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ABSTRACT
Intent-expressive robot motion has been shown to result in in-
creased efficiency and reduced planning efforts for copresent hu-
mans. Existing frameworks for generating intent-expressive ro-
bot behaviors have typically focused on applications in static or
structured environments. Under such settings, emphasis is placed
towards communicating the robot’s intended final configuration
to other agents. However, in dynamic, unstructured and multi-
agent domains, such as pedestrian environments, knowledge of the
robot’s final configuration is not sufficiently informative as it com-
pletely ignores the complex dynamics of interaction among agents.
To address this problem, we design a planning framework that
aims at generating motion that clearly communicates an agent’s in-
tended collision avoidance strategy rather than its destination. Our
framework estimates the most likely intended avoidance protocols
of others based on their past behaviors, superimposes them, and
generates an expressive and socially compliant robot action that
reinforces the expectations of others regarding these avoidance
protocols. This action facilitates inference and decision making
for everyone, as illustrated in the simplified topological pattern of
agents’ trajectories. Extensive simulations demonstrate that our
framework consistently achieves significantly lower topological
complexity, compared against common benchmark approaches in
multi-agent collision avoidance. The significance of this result for
real world applications is demonstrated by a user study that reveals
statistical evidence suggesting that multi-agent trajectories of lower
topological complexity tend to facilitate inference for observers.
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1 INTRODUCTION
Over the past decades, a significant amount of research has focused
on enabling robots to navigate human environments in a smooth
and socially compliant fashion. The social navigation problem is
inherently decentralized and precludes explicit communication. To
address this complication, several works have proposed planners
based on trajectory prediction [1, 2, 21, 34, 38], whereas others
have contributed planners based on cognitive heuristics [9, 13, 20,
22, 25, 28, 29, 35], behavioral dynamics [4] and learning features
of socially compliant navigation strategies from demonstrations
[7, 18, 23]. Recent advances in the fields of crowd simulation and
decentralized multi-agent planning [15, 17, 24, 36] have motivated
inspiration and exchange of ideas and concepts between the fields.
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Figure 1: A human and a robot move towards opposing sides
of a hallway. The initial configurations of the two agents
make it hard for the human to predict the emerging avoid-
ance strategy (“right” or “left”). The robot detects a slight
advantage towards the “right” strategy and acts towards am-
plifying it and thus facilitating the inference of the human
regarding the emerging (right) strategy of avoidance.

Despite the impressive performance benchmarks that theseworks
have achieved, their deployment in human environments can yield
undesired results. Humans tend to make inferences about the fu-
ture behavior of others by attempting to attribute context-specific
intentions to them [8] (see for example Fig. 1). Hence, robot mo-
tion that appears to lack a clear and consistent global intention
complicates the inference for observers. Humans, driven by erro-
neous inferences, may then move in ways that are unexpected by
the robot, which may in turn affect the subsequent inference and
decision making of the robot, yielding an oscillatory pattern of joint
behavior, commonly referred to as “reciprocal dance" [12].

The frequently observed emergence of this phenomenon high-
lights the need for equipping robots with models of human in-
ference mechanisms. This could enable robots to anticipate the
coupled dynamics of their interaction with humans and even act
in a consistently readable fashion. This idea is not new; several
collaborative robotics applications, including robot soccer [27],
human-robot handovers [30], robot pointing [16], robot object pick-
ing [10], navigation [22] and language generation [31] have been
centered around the generation of intent-expressive actions. These
have inspired the design of further computational frameworks that
generalize the generation of implicitly communicative actions to
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any collaborative task [19, 26]. Particular emphasis has been placed
on the concept of Legibility [10] or Readability [6], a property of
behavior that allows for fast and unambiguous inference of an ac-
tor’s intent, which has been shown to lead to effective human-robot
collaboration [10] and reduced planning effort for other agents
[5, 6]. Dragan and Srinivasa [10] provided a general definition of
Legibility as the property of motion that enables an observer to infer
quickly and confidently the goal of an actor, given observation of
the actor’s past action.

Existing works on legible motion generation tend to associate
the notion of a goal or intention with a point in a configuration
space (e.g. [10, 22]). In a static and structured environment, where
the dynamics of interaction among agents is predictable or known a
priori, this is a well motivated modeling decision, as the observers’
belief could be assumed to be an isolated relationship between an
observed motion and a potential destination. However, in dynamic
and unstructured environments, where the dynamics of interaction
among multiple agents are complex, sole knowledge of an agent’s
destination may be insufficient to inform others of the agent’s im-
mediate behaviors. This highlights the need for a new consideration
of legibility that captures the interactions with neighboring agents.

