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Abstract— We present a novel, data-driven framework for
planning socially competent robot behaviors in crowded envi-
ronments. The core of our approach is a topological model of
collective navigation behaviors, based on braid groups. This
model constitutes the basis for the design of a human-inspired
probabilistic inference mechanism that predicts the topology
of multiple agents’ future trajectories, given observations of
the context. We derive an approximation of this mechanism by
employing a neural network learning architecture on synthetic
data of collective navigation behaviors. Our planner makes use
of this mechanism as a tool for interpreting the context and
understanding what future behaviors are in compliance with
it. The planning agent makes use of this understanding to
determine a personal action that contributes to the context
in the most clear way possible, while ensuring progress to its
destination. Our simulations provide evidence that our planning
framework results in socially competent navigation behaviors
not only for the planning agent, but also for interacting
naive agents. Performance benefits include (1) early conflict
resolutions and (2) faster uncertainty decrease for the other
agents in the scene.

I. INTRODUCTION

Over the past decades, robots are increasingly entering
human environments, ranging from households and hospi-
tals to city streets and malls. Naturally, the problem of
navigation planning in crowded environments has received
considerable attention. Navigating a crowded human en-
vironment is a particularly hard task for a robot, mainly
due to the lack of formal rules regulating traffic, the lack
of explicit communication among agents and the robot’s
imperfect sensing capabilities and inference models. Under
such settings, existing planners often generate robot motion
that feels unnatural from the perspective of human observers.
Noteworthy examples include (1) the freezing robot problem
[25] that occurs when the robot incorrectly assumes that all
of the possible paths it could follow are blocked (2) the
reciprocal dance problem [6], which occurs when the robot
is unable to agree with a human on the passing side and (3)
cases when the robot hinders, blocks or intersects planned
human paths.

We argue that the aforementioned problems arise, in part,
as a result of (1) the limited capability of the robot to
understand the unfolding scene dynamics (2) its failure to

†C. Mavrogiannis is with Sibley School of Mechanical & Aerospace
Engineering, Cornell University, Ithaca NY, 14853, USA. Email:
cm694@cornell.edu
‡V. Blukis and R. Knepper are with the Department of Com-

puter Science, Cornell University, Ithaca NY, 14853, USA. Email:
vb295@cornell.edu, rak@cs.cornell.edu

This material is based upon work supported by the National Science
Foundation under Grant Nos. 1526035 and 1563705 and by the Air Force
Office of Scientific Research. We are grateful for this support.

%

Fig. 1: A human and a robot navigating a hallway. From the
perspective of the human, the behavior of the robot so far makes
it unclear how the agents are going to avoid each other, yielding a
high-entropy probability distribution over the type of avoidance.

act in a way that is compatible with these dynamics and
(3) its inability to convey its intentions in a consistent,
clear and timely fashion to human observers (see Fig. 1).
In our previous work [15], we approached these issues by
introducing a model that abstracts the scene dynamics into a
topological signature; this model enables an agent to reason
about the emerging collective behavior of all agents in a
principled fashion and generate actions that are compatible
with it. The approach was validated in simulation on a
discretized board in a game-theoretic setup. In this paper, we
build on this work and extend it in two significant directions:
(a) we learn a predictive model of collective behavior from
demonstrations of multi-agent navigation simulations and (b)
we enable our models to handle continuous domains in time
and space. Our framework enables agents to read and take
into consideration the intentions of others at the decision
making stage, which results in more comfortable navigation.
This is illustrated in our simulation results that demonstrate
accelerated consensus among agents regarding a collision
avoidance strategy.

II. RELATED WORK

The sophistication of human navigation has attracted the
interest of several different scientific communities. Wolfinger
[27] focused on the social aspect of navigation, observing
that its smooth character relies on a form of trust that is
established and reinforced among pedestrians. A class of
works have focused on the development of models of crowd



dynamics towards analyzing, understanding and simulating
realistically crowd flows in different scenarios and contexts
[8, 10, 16, 28], whereas another has focused on models for
online trajectory prediction and tracking [2, 18].

