent implementations of the EGandFTG in two different environments, which
were chosen in an attempt to provide as simple an example as possible while still
retaining the complex configuration space structure of interest. Both environments
allow exact decomposition of Qfree

M into ECs; the first also has a completely-specified
FTG, whereas we use a probabilistic approach for the second.

Axis-Aligned Box Obstacles All objects in this environment (O, M , and R)
are closed, axis-aligned rectangles. Surface contact, including sliding, is allowed
between any pair of objects, but the intersection of their interiors must be empty.
The robots R may translate freely within their respective connected components of
Qfree

R (qM ). All motion of the object M is aligned with an axis and is generated by a
single robot Ri pushing M , in face-to-face contact. The resulting M + Ri assembly
can only move in the direction of M’s inward-pointing contact normal. This is the
same environment as [6] use, but with different constraints on object manipulation.

Polygonal Obstacles In this environment, all obstacles O are closed polygons, while
the object M and robots R are circular disks. As in the axis-aligned environment, the
robots translate freely within connected components of Qfree

R (qM ). Contact among
robots, or between the environment and robots or the object, is forbidden. Two robots
pushing in tandem are required to generate object motion. For robot–object normals
n̂i = qM −qRi|qM −qRi | , the possible object motion directions are given by v̂M = an̂1 + bn̂2,

for 0 < a, b < 1.

7.1 Equivalence Graph

There are two types of EC boundaries: those imposed by the boundaries of Qfree
M

and those created by transitions between ECs. Transitions between ECs correspond
to the object “pinching off” or “opening up” a previously (im)passable corridor for
the robot (connectivity), or to the object’s motion causing a connected component of
Qfree

R to disappear (existence). Connectivity changes can only occurwhen the object’s
edge is exactly a robot width or height away from an obstacle. For the axis-aligned
environment, these boundaries correspond to extending the obstacles by RR +2RM .
For the polygon world, these boundaries are the configuration space obstacles for
a disk with radius RR + 2RM (Fig. 6a). In the axis-aligned environment, existence
of connected components only changes along the same bounds as the connectivity
changes. For the polygon environment, changes in connected component existence
will occur when the robot is wedged into a corner, and the EC boundary corresponds
to an arc of radius RM + RR around the robot’s location (Fig. 6c).

We now have a tiling of the environment, where all qM in the interior of each tile
are guaranteed to result in the same N (Qfree

R (qM )). For each tile, we determine the
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(a)

(b) (c)

(d)

Fig. 6 Calculation of equivalence classes. a Dotted lines show potential EC boundaries derived
from transitions. b Division of QM into tiles. Tiles in Qfree

M are labeled with N (qM ): 
 for 3, ∗ for
2, ◦ for 1. c The black arcs show potential EC boundaries derived from a disappearing connected
component in Qfree

R . d Division of Qfree
M into ECs. Black indicates C-space obstacle, and each

different shade of gray is a different EC
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number of connected components in the robots’ free space (Fig. 6b). Equivalence
classes correspond to the union of neighboring tiles with the same N (Q). Figure6d
shows exact decompositions of both environments into ECs.

Finally, we need to find the edges of the EG, which correspond to possible object
motions that change the connectivity of Qfree

R (qM ). In these environments, such
edges are simple to compute, as they connect any ECs that share a spatial boundary.
They are then labeled with the conservation of robots constraints associated with
motion between those ECs. Figure2 shows a representation of the EG for the same
environment as the left column of Fig. 6.

7.2 Feasible Transition Graph

Axis-Aligned Environment The tiling calculated in Sect. 7.1 also captures all
changes in possible object motions, as pushing requires a robot to fit behind the
object. For an object motion qM1 → qM2, feasibility is calculated by determining if
the boundary between a connected component of Qfree

R (qM1) and the trailing edge
of the object’s C-obstacle has non-zero length.

In order to represent possible object motions within and along tile boundaries,
the FTG’s nodes are chosen to be the centroids of each tile, along with mid-points
of boundaries and the edges. Note that all locations within a tile will have the same
feasible motions as the centroid, so this sampling fully specifies all possible object
motions throughout Qfree

M . Directed edges are added for any feasible motion between
nodes, and labeledwith the corresponding constraints on connected component occu-
pancy from the EG. In order to have the required information to plan in the graph,
any edge that involves transitioning between ECs is also labeled with the correspond-
ing constraints on connected component occupancy from the EG. Figure7a shows a
representation of the FTG for a simplified version of the environment shown in Fig. 2.

Polygonal Environment The purpose of the FTG is to discover feasible motion
sequences within Qfree

M .We present a general, stochastic method based on Proba-
bilistic Roadmaps (PRMs) [20].

In this application, the PRM randomly samples object configurations from Qfree
M

and tries to connect them to nearby configurations. An edge EFTG in this roadmap
represents a trajectory in the configuration space of the object that obeys the manip-
ulation semantics. Computing these edges requires an inverse manipulation model.
In so doing, robots may be placed wherever they are needed to complete the motion.
Collision-free edges are annotated with the number of robots required in each con-
nected component to perform the transfer action. This roadmap describes feasible
object motions both within each EC and across EC boundaries.