1.1 Contributions
In this paper, we present a planning framework for intent-expressive
motion generation in dynamic multi-agent environments. Specifi-
cally, we contribute: (1) a novel topological consideration of legi-
bility that captures the complexity of multi-agent dynamics; (2) a
novel inference mechanism that reduces the trajectory prediction
problem (continuous, infinite number of possible solutions) to the
easier problem of topology prediction (discrete, bounded number
of candidate solutions); (3) a cost-based planner, inspired by the
cooperative nature of human navigation [37] and motivated by the
goal-driven nature of human inference [8], that generates motion
towards simplifying inference and planning for observers; (4) the
introduction of a tool from low-dimensional topology for assessing
the complexity of multi-agent trajectories and multi-agent motion
planning; (5) extensive simulations demonstrating the topologi-
cal and geometrical efficiency of our planner, compared against
benchmarks in the area of multi-agent collision avoidance; (6) sta-
tistical evidence extracted from an online user study with human
participants, demonstrating that executions of greater topologi-
cal efficiency tend to be more legible, i.e., allow early and correct
inference of agents’ behaviors.

This paper constitutes a new step in our investigations of the
use of topological methods and tools for modeling multi-agent
interactions in navigation and planning socially competent robot
behaviors in multi-agent domains. Our past works made explicit
use of topological braids to plan socially competent robot behaviors
[23, 24]. This work makes use of topological braids as an analytical
tool for assessing the quality of multi-agent planning.

2 MULTI-AGENT TRAJECTORY ANALYSIS
In a scenewheremultiple agents navigate towards their destinations
while avoiding collisions with each other, their decision making
over time may be represented as a geometrical pattern, formed by
the spatiotemporal superposition of their trajectories. The topolog-
ical properties of this pattern are indicative of the interactions that

the agents have with each other throughout the course of the scene.
In particular, the way agents avoid one another, by passing on the
left, right, front or back of others results in an “entanglement” of
their trajectories over time. Depending on the navigation strategies
that agents follow, the complexity of this entanglement may range.

We hypothesize that the complexity of the entangle-
ment of the trajectories of multiple agents that navigate
simultaneously a workspace is related to the planning
effort they spend.

In particular, we aim to show that legible behaviors in multi-agent
navigation result in trajectory entanglements of low complexity.
This will allow us to employ as a measure of topological complex-
ity as a proxy for assessing the legibility of multi-agent behaviors.
Based on the work of Carton et al. [6], who showed that legible
behaviors in navigation reduce the required planning effort of nav-
igating agents, we aim to show that trajectories of low topological
complexity require low planning effort for agents.

In the following subsections, we present a general model of
multi-agent navigation, briefly recap our topological abstraction
of collective multi-agent behavior [23, 24] and introduce a tool for
evaluating the topological complexity of multi-agent trajectories.

2.1 A Model of Multi-Agent Navigation
A set of agents N = {1, . . . ,n}, with n ≥ 2, navigate towards their
intended destinations in a workspace Q ⊂ R2. Let us denote by
qi ∈ Q the configuration of agent i ∈ N and by vi its velocity.
Agent i starts from an initial configuration qsi ∈ Q at time t = 0
and reaches a final configuration qdi at time t = Ti . We define
the system state as a tuple Q = (q1, . . . ,qn ) ∈ Qn . The system
evolves from an initial configuration Qs =

(
qs1, . . . ,q

s
n
)
to a goal

configuration Qd =
(
qd1 , . . . ,q

d
n
)
. These configurations define a

scenario S =
(
Qs ,Qd

)
.

Executing a scenario requires that each agent i ∈ N follows a
collision-free trajectory ξi : [0,Ti ]→ Q that starts from ξi (0) = qsi
and reaches ξi (Ti ) = qdi at time Ti > 0. This results in a system
trajectory Ξ : [0,T ]→ Qn\∆, where T = maxi ∈N Ti (it is assumed
that agents remain stationary once they reach their destinations)
and ∆ = {Q = (q1,q2, . . . ,qn ) ∈ Qn : qi = qj for some i ,
j ∈ N } is the set of states in collision. ∆ partitions the space of
system paths that execute the scenario S, ZS , into a set T S of
classes of homotopically equivalent system paths (paths that can
be continuously deformed to each other). Each one of these classes
corresponds to a topologically distinct global strategy of collision
avoidance that the system may follow to execute the scenario S.
Although the system of agents is not acting under a centralized
decision making mechanism, the individual actions of agents form
a collective behavior with the topological properties of a strategy
τ ∈ T S . Following our past work [23, 24], we formally model the
set of strategies T as the braid group [3]. The following subsections
provide a brief introduction to braids and recap our topological
abstraction of multi-agent navigation.