The robotics community, incorporating the insights of
studies from the aforementioned communities, has been
working on the development of frameworks for integrated
inference and planning for real-time robotic navigation of
human environments. Under this perspective, the issue of
human comfort has been of particular interest. To this end,
Sisbot et al. [19] introduced a planner that made use of cost
functions for measuring different aspects of human comfort,
whereas a class of works has focused on learning models of
human behavior towards acting in a socially compliant fash-
ion [14, 25, 29]. Finally, another class of works, inspired by
the collaborative nature of human navigation, have presented
planners that incorporate models of multi-agent interactions
and achieve oscillation-free collision avoidance [11, 26].

Our approach is unique in the sense that it augments
several of the principled design directions of the literature
with the introduction of new concepts and models from other
disciplines. Specifically, our work is also motivated and in-
spired by the collaborative character of human navigation, as
highlighted by Wolfinger [27]. We explicitly incorporate this
observation into our framework through a novel topological
representation, that makes use of the braid group [3] as a
tool for abstracting the collective dynamics of a multi-agent
scene. We employ this representation into the design of a
human-inspired inference mechanism, supported by studies
on human action interpretation [4], that enables an agent
to reason about the collective behavior of multiple agents.
We take a data-driven approach to learn a model of this
mechanism by making use of a deep neural network archi-
tecture on trajectories extracted from multi-agent navigation
simulations. Finally, we adopt an information-theoretic
perspective to design a decision making policy that generates
actions towards reducing uncertainty for everyone in the
scene, thus yielding socially competent behaviors. Thanks
to its topological foundation, our framework is generalizable
to any environment geometry with any number of agents.
Instead of making detailed trajectory predictions, it makes
collective topology predictions that provide a more robust
way of reasoning about the scene evolution. Furthermore,
instead of generating reactions to individual observed behav-
iors, the planning agent makes explicit use of the realization
that its behavior is part of the collective behavior of the
system of agents.

III. SOCIALLY COMPETENT NAVIGATION

According to Wolfinger [27], the social order of hu-
man navigation relies on a high-level protocol, comprising
two simple rules: (1) people must behave like competent
pedestrians and (2) people must trust copresent others to
behave like competent pedestrians. Although Wolfinger did
not explicitly define competence, from the examples included
in his work, we may deduce that he refers to a notion of
Social Competence. The concept of Social Competence has
been extensively studied in the field of Psychology from

different perspectives and for different scenarios (for an
extensive review see [17]). In multi-agent navigation, we may
define social competence as:

The ability of an agent to perceive the context1,
analyze it and pick an action that appears to be
compatible with it, according to a pattern of behav-
ior that the agent assumes observing agents expect
from him/her by having observed and analyzed the
context themselves.

According to Csibra and Gergely [4], humans tend to
attribute goals to observed actions in a given context.
Therefore, socially competent navigation behaviors should
be indicative of agents’ intentions and compatible with the
context. In other words, socially competent agents should
be cognizant of the fact that their behaviors implicitly
communicate their intentions to any observing agents. The
importance of implicit communication for human-robot inter-
action applications has lately been increasingly appreciated
[5, 13, 24].

IV. FOUNDATIONS

A set of agents N = {1, 2, ..., n} navigate a workspace
Q ⊂ R2. The state of agent i ∈ N is given by qi ∈ Q. Agent
i starts from an initial position qsi ∈ Q and moves towards a
destination qdi that lies in a destination region Di ⊂ Q. The
path that agent i followed to reach Di is a function ξi : I →
Q, where I = [0, 1] is a uniform time parameterization. This
path is not known a priori; since the agents do not explicitly
exchange information, they should be replanning frequently
to account for the changes of the dynamic environment.
Furthermore, the agents are assumed to be acting rationally,
which in our context means that (1) they always aim at
making progress towards their destinations and (2) they have
no motive for acting adversarially against other agents (e.g.
blocking their paths or colliding with them).

A. A Topological Model of Collective Navigation Behaviors

Let Q = (q1, . . . , qn) ∈ Qn denote the state of the
system of all agents. The system starts from a state Qs =
(qs1, . . . q

s
n) and evolves to Qd = (qd1 , . . . q

d
n) by the end of the

execution. The collective behavior of all agents throughout
the evolution of the scene may be described by a system
path Ξ from the space of system paths Z , comprising all
possible system paths that start from Qs and end at Qd.
The system path is a function Ξ : I → Qn\∆, where
∆ = {Q = (q1, q2, . . . , qn) ∈ Qn : qi = qj for some i 6=
j ∈ N} is the set of all system states with agents in collision.
Naturally ∆ splits the space of system paths Z into a set
of classes of homotopically equivalent system paths. Each
such class has topological properties that indicate a distinct
collective behavior. To enumerate such classes of collective
behavior but also to characterize system paths topologically,
we employ the method of Mavrogiannis and Knepper [15]
that makes use of the Braid Group [3]. In the following

1By context, we refer to information that is publicly available (e.g. the
map), information that may be directly acquirable through sensing (e.g.
agent trajectories) and information that may be acquired through standard
inference processes (e.g. agent groups).



paragraphs, we provide a primer on braids and briefly recap
this method.