We note the resemblance of this structure to Multi-Modal PRM [21] and the
manipulation planning PRM of [22]. Each generates a roadmap connecting several
manifolds of arbitrary dimension, which are bridged by lower-dimensional inter-
section manifolds. We show that our formulation of the FTG is probabilistically
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(a) (b)

Fig. 7 FTG and planning problem for a simplified version of Fig. 2’s environment. a FTG, subsam-
pled for clarity (only nodes at tile centers are drawn). ECs are shown as different shades of gray,
and the labels match those in Fig. 2. b Example instance of P2 (top), and connecting start/goal to
the FTG (bottom)

complete by reducing it in the context of a planning problem (P2) into an instance
of the Multi-Modal PRM (MM-PRM) of [21], constructed in the joint configuration
space of the object and n robots.

Consider an edge EFTG in the FTG joining two object states, qFTG
1 , qFTG

2 ∈ Qfree
M .

We show that this edge is equivalent to edges E M M
1 . . . E M M

k in the MM-PRM, with

k ≥ 2, representing a motion connecting q M M
1 , q M M

2 ∈ Qfree
M × Qfree

R

n
. We may

separately consider transit and transfer tasks of the robots. In transit tasks (E M M
1 ),

the robots alonemove, whereas transfer tasks (E M M
2 . . . E M M

k ) involve manipulation
of the object by the robots.

EFTG is annotated with constraints on the number of robots in several connected
components, which specify goal states for the robots. By the definition of a connected
component, each transit is a motion planning problem that can be solved easily by
a standard PRM. For homogeneous robots, the multirobot planning problem can be
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simplified by selectively permuting goal positions to avoid conflicts [23]. Note that
not all robots need to move.

Transfer tasks, whether within or between ECs, are defined by the coordinated
motion of the object and some subset of the robot. The motion of the relevant robots
is given by the inverse manipulation model. In the case of intra-EC motion (k = 2),
the other robots do not need to move. For inter-EC motion, k > 2 because the
transfer edges in the MM-PRM must meet at a point on the boundary between ECs.
In this case, the other robots must move to ensure they are in the correct connected
component after the transition. Any goal state within the new connected component
is an acceptable goal. Again, some robots may not move.

Any edge in the FTG may be mapped to an edge in a connected MM-PRM.
Therefore, the probabilistic completeness property of MM-PRMs applies also to this
FTG construction. Unlike MM-PRMs, the ECs in which we sample are typically the
full dimension of QM and the space of edges that cross an EC boundary is likewise
of full dimension. Consequently, it is not typically necessary to explicitly sample on
the boundary in order to get a connected FTG.

In comparison to building a roadmap directly in the high-dimensional joint con-
figuration space of the object and robots, we can get away with a lower dimensional
roadmap by exploiting structure in the problem. Specifically, there is minimal cou-
pling in themotion among the object and robots. TheEGallows us to specify goals for
the robots in advance without excessive precision. That is, provided that each robot
is in the correct EC, detailed positioning is a simple, decoupled motion planning
problem.

7.3 Planner

Finally, in order to use the FTG as a roadmap, we need to show that it is acces-
sible and departible. In the axis-aligned environment, simply connecting the points
qM,init, qM,final ∈ Qfree

M to the graph does not preserve connectivity. Consider the case
of a narrow hallway—if no motion perpendicular to the hallway is feasible, it is pos-
sible that therewill be a feasible path between two configurations that can never reach
a point in the graph. Instead, we extend the graph to include nodes corresponding
to the intersection of both points’ coordinates with the all other FTG edges (Fig. 7b,
bottom). The polygonal environment is simpler, as the start/goal positions can be
connected to the FTG in the same way as the randomly sampled configurations.

8 Discussion and Future Work

In this paper, we propose the Feasible Transition Graph, a representation for multi-
robot object-pushing in cluttered environments. This approach enables a user to
reason about resource allocation, including how many robots are needed and where
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they should be positionedwhile planningmotions for the object.Weprovide complete
algorithms for solving these planning problems, andwe describe how to construct the
FTG for a few simple environments. Our approach exploits the structure of transient
independence among robots to construct amuch simpler representation than the naive
search space comprising the joint configuration space of the object and all robots.

In future work, we plan to consider more general environments, particularly those
with a higher-dimensional configuration space. The probabilistic FTG construction
approach is already quite general, but we plan to investigate a probabilistically com-
plete construction of the EG for diverse environments as well.

Additionally, there are a number of simple extensions from what we described in
detail. First, heterogeneous robots may be handled in one of two ways. If they are of
different sizes, then therewill be additional ECboundaries corresponding to each new
robot radius. If they have different capabilities, then we must introduce additional
variables to the number of robots in a given connected component matching that
capability. In this way, we could handle planning for robots that must cooperate to
push and pull an object.
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