2.2 Background on Braids
Denote by x ,y, z the Cartesian coordinates of a Euclidean space
R2 × I , where I = [0, 1]. A braid string is a curve X (z) : I → R2
that increases monotonically in z, i.e., has exactly one point of



Social Momentum: A Framework for Legible Navigation in Multi-Agent Environments HRI ’18, March 5–8, 2018, Chicago, IL, USA

···

(a) σ1

···

(b) σ2

· · ·
···

(c) σn−1
Figure 2: The generators of the Braid Group Bn .

···

σ1

· ···

σ−12

= ···

σ1 · σ−12
Figure 3: Composition operation σ1 · σ−12 for σ1,σ−12 ∈ Bn .

intersection X (z) = (x ,y) with each plane z ∈ I . A braid on n-
strings or n-braid is a set of n strings Xi (z), i ∈ N = {1, . . . ,n} for
which:

(1) Xi (z) , X j (z), for i , j ∀z ∈ R
(2) X (0) = (i, 0) and X (1) = (p (i ), 0),

where p (i ) is the image of an element i ∈ N , through a permutation
p : N → N from the set of permutations of N , Perm(N ), defined
as:

p =

(
1 2 ... n

p (1) p (2) ... p (n)

)
. (1)

The set of all braids on n strings, along with the composition
operation, form a group Bn . The group may be generated from a
set of n − 1 elementary braids σ1,σ2, . . . ,σn−1 (see Fig. 2), called
the generators of Bn , that satisfy the following relations:

σjσk = σkσj , |j − k | > 1, (2)
σjσkσj = σkσjσk , |j − k | = 1. (3)

A generator σi , i ∈ {1, 2, ...,n − 1} can be described as the crossing
pattern that emerges upon exchanging the ith string (counted from
left to right) with the (i+1)th string, such that the initially left string
passes over the initially right one, whereas the inverse element,
σ−1i , implements the same string exchange, with the difference that
the left string passes over the right (see Fig. 3). An identity element,
e , is a braid with no string exchanges. Two braids b1,b2 ∈ Bn
may be composed through the composition operation (·), which
is algebraically denoted as a product b1 · b2. Geometrically, this
composition results in the pattern that emerges upon attaching the
lower endpoints of b2 to the upper endpoints of b1 and shrinking
each braid by a factor of 2, along the z axis (Fig. 3). Any braid can
be written as a product of generators and generator inverses, a
representation commonly referred to as a braid word (Fig. 3).

2.3 Braids of Entangled Agent Trajectories
Inspired by Thiffeault [32], who uses braids to analyze the tra-
jectories of particles in fluids, we employ braids to analyze the
trajectories that emerge in multi-agent scenarios.

Denote by fx : Qn → Perm(N ) a function that takes as input
the system state Q ∈ Qn and outputs a permutation p ∈ Perm(N )
corresponding to the arrangement of all agents in order of increas-
ing x-coordinates. As the agents move towards their destinations,
they employ navigation strategies – maneuvers to avoid collisions,
forming collectively a system trajectory Ξ. By evaluating fx on

𝜏 = 𝜎2−1𝜎3−1𝜎2𝜎1𝜎2𝜎3−1
𝑥𝑦

𝑡

Figure 4: Space-time representation of a system path of 4
agents along with its corresponding braid diagram (right)
and braid word (down), defined with respect to the path’s
x-projection. The visualization of the braid diagram and the
extraction of the braid word were done using BraidLab [33].

the waypoints of Ξ, we may obtain a corresponding path of per-
mutations π : [0,T ]→ Perm(N ). This path can be simplified into
a sequence of permutations of minimal length, π∗ = (p0, . . . ,pK ),
i.e., consecutive waypoints pj−1 , pj , ∀ j = {1, . . . ,K } are adja-
cent transpositions (i.e., they differ from each other by exactly one
swap of adjacent elements). Due to continuity, a transition from the
(j − 1)th permutation, pj−1, to the jth permutation, pj , implies the
occurrence of an event τj , which may be described as the intersec-
tion of the x-projections of the paths of two agents that were adjacent
in the permutation pj−1. The event τj may be represented as an
elementary braid τj ∈ σ

±1
i , i ∈ {1, ...,n − 1}, where i corresponds

to the index of the leftmost swapping agent in permutation pj−1.
Hence, the whole execution from t = 0 to t = T may be ab-

stracted into the braid that corresponds to the temporal sequence
of events:

τ = τ1τ2 . . . τK ∈ Bn . (4)
This braid word may serve as a compact abstraction of the sys-
tem trajectory but also as a symbolic representation of the class of
trajectories that are homotopy-equivalent with Ξ, i.e., the class of
paths that execute the same scenario as Ξ and can be continuously
deformed into each other. Fig. 4 illustrates our method for transi-
tioning from a system trajectory into a braid word. The braid word
representation retains the topological properties of the execution
(relative locations of agents), while discarding any geometric prop-
erties (e.g. distances among agents). In the remainder of this paper,
we will be referring to the sequence τ as the topology of the system
trajectory. Essentially, we model the space of trajectory topologies
T as the braid group, i.e., T := Bn .