···

(a) σ1

···

(b) σ2

· · · ···

(c) σn−1

Fig. 2: The generators of the Braid Group Bn.

B. The Braid Group
Let p : N → N be a permutation in Perm(N). A braid

on n ≥ 1 strands can be described as a system of n curves
in R3, called the strands of the braid, such that each strand
i connects the point (i, 0, 0) with the point (p(i), 0, 1) and
intersects each plane R2 × t exactly once for any t ∈ [0, 1].
The set of all braids on n strands, along with the composition
operation, form a group Bn. Bn can be generated from a set
of n−1 elementary braids σ1, ..., σn−1, called the generators
of Bn (see Fig. 2), that satisfy the following relations:

σjσk = σkσj , |j − k| > 1, (1)
σjσkσj = σkσjσk, |j − k| = 1. (2)

Intuitively, a generator σi, i ∈ {1, 2, ..., n − 1}, can be
described as the pattern that emerges upon exchanging the ith
strand (counted from left to right) with the (i+ 1)th strand,
such that the initially left strand passes over the initially
right one, whereas the inverse element σ−1i implements the
same strand exchange, with the difference that the left strand
passes under the right. An identity element, e, is a braid
with no strand exchanges. Two braids b1, b2 ∈ Bn may be
composed through the composition operation (·), which is
algebraically denoted as a product b1 · b2. Geometrically,
this composition results in the pattern that emerges upon
attaching the lower endpoints of b2 to the upper endpoints
of b1 and shrinking each braid by a factor of 2, along the
t axis (see Fig. 3). Any braid can be written as a product
of generators and their inverses. This product is commonly
referred to as braid word.

···

σ1

· ···

σ−1
2

= ···

σ1 · σ−1
2

Fig. 3: The Composition σ1 · σ−1
2 for the Braid Group Bn.

C. Representing Collective Navigation Behaviors as Braids
Fix a reference frame {F} and denote by fx : Qn → N

a function that takes as input the system state Q ∈ Qn and
outputs a permutation p ∈ Perm(N) corresponding to the
arrangement of all agents in order of increasing x-coordinates
with respect to {F}. As the agents move towards their
destinations, they employ navigation strategies – maneuvers
to avoid collisions. These result in a path of permutations

P = (p0, . . . , pK), where p0 = fx(Qs) and pK = fx(Qd).
We assume that P is the minimal permutation path from p0
to pK , i.e., pj 6= pj+1, for all j = {0, 1, . . . ,K−1} and that
consecutive permutations are adjacent transpositions, i.e.,
they implement exactly one swap of exactly two adjacent
elements. Therefore, due to continuity, a transition from
the (j − 1)th permutation pj−1 to the jth permutation pj ,
implies the occurrence of an event τj , which we define as
the intersection of the x-projections of the paths of two agents
that were adjacent in the permutation pj−1. Thus the event
τj may be represented as an elementary braid τj ∈ σ±1i , i ∈
{1, ..., n−1} and therefore the whole scene evolution may be
represented as a braid – a product of the braids corresponding
to the sequence of events τ = τ1τ2 . . . τK ∈ Bn. This braid
constitutes a topological characterization and abstraction of
the system path. In the remainder of this paper, we will be
referring to the sequence τ as the topology of the system
path. Essentially, we model space of system path topologies
T as the braid group, i.e., T := Bn.