2.4 Complexity of Braids
We are interested in quantifying the topological complexity of a
multi-agent trajectory Ξ. Assuming that such a trajectory may be
abstracted into a braid word τ, with the method discussed in the
previous subsection, an intuitive measure of complexity forΞwould
be the braid word length l (τ), defined as the number of generators
that form it. In general, topologically complex braids correspond
to braid words of larger length and equivalently, longer words
indicate a higher topological complexity (see Fig. 4 for intuition on
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(a) E (b) σ−11 · E (c) σ−12 σ−11 · E (d) σ2σ−11 · E

Figure 5: Curve Diagrams of braids from B3 on a disk with 3 punctures. From left to right, curve diagrams of: a trivial braid
βa = e (Fig. 5a), βb = σ−11 (Fig. 5b), βc = σ−12 σ−11 (Fig. 5c) and bd = σ2σ−11 (Fig. 5d), with complexities c (βa ) = 0, c (βb ) = 1,
c (βc ) = 1.5850, c (βd ) = 2 respectively.

(a) b1 = σ−12 σ−11 (b) b2 = σ2σ−11

Figure 6: Two braids of the same length, b1 = σ−12 σ1 and
b2 = σ−12 σ−11 ∈ B3, with different entanglements. Qualita-
tively, it may be observed that b2 is more complex than b1.
Fig. 5 formalizes the complexity measurement, using the
Topological Complexity Index, defined on curve diagrams.

the relationship between braid length and topological complexity).
However, the amount of entanglement induced by distinct braids
of same length may vary. For example, consider the braids b1 and
b2 shown in Fig. 6. Although l (b1) = l (b2), it may be observed
qualitatively that the entanglement of b2 is more intense (or less
trivial) than that of b1, due to the action of its third strand. This
observation is an intuitive indication that the braid word length
cannot be used unambiguously as a universal complexity index.

To overcome this degeneracy, Dynnikov and Wiest [11] intro-
duce the braid Complexity Index. This index quantifies the amount
of entanglement induced on a canonical curve diagram (Fig. 5a)
upon its application on it. An n-braid b ∈ Bn may be applied on
a canonical n-curve diagram by sequentially enforcing the braid’s
topological pattern on the diagram’s fields (e.g. Fig. 5b, Fig. 5c,
Fig. 5d). Intuitively, the canonical curve diagram can be thought
of as a heterogeneous mixture, comprising n clearly separated sub-
stances. The application of a braid b can be thought of as the en-
forcement to the substances of a mixing pattern that follows the
entanglement described by the braid b. In other words, the strings
of the braid are matched to the substances of the curve diagram;
as the braid progresses along the z-axis, the substances move with
it, resulting in a new curve diagram. In the following subsections,
we formally define curve diagrams and the braid Complexity Index
[11].

2.4.1 Curve Diagrams. Denote by D2 the closed unit disk, cen-
tered at the origin of the complex plane C and let Pn be a set of n
points, uniformly distributed along the intersection of the real axis
with the disk, R ∩ D2. The set of points in Pn are called punctures,
whereas the set Dn = D2\Pn , i.e., the region of the unit disk upon
the removal of the punctures is called punctured disk. Finally, de-
note by E the union of n − 1 disjoint arcs on Dn , separating all the
punctures, as shown in Fig. 5a. A curve diagram of a braid β ∈ Bn is
the image D = β · E of E under the homeomorphism corresponding
to β . The image D is the union of arcs obtained from E through the
action of β . This is only defined up to isotopies fixing ∂D2 and Pn .

2.4.2 The Complexity Index. The norm of a curve diagram D is
defined as the number of intersections of D with the real axis and
denoted as:

| |D | | = #(D ∩ R). (5)
The Complexity Index of a braid β ∈ Bn is then defined through the
use of its corresponding curve diagram D = β · E, as:

c (β ) = log2 ( | |β · E | |) − log2 ( | |E | |). (6)
This expression is equal to the logarithm of the gain of intersec-
tions with the x-axis, upon the application of a braid. Looking at
Fig. 5, it may be verified that the higher the number of intersections
with the real axis, the higher the intensity the entanglement of the
corresponding braid.

2.5 Complexity of Multi-Agent Planning
The Complexity Index quantifies the amount of entanglement that
a braid induces to the canonical curve diagram. In this work, we
employ braids as a representation of the topological pattern that a
collection of trajectories forms. Thus, the Complexity Index may be
used as a measure of the complexity of the braid corresponding to
a specific execution of a multi-agent scenario. More importantly, it
may serve as a characterization of the complexity of the solution
to the motion planning problem of transitioning safely from Qs

to Qd that the navigating agents converged to, without explicitly
communicating with each other.

The setup of our problem is quite simple: agents move between
two resting positions (from start to goal). However, the lack of
explicit communication among them may result in complicated
collision avoidance maneuvers, yielding undesired oscillatory be-
haviors but also potentially undesirably long and entangled paths
for one or more agents. The former problem, commonly referred to
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as the “reciprocal dance” problem [12], has been widely addressed
in the literature (see e.g. Trautman et al. [34]). The latter problem
though, to the best of our knowledge, has not been modeled or
approached appropriately. In this paper, we address it by (1) us-
ing the Complexity Index as a proxy to quantify the complexity
of multi-agent planning, (2) proposing a planning framework that
explicitly incorporates this understanding into the decision making
stage, towards generating legible behaviors that reinforce plans
of low trajectory entanglement and (3) investigating the effect of
trajectory entanglement to human inference through a user study.

3 THE SOCIAL MOMENTUM PLANNING
FRAMEWORK

In this section, we present a planner that enables agents to con-
tribute to trajectory patterns of low topological entanglement, as
they navigate towards their destination. Our planner is based on
a cost function that detects the intentions of other agents over
pairwise collision avoidance protocols (e.g. right or left) and favors
actions that are in compliance with them. The cost function, named
the Social Momentum cost, is defined as the weighted sum of the
magnitudes of the pairwise angular momenta between the planning
agent and all others. The optimization of the Social Momentum cost
results in motion that tends to reinforce the current momenta by
locally maximizing their magnitudes along their current directions,
which corresponds to reinforcement of the currently established
pairwise collision avoidance protocols between the planning agent
and others. Our Social Momentum (SM) planning algorithm com-
promises between the Social Momentum cost and an Efficiency cost
that drives the planning agent towards its destination. Throughout
consecutive time steps, this policy results in a behavior that appears
to be consistently compliant with the agent’s past behavior and
with the preferences of others over avoidance strategies. Effective
communication of the agents’ intended avoidance strategies results
in behaviors that are easy to read and thus enable agents to im-
plicitly cooperate efficiently to avoid each other, which leads to
avoiding redundant trajectory entanglement.

3.1 Angular Momentum for Collision
Avoidance

Consider two agents A and B moving towards opposing sides of a
hallway, as shown in Fig. 1. The geometry of the shared space ren-
ders agents’ decisions coupled. In order to reach their destinations
in a collision-free and socially acceptable fashion, they need to (1)
agree on a passing side (right or left) and (2) respect the personal
space [14] of each other by maintaining a comfortable minimum
distance. To quantify how well the agents are doing with respect
to both of these specifications, we construct an analogy with the
physical quantity of Angular Momentum. Assuming unit masses
for the two agents, the angular momentum of their system with
respect to its center of mass C , may be defined as:

LAB = rCA ×vA + r
C
B ×vB (7)

where
rCA = qA − rC , rCB = qB − rC (8)

are agents’ positions, defined with respect to their center of mass
rC = (qA + qB ) /2. (9)

Figure 7: Social Momentum: The planning agent (red color)
is moving towards the red target X, while complying with
its pairwise momenta with all other agents.

For a system of agents navigating on the horizontal plane, the
angular momentum is a vector perpendicular to the workspace,
pointing along the positive direction of the z-axis for counterclock-
wise agent rotations and along the negative direction of the z-axis
for clockwise rotations, thus encoding the right and left passings
respectively. Its magnitude depends on the distance between the
agents and also on the angle of their velocities, with larger distances
and antiparallel velocities scoring higher. As a result, the angular
momentum may be used (1) as a tool to monitor an emerging avoid-
ance protocol (right/left passing) but also (2) as a tool to generate
easily interpretable avoidance maneuvers in compliance with the
preferences of the other agent and in consistency with previous
behaviors of the agents.

3.2 Social Momentum for Legible Collision
Avoidance

In a crowded multi-agent workspace, an agent interacts with mul-
tiple others at the same time, in the sense that every action taken
broadcasts signals of intentions or preferences over avoidance
strategies. Our framework enables an agent to read these pref-
erences, associate them with its own, and act competently towards
simplifying everyone’s decision making. To this end, we introduce
a novel index, comprising a weighted sum of the magnitudes of all
pairwise momenta between the planning agent and the set of all
other agents Ni = N \{i}. Higher values indicate a higher certainty
over the emerging pairwise avoidance protocols between the agent
and all others. We call this cost the Social Momentum cost and for-
mally define it for agent i as a real function L : A → R over the
agent’s action space A, as follows:

L (a) =




∑
j ∈Ni

w j | |L̂
i j (a) | |, if siдn

(
(Li j )T L̂i j (a)