D. Inferring System Path Topologies from Context

Let us denote by Mt the context of the scene at time
t ∈ [0, 1]. By context, we refer to information that is
either publicly available (e.g. the map of the scene, points
of interest, etc.), or directly acquirable through sensing
(e.g. agents’ state history) or indirectly acquirable through
processing (e.g. agents’ current arrangement p ∈ Perm(N),
inference about agents’ destinations, their corresponding final
ordering pm, agents’ groupings, etc.) during the time frame
[0, t]. Assuming that by time t ∈ [0, 1], a sequence of k
events τ1, . . . , τk have already occurred, a model of the form
P (τk+1, . . . , τK |Mt) describes the probability of a future
system path topology τ = τk+1 . . . τK ∈ Bn given the
context Mt. For simplicity, when referring to a prediction
over future system path topologies, we will be using τ to
refer to the sequence τk+1 . . . τK .

The actions that agents select at each time step become
part of the context, as they constitute information that may be
directly acquirable by all agents through sensing. Therefore,
having an understanding of what collective behaviors τ may
be compatible with the context Mt, may allow an agent
to contribute to it by executing actions that appear to be
in compliance with the emerging collective behavior. In
particular, an agent that is considering executing an action
from a set of actions A may be able to understand how each
action a ∈ A may reshape the belief of any observers, by
simulating this action and computing P (τ|Mt, a). Using the
chain rule of probability, this distribution may be factorized
as:

P (τ|Mt, a) =P (τk+1, τk+2, . . . , τK |Mt, a) (3)
=P (τK |Mt, a, τk+1...τK−1) (4)
. . . P (τk+1|Mt, a)

Taking into consideration this distribution at the planning
stage may enable an intelligent agent to make decisions that
contribute to the context towards what appears to be the more
likely or appropriate collective behavior, with respect to the
current status of the context, Mt. In our scope, this is what
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Fig. 4: Context and time flow around a planning step.

corresponds to socially competent behavior.

V. LEARNING COLLECTIVE NAVIGATION BEHAVIORS

Little variations in agents’ decision making and perception
mechanisms may lead to significantly different correlations
between the context and the topology. Thus, estimating
the distribution P (τ|Mt, a) realistically with a closed-form
model and without introducing over-simplifying assumptions
is not a trivial task. For this reason, we adopt a data-driven
approach to extract a model of the inference mechanism
P (τ|Mt, a) from demonstrations of multi-agent navigation.
We do so by training a model of the transition probabilities
introduced in eq. (4). To the best of our knowledge, most
publicly available pedestrian datasets either do not contain a
sufficiently large volume of sufficiently diverse behaviors or
are not in a format compatible to our setup. To overcome
these complications, we generate a synthetic dataset of
system paths, using the Social Force (SF) model [8]. In the
following subsections, we describe the process of generating
our dataset and detail our learning setup and architecture.

A. Generating a Dataset of Diverse Collective Behaviors
1) The Social Force Model: At its simplest form, the

core of the Social Force model [8] is a dynamic artificial
potential field, constructed by assigning repulsive potentials
to agents, workspace boundaries and obstacles and attractive
potentials to points of interest or destinations. Each agent is
thus subjected to a resultant force that attracts it towards its
destination and away from other agents, workspace bound-
aries or obstacles. Although the Social Force model may
produce realistically looking pedestrian flows in simulation,
it lacks a predictive component, which renders it as impracti-
cal for real-time robotics applications. However, for training
purposes, the model enables us to generate a noise-free set
of sufficiently diverse collective behaviors.

2) Experimental Setup: We randomly place a fixed
number of agents n on the circumference of a circular or
rectangular workspace. The agents are assigned destinations
that enforce intense encounters (lying in the opposite side of
the workspace) and move towards them by running individual
instances of the social force model. The model parameters,
as well as agents’ initial positions and destinations are var-
ied across experiments according to gaussian distributions.
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Fig. 5: Learning Architecture.

Experiments on the circular workspace loosely simulate
pedestrian crossings in free areas such as atriums or parking
lots, whereas experiments on the rectangular workspace
resemble crossings in hallways. Each experiment is recorded
as a waypoint representation of the system path with fixed
time parametrization dt. The whole dataset is stored in a 4-
dimensional tensor X of size Tmax×Ndof×n×Nexp, where
Tmax is the maximum number of time steps to destination
taken by any agent in the dataset, Ndof is the size of agents’
state (Ndof = 2 as we do not consider orientation) and Nexp
is the total number of experiments.