)
∀j ∈ Ni

0, otherwise
(10)

where L̂i j (a) denotes the expected pairwise momentum between
agents i and j , upon agent i taking an action in consideration, a ∈ A
and agent j moving with its current velocity, Li j is their current
momentum andw j ∈ R is a weight, computed as the inverse of the
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distance between agents i and j. The quantity siдn
(
(Li j )T L̂i j (a)

)
indicates whether the expected evolution of the pairwise momen-
tum between agents i and j is in compliance with their current
momentum Li j . A positive sign corresponds to an action that pre-
serves the current momentum sign and thus the currently preferred
pairwise avoidance protocol. A negative sign indicates inversion
of the established pairwise avoidance protocol, which is undesired.
For this reason, an action that results to inversion of a pairwise
momentum is assigned a score of zero. Note that the only non-zero
components of all pairwise momenta are their z-components, since
we assume that the workspace is a horizontal plane.

Algorithm 1 SM(Q,A,d,map,AtGoal ,a)
Input: Q − current system state; A − action set; d − agent’s des-

tination region; map; AtGoal − boolean variable signifying
arrival at agent’s destination

Output: a − action selected for execution
1: while ¬AtGoal do
2: Acf ← Collision_Checkinд(R,Q,A,map)
3: R ← Get_Reactive_Aдents (Q )
4: if R , ∅ then
5: a ← Get_Leдible_Action(Q,Acf , λ,d )
6: else
7: a → Get_E f f icient_Action(Acf ,d )

8: return a

3.3 Decision Making
In this section, we present the Social Momentum (SM) algorithm, a
cost-based planning algorithm, built around the Social Momentum
heuristic. The algorithm is based on frequent replanning; at every
planning cycle, it picks an action that corresponds to the optimal
compromise between progress to agent’s destination and legible
avoidance of others. We formalize this decision making strategy
into the following optimization scheme:

a∗ = argmax
a∈A

{λE (a) + (1 − λ)L (a)}, (11)

where λ ∈ R is a parameter accounting for proper scaling and
weighting of the two quantities. We model the progress function
E : A → R to be the inverse of the length of the unobstructed line
to destination. The action space A comprises a pre-sampled set of
actions of finite duration that are executable by the agent.

Algorithm 1 describes the SM algorithm in pseudocode for-
mat. At each replanning cycle, the function Collision_Checking
checks for collisions with other agents or bounds and returns a set
Acf ⊆ A of collision-free actions. Then function Get_Reactive
determines the subset of agents R to which the planning agent
should be reacting: only agents that lie in front of the planning
agent are considered (see Fig. 7). In case R , ∅, the planning agent
determines a legible action a by compromising between Progress to
destination and Social Momentum (function Get_Legible_Action);
otherwise, the algorithm switches to progress maximization mode
(function Get_Efficient_Action). Termination occurs once the
algorithm reaches a desired distance to destination.

4 EVALUATION
In this section, we evaluate our approach by investigating the fol-
lowing two hypotheses:

(1) “The Social Momentum Framework produces multi-agent
trajectories of significantly simpler topological entanglement
than existing approaches of multi-agent planning”.

(2) “In multi-agent domains, multi-agent trajectories of simple
topological entanglement are more legible”.

Confirmation of these two hypotheses provides evidence that the
Social Momentum framework results in legible navigation in multi-
agent environments. To test hypothesis (1), we perform an extensive
simulated evaluation. To test hypothesis (2), we conduct a study in
whichwe ask users to predict the evolution of simulatedmulti-agent
scenarios from partial observation.

4.1 Simulations
We evaluate our planner in simulation by comparing against com-
mon benchmarks in multi-agent planning. Specifically, we consider
the Social Force (SF) model [15] and the Optimal Reciprocal Collision
Avoidance (ORCA) framework [36]. It should be noted that these
frameworks were designed to produce fast and realistic simulations
of multi-agent navigation scenarios and not to produce legible be-
haviors. However, they still constitute relevant baselines due to (a)
their wide dissemination and existence of ready implementations,
(b) their proven performance in various types of scenarios, (c) the
fact that they constitute common benchmarks and thus common
works of reference, (d) their ability to handle any number of agents.

4.1.1 Experimental Setup. We consider multi-agent scenarios in-
volving sets of homogeneous agents navigating a circular workspace.
Each scenario is generated as follows: (1) the workspace circumfer-
ence is partitioned to n arcs of equal length, (2) each arc is assigned
to an agent, (3) the agent is placed at a random, collision-free po-
sition on the arc assigned to it and (4) each agent is assigned a
destination that is antipodal to its starting location and lies on the
workspace circumference. The workspace considered is a circle
with a diameter of 5m, whereas the agents were discs of diameter
0.6m. This setup was specifically selected as it reinforces the emer-
gence of challenging agent encounters. The occurrence of such
scenarios highlights the value of intent-expressiveness as a feature
that reduces uncertainty by reinforcing implicit coordination. We
consider 4 different classes of scenarios, each corresponding to a
different number of agents, ranging from 3 to 6. For each class, we
generate 200 intense multi-agent scenarios at random and execute
them with each of the planners considered. Note that each of the
planners considered can be tuned to yield qualitatively different
behaviors. In order to ensure a fair comparison, we assumed simi-
lar tunings with respect to sensitivity to obstacles and kept them
constant across all trials.

4.1.2 Quality Measures. To evaluate the quality of an execution,
we consider two different criteria: (1) the braid Complexity Index,
which serves as a measure of the topological efficiency of the exe-
cution and (2) the Path Irregularity index [13], defined as the total
amount of unnecessary rotation (divergence of agent’s heading
from its direction to its destination) per unit path length, averaged
per agent, which serves as a measure of the geometrical efficiency
of the execution. Complexity Index computations were implemented
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Figure 8: AverageComplexity Index of trajectories generated
by executing 200 scenarios with 3, 4, 5 and 6 agents with
the Social Momentum (SM), Social Force (SF) and Optimal Re-
ciprocal Collision Avoidance (ORCA) models. A theoretical
lower bound baseline is also included for reference. Data-
points marked black correspond to significantly lower aver-
age Complexity of SM than both SF and ORCA, whereas the
datapoint marked green indicates significantly lower aver-
age Complexity of SM than SF, according to paired Student’s
T-test. Test statistics can be found at table 1.

using the BraidLab package [33], assuming a projection onto the
global x-t coordinate plane.

In the evaluation of the topological entanglement, we also in-
clude a theoretical Lower Bound baseline, which returns a topolog-
ical path of minimal topological entanglement that executes the
scenario in consideration. This baseline may be described as fol-
lows: (1) find the minimal path of transpositions, π∗ that connects
the initial permutation of the system, ps = fx (Q

s ), with the final
permutation of the system, pd = fx (Q

d ) and (2) derive a sequence
of generator transitions for all consecutive waypoints in π∗, i.e., a
braid β∗ ∈ Bn that yields the lowest Complexity Index c (β∗) for the
scenario. This baseline can be thought of as an ideal case of perfect
communication and compliance (or centralized planning).

4.1.3 Performance Comparison. Fig. 8 depicts the average Com-
plexity Index for each planner and class of scenarios considered.
The Complexity Index of SF and ORCA appears to be consistently
rising with the number of agents. In contrast, SM exhibits a slower
rise; the transitions between 3 and 4 agents and between 5 and 6
agents are done with almost constant complexity, with the only
rise taking place in the transition between 3 and 4 agents. Over-
all, SM achieves consistently lower topological entanglement with
statistical significance, except from the case of 3 agents, where the
scenarios are not geometrically challenging to yield significantly
diverse behaviors. Detailed statistics of paired t-tests conducted for
the SM-SF and SM-ORCA pairs are reported in table 1. Despite this
result, the theoretical Lower Bound consistently outperforms all
planners, providing an illustrative demonstration of their subopti-
mality in terms of topological efficiency which reflects the price of
no explicit communication in multi-agent planning. Note that the
constant Complexity Index value of 1.5850 that the Lower Bound
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Figure 9: Average Path Irregularity per agent extracted by
executing 200 scenarios with 3, 4, 5 and 6 agents. Datapoints
marked black denote different irregularity of SM than both
SF and ORCA, whereas the datapoint marked green indi-
cates lower irregularity of SM than SF, according to paired
Student’s T-tests. Test statistics can be found at table 1.

achieves is an artifact of the symmetry of the considered scenarios
(agents traveling to antipodal points in the workspace).

t-Tests Complexity Index Path Irregularity
Agents Pair t-value p-value t-value p-value

3 SM-SF -2.497 0.013 -26.397 <0.001
SM-ORCA -0.593 0.553 9.197 <0.001

4 SM-SF -7.963 <0.001 -34.514 <0.001
SM-ORCA -5.740 <0.001 17.336 <0.001

5 SM-SF -9.424 <0.001 -41.400 <0.001
SM-ORCA -5.395 <0.001 7.934 <0.001

6 SM-SF -11.561 <0.001 -51.430 <0.001
SM-ORCA -5.250 <0.001 0.152 0.879

Table 1: Statistics of paired t-tests between SM and SF, ORCA
for different agent numbers. We considered N − 1 degrees of
freedom, whereN = 200 is the number of scenarios per class.