B. Learning Setup

We split the acquired dataset into a set of Nx training
examples; each example i is described by a feature tuple
〈M i

T , a
i
T 〉, where M i

T is the context at time step T ∈
{1, . . . , Tmax} and aiT is the action that agent i executed
at that time step, both expressed with respect to frame Fi
centered at the starting position of agent i, with y-axis
pointing towards its destination. We consider the context M i

T

to be the system path of the time frame (T −Tp, T ], i.e., we
make the assumption that the previous Tp time steps fully
capture the context at time T . Similarly, we consider the
action aiT to be the path that agent i followed in the frame
(T, T + Tf ]. Each example is labeled after the braid word
τ ∈ Bn corresponding to the projection of the system path
in the horizon (T, T+Th] onto the x-axis of frame Fi. Fig. 4
demonstrates the time flow around a training example.

C. Learning Architecture

Using the aforementioned setup, the goal of our learning
algorithm is to extract models of the conditional probabilities
of eq. (4), i.e., P (τ1|MT , a), ..., P (τK |MT , a, τ1...τK−1),
so that given an action a ∈ A and a system path topol-
ogy τ of maximum braid length K, we can compute the
probability P (τ|MT , a). Essentially we need to produce
the probability of an output sequence (braid word) given
an input sequence (system path). This problem is essen-
tially equivalent to a language translation task. Tasks of
this form are effectively handled by sequence to sequence
neural network models (see e.g. [21]). For this reason, we
employ a sequence to sequence encoder-decoder learning
architecture. The input sequence 〈M i

T , a
i
T 〉 is fed to an

encoder Recurrent Neural Network (RNN), which produces
an embedding vector M̂ i

T that captures the expected future
system path topology. The embedding vector is then fed
to a decoder RNN that outputs estimates of P (τ1|M i

t , a
i
T ),

P (τ2|M i
t , a

i
t, τ1), . . . , P (τK |M i

t , a
i
t, τ1, . . . , τK−1). For the

encoder and decoder RNNs we employ the Long Short-Term



Dataset XC,2 XC,3 XC,4 XR,2 XR,3 XR,4

Training set 900k 1.6M 2.3M 800k 1.3M 1.8M
Test set 200k 400k 500k 200k 300k 400k

TABLE I: Generated dataset sizes (number of examples)
Dataset τ τ1 τ2 τ3

XC,2 0.93 0.93 1.00 1.00
XR,2 0.99 0.99 1.00 1.00
XC,3 0.71 0.77 0.93 0.98
XR,3 0.78 0.88 0.89 0.97
XC,4 0.45 0.62 0.74 0.88
XR,4 0.56 0.81 0.78 0.81

TABLE II: Braid prediction accuracies for the whole topology τ
and next, second and third events τ1, τ2, τ3 respectively.

Memory (LSTM) architecture [9] due to its effectiveness
in capturing long-term sequence dependencies. A schematic
representation of our architecture is depicted in Fig. 5.

D. Implementation Details and Performance
We trained our models on 6 datasets of 100, 000 experi-

ments each, labeled XC,2, XC,3, XC,4, XR,2, XR,3, XR,4

where the subscript denotes the number of agents involved
(n = 2, 3, 4) and the type of workspace considered (C for
circular, R for rectangular). From each dataset, we used
80,000 experiments for training and the rest for validation.
As model parameters, we selected: K = 3, Tp = 4,
Tf = 3, Th = 15. Using this parametrization, we split the
datasets into training examples and test examples as shown
in table I. The examples were labeled as braids by using
the Braidlab package [22]. As architecture parameters, we
set both the encoder/decoder to use 2 LSTM layers and a
hidden/cell state size of 80. The total number of trainable
parameters is 216773. We train using a Dropout [20] of
p = 0.3 after each layer. Our models were trained using
the LSTM implementation of PyTorch [1]. We used the
RMSProp [23] algorithm, considering α = 0.99, a batch size
of 10, 000 and an adaptive learning rate schedule, starting
from LR = 0.001 and decreasing by a factor of 0.5 if no
training loss improvement was observed after 3 epochs until
it reached 0.00001. Every mini-batch was constructed with a
proportional representation from each dataset, shuffling after
every epoch.

The performance of our model in predicting future braid
words is presented in tables II and III. Specifically, table
II contains the accuracies of our models in predicting future
topologies in total and per event for each per dataset, whereas
table III contains the accuracies of our models per generator
for each dataset, compared with a Prior baseline (each
generator is assigned a probability equal to its frequency in
the dataset) and Random Guessing (uniform probability for
all generators). The accuracies for later time steps improve,
because when the future topology τ contains less than 3 braid
generators, all subsequent generators are trivially identity
elements e i.e. no further crossings occur.

VI. SOCIALLY COMPETENT MOTION GENERATION

Our goal is to enable an autonomous agent to exhibit
socially competent behavior in a multi-agent setting. From

Dataset e σ1 σ−11 σ2 σ−12 σ3 σ−13

XC,2 0.98 0.64 0.76
XR,2 1.00 0.70 0.78

Prior baseline 0.92 0.05 0.03
Random guessing 0.33 0.33 0.33

XC,3 0.86 0.60 0.70 0.57 0.70
XR,3 0.90 0.87 0.89 0.85 0.87

Prior baseline 0.47 0.13 0.13 0.14 0.12
Random guessing 0.2 0.2 0.2 0.2 0.2

XC,4 0.77 0.51 0.59 0.55 0.61 0.44 0.53
XR,4 0.94 0.78 0.81 0.62 0.78 0.78 0.81

Prior baseline 0.29 0.10 0.12 0.12 0.13 0.13 0.12
Random guessing 0.14 0.14 0.14 0.14 0.14 0.14 0.14

TABLE III: Per-permutation prediction accuracies for the next
braid generator τ1, compared against random guessing and guessing
with probability proportional to the prior distribution (frequency of
the generator).

our perspective, this is equivalent to selecting actions that (1)
are considered as appropriate within the state of the context
Mt, (2) respect the personal space and the motion plans
of others and (3) contribute progress towards the planning
agent’s destination.

A. Decision Making Policy

Building on our past work [15], we encapsulate the
aforementioned specifications in a cost function C : A → R,
defined as:

C(a) = λE(a) + (1− λ)H(a) (5)
where E : A → R quantifies the Efficiency of an action
a ∈ A, H : A → R quantifies the expected state of
Consensus among agents over the emerging system path
topology, upon executing the action in consideration, and λ
is a weighting factor. We model Efficiency as the Euclidean
distance between the position of the agent upon the execution
of the action a and its destination. Consensus is modeled as
the Information Entropy of the distribution over system path
topologies P (τ|Mt, a):

H(a) = −
∑
τ∈T

P (τ|Mt, a) logP (τ|Mt, a). (6)

The higher the consensus cost, the more uncertain the
evolution of the scene looks, as, from the definition of the
Information Entropy, more outcomes-topologies will be more
likely.

Thus, apart from making progress towards its destination,
a socially competent agent has an incentive to actively reduce
the uncertainty, by acting according to the context, in a
way that reinforces everyones’ belief regarding the emerging
topology of the system path. The decision making policy for
the socially competent agent can be formulated as:

a∗ = arg min
a∈A
C(a), (7)

where a∗ ∈ A is the action that contributes the maximal
decrease of C in a given context, expressing an optimal
compromise between progress to destination and consensus
reinforcement, according to the weighting factor λ. Fig. 6
illustrates an example of reasoning about the future system
path topology at planning time.
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Fig. 6: The robot is reasoning about different actions leading
to qualitatively distinct scene evolutions (left), corresponding to
distinct system path topologies (right).

B. Generating a Set of System Path Topologies

In a scene with n agents, infinitely many, arbitrarily
complex braids could be mathematically possible. However
not all of them are likely to emerge. For computational
and practical reasons, the planning agent concludes to a
set T ⊂ Bn of likely topologies. To do so, the agent
maintains a graph, called permutohedron, comprising nodes-
permutations and edges-elementary braids (see Fig. 7). At
planning time, the agent determines the permutation with
respect to the x-axis of its body frame that corresponds to
the current system state Q and derives the set of all possible
future braids words of a given length.

C. Generating a Set of Actions

The planning agent is assumed to have access to a set of
actions A, comprising trajectories of a fixed number of time
steps that are executable by its dynamics (in this paper, we
do not incorporate dynamics, assuming that an agent may
move towards any direction). The action set is generated
offline by considering a set of time-parametrized paths. At
planning time, the planner rejects the subset of A that is
likely to lead to collisions with the environment or other
agents. The actions in the collision-free set Acf are evaluated
with respect to the cost C and the best one is executed. This
approach is inspired by the works of Green and Kelly [7] and
Knepper et al. [12], which provide efficient algorithms and
a deeper intuition on path sampling and collision checking.