Fig. 9 depicts the average Path Irregularity per agent, for each
planner and class of scenarios considered. Although for all planners
the path irregularity rises with the number of agents, each planner
performs differently. The different performance of each planner is
indicative of the distinct philosophy with which they have been de-
signed. SF, lacking predictive mechanisms yields significantly more
irregular paths than SM and ORCA. ORCA achieves consistently
the lowest path irregularity, as a result of its geometrically optimal
behavior, which in practice results in minimal divergence from the
unobstructed line connecting an agent with its destination at any
time. SM performs slightly worse ORCA, as a result of its differ-
ent consideration of collision avoidance as a rotation; SM agents
diverge from their shortest paths more often to convey intent. For
the case of 6 agents the geometric complexity of the scenarios is
too intense even for ORCA which performs almost equally to SM.
4.2 User Study
We conducted a user study, in which we asked users to watch a
series of videos (shown from a top view) of simulated executions of
scenarios involving 5 agents navigating a circular workspace. For
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Score: 6 points

You answered in 1.818
seconds! That’s faster
than the median time!

ü Correct!
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Figure 10: Study interface: A video of a scenario execution is
shown and users predict how the red agent is going to avoid
the blue agent by pressing the corresponding button at the
bottom. The display of user’s score and performance statis-
tics aim to to incentivize fast and accurate responses.

each video, users were asked to predict the way two agents were
going to avoid each other (right or left side). Speed and correctness
(the basis of the legibility definition) were incentivized through a
scoring system that awarded points for quick and accurate answers
and deducted points for wrong or slow responses (Fig. 10 depicts the
study interface). The study used a total of 15 videos, with duration
ranging from 6.3 to 15.7 seconds, corresponding to scenarios of
Complexity Index uniformly ranging from 1.585 to 4.250. More than
180 users, recruited from the social media platforms of Reddit and
Facebook, contributed a total of 2704 video views and clicks. An
analysis of the collected dataset is presented in Fig. 11.

The blue trend shows the relation between the Complexity Index
and the median time of correctly predicting the side on which one
agent will pass another. We fit a linear model to the data using
iteratively reweighted least squares, shown in Fig. 11 as a blue line
with a 95% confidence interval. The effect of the Complexity Index
on click time is positive, with a slope of 0.0236, and significant (Stu-
dent’s t-test, t = 5.60, p < 0.001). In other words, as the topological
entanglement intensifies, users take more time to accurately predict
the side of passing, i.e., more complex scenarios are less legible.
We verified that the rate of incorrect answers for a video is not
correlated with the Complexity Index of that video via computation
of a Pearson correlation coefficient (r2 = 0.1017, p = 0.7185).

The green trend shows the relation between the Complexity In-
dex and the time of passing between the two agents. We fit a linear
model to the data, shown as the green line with a 95% confidence
interval. The trend is positive (slope of 0.0833) and nearly signifi-
cant (t = 1.93, p = 0.0538). Increased Complexity Index correlates
positively with increased time of passing, and thus with longer, less
efficient interactions. For each video, most users were able to cor-
rectly predict the passing side before the passing occurred. We see
a trend towards predicting the passing with greater lead times for
greater Complexity Index. However, we argue that the measure of
legibility that matters is not lead time but lag time after navigation
begins before the user is able to predict the correct passing.
4.3 Discussion
Our simulated evaluation confirmed our first hypothesis by reveal-
ing statistical evidence that SM achieves consistently lower trajec-
tory entanglement than other representative multi-agent collision
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Figure 11: Relation between the Complexity Index and
(a) time until two specific agents pass each other (green
points/line) and (b) median time until users give a correct
prediction of the passing (blue crosses/line). Times are nor-
malized to the total length of the relevant video.

avoidance approaches. Furthermore, our user study confirmed our
second hypothesis by demonstrating a positive correlation between
trajectory entanglement and the time taken for a correct prediction
of a passing between two agents. In other words, executions of lower
trajectory entanglement are more legible. From these, we may assert
that the Social Momentum framework appears to produce legible
behaviors in multi-agent environments. This feature is of particular
importance for robots navigating crowded human environments,
where no explicit communication takes place among agents and no
formal rules are guiding traffic, such as pedestrian environments.

5 CONCLUSION
We presented a planning framework for legible motion generation
in multi-agent environments. We approached legibility from a topo-
logical perspective and introduced the concept of legible avoidance
as a maneuver that clearly indicates the way an agent plans to avoid
another (e.g. right or left side). Based on this idea, we designed the
Social Momentum planning framework that enables agents to gen-
erate intent-expressive and socially compliant behaviors in multi-
agent environments. Statistical evidence, extracted from extensive
simulations and from a user study with human participants demon-
strated the ability of our framework to produce legible behaviors in
multi-agent environments. This result is particularly important for
operation in human environments with no explicit communication
among agents, such as pedestrian environments. Ongoing work
involves validating our approach by conducting experiments on an
autonomous social robot, navigating academic hallways.
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