D. Online Algorithm

Algorithm 1 presents our algorithm for Socially Com-
petent Navigation (SCN). The Function UpdateContext
incorporates the current system state Q to the context Mt.
Next, the function CollisionChecking checks the ac-
tion set for collisions and returns a collision-free subset
Acf ⊆ A. Subsequently, the function GetTopologies
derives a set of likely topologies T . Then, the func-
tion ScoreTopologies evaluates every topology in T
given each action a ∈ Acf and the context Mt by us-
ing our learned model P (τ|Mt, a) and returns a corre-
sponding matrix of probabilities P . Finally, the function
MinimizeUtilityCost evaluates all actions inAcf with
respect to the utility cost C and returns the action a∗ that
both contributes the best compromise between progress to
destination and communication of compliance with the most
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Fig. 7: Permutohedron of order 4: a graph with nodes representing
all possible permutations of the set N = {1, 2, 3, 4} and edges
corresponding to transitions that are implementable with elementary
braids (generators or their inverses).

likely system path topology at the given time. The algorithm
runs until the agent reaches its destination, i.e., until the
boolean variable AtGoal becomes 1.

Algorithm 1 SCN(Q,A,Mt, d,map,G,AtGoal, a)

Input: Q − current system state; A − action set; d −
agent’s destination region; map; G − Permutohedron;
AtGoal − boolean variable signifying arrival at agent’s
destination; Mt − context

Output: a∗ − action selected for execution
1: while ¬AtGoal do
2: Mt ← UpdateContext(Q,Mt)
3: Acf ← CollisionChecking(A,Mt,map)
4: T ← GetTopologies(Q,G)
5: P ← ScoreTopologies(T ,Acf ,Mt)
6: a∗ ←MinimizeUtilityCost(P,Acf , d,Mt)

7: return a∗

VII. EVALUATION

In our experimental evaluation, we aim to confirm (1)
that an agent running SCN behaves as a socially competent
pedestrian, contributing to other agents’ certainty over future
topologies and (2) that the presence of a socially competent
agent improves the legibility of other agents’ behavior.

A. Experimental Setup

We test our planning algorithm in 50 simulated scenarios
involving 3 and 4 agents navigating a circular workspace.
Each scenario is defined as a tuple (Qs, Qd), where Qs
was defined by placing each agent uniformly at random
on the circumference of the workspace (see Fig. 8) and
Qd corresponds to points diametrically opposed to Qs. The
scenarios were deliberately designed to reinforce intense
agent encounters.

For each scenario, we conducted 4 different experiments:
(1) experiment 4SF, where all agents are running an indi-
vidual instance of the social force model, (2) experiment
1SCNv3SF, where agent #1 is running our SCN algorithm



Fig. 8: Swept volumes of 4 agents navigating a circular workspace.
The red agent runs SCN whereas the rest of the agents run a separate
instance of the social force model.

and the other 3 agents are running the social force, (3)
experiment 3SF, where we remove agent 1 and only simulate
the remaining 3 agents using the social force model and (4)
experiment 1SCNv3SF-1SCN that is essentially a playback
of 1SCNv3SF with the trajectory of agent 1 (SCN) excluded
(treated as invisible). Note that for the first 5 time steps, the
SCN agents switch to SF in order to collect enough history
to bootstrap the learning algorithm

For the evaluation stage, we train a separate evaluation
model of the form P (τ|M i

T ) that predicts future topologies
τ from the perspective of agent i based on the context M i

T

at time T . Both M i
T and τ are expressed with respect to

frame Fi for agent i (see section V-B). We use exactly the
same model architecture and training procedure as detailed
in section V, but with a shorter input sequence that ex-
cludes the action a. This model achieves similar accuracy
to P (τ|MT , a) (see Table III).

The action set for the agent running SCN comprised a
collection of 31 time-parametrized (dt = 0.2sec, speed 1.2
m/sec) straight line path segments of 3 waypoints each,
covering π rads, whereas the weighting factor λ was set
to λ = 0.6. For reference, the parameters for the agents
running instances of SF were selected as vmax = 1.7m/sec,
c = 1, φ = 100◦, R = 0.2m, σ = 0.5m, τa = 0.4s,
V 0
aβ = 20m2/sec2, UaB = 10m2/sec2, v0a = 1.6m/sec

and we kept the same time parametrization dt = 0.2sec.

B. Results

To demonstrate the benefits of the SCN algorithm for
multi-agent navigation scenarios, we measure its effects in
the behavior of other agents. More specifically, in each
setup, we record (a) the time to destination (Fig. 9) and (b)
the evolution of the entropy of the distribution P (τ|M i

T )
(Fig. 10), both averaged over the same three SF agents
(agents #2, #3, #4) per experiment.

Fig. 9 shows that the 1SCNv3SF setup (Fig. 8 depicts
an example execution) achieved the fastest average time
to destination, as a result of SCN’s consistently competent
behavior. Student’s t-test yields a p-value < 0.001 indicating
a highly significant improvement, compared to 4SF and 3SF
(Fig. 9). Note that the time to destination for the SCN agent
itself was excluded from this test, indicating that the three
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Fig. 9: Average time to destination per experiment per agent
(excluding agent #1). The error bars indicate 25th and 75th
percentiles over 50 experiments. 1SCNv3SF is shown to terminate
faster than both 4SF and 3SF, (according to a Student’s t-test with
p-value < 0.001).
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Fig. 10: Entropy profiles averaged across experiments and agents
(excluding agent #1). The black circles indicate timesteps where
the entropy measured for 1SCNv3SF is lower than for 3SF with
statistical significance (Student’s t-test, with p-value ≤ 0.022). The
gray area in the plot corresponds to the first time frame Tp, during
which the agent running SCN was moving efficiently and observing
the context.

SF agents become more efficient thanks to the presence of
one SCN agent.

In Fig. 10, at time zero, we see that the entropy of a
uniform distribution in B4 (the braid group with n = 4
strands) is naturally higher than the ones in B3 simply
because of the higher baseline penalty for the probability
mass being spread over more discrete possibilities. As we
noted earlier, during the first five time steps, SCN agents in
1SCNv3SF run SF in order to collect enough data (grey box
in Fig. 10). Henceforth, they switch to SCN, which results
in a precipitous drop of the average entropy that continues
until it drops below both baselines. In particular, in the time
frame [25, 31] the entropy in 1SCNv3SF drops significantly
below the entropy of 3SF, according to a Student’s t-test,
with p-value ≤ 0.022.



One could object that the SCN agent is an integral part
of the braid, and it is therefore unsurprising that a socially
competent agent reduces the system entropy. To measure the
effect on the entropy of the other three agents alone, we
introduce one additional baseline, 1SCNv3SF-1SCN. This
result shows the entropy of the system path for the three
SF agents after removing the SCN agent. This result shows
that the reduced entropy is not due to the direct contribution
of SCN alone. Rather, the three SF agents are themselves
behaving in a more orderly fashion in the presence of the
SCN agent. This result suggests that in acting in a socially-
competent manner, SCN increases the social competence of
SF agents as well. For clarity, note that the graph in Fig. 10
terminates before all of the agents have had an opportunity
to quiesce at their goals. At that point, all entropies converge
to zero. However, the benefit of social competence in terms
of reduced time and confusion is achieved long before.

VIII. CONCLUSION

We presented a planning framework for navigation in
crowded environments. The foundation of our approach is a
topological representation of the collective behavior of a set
of agents, based on braids [3]. This representation forms the
basis for the design of an inference mechanism that predicts
the topology of the future trajectories of a set of agents,
given the context of a scene. A model of this mechanism was
extracted in a data-driven fashion by employing a deep neural
network architecture on synthetic data generated through the
use of the Social Force model [8]. The inference mechanism
serves as a means of understanding how the agent’s behaviors
might affect the observing others. This enables it to select
behaviors that are socially competent, i.e., constitute the best
response to the context. We conducted a set of simulated
experiments that provided us with statistically significant
evidence suggesting that our framework results in collective
behaviors that simplify the planning problem for everyone in
the scene. This is reflected in the behavior of other agents:
systems of agents containing an agent running our algorithm
achieved significantly reduced average time to destination
and were able to get a clear topological understanding of the
scene evolution significantly faster, as shown in the average
entropy profiles of the agents not running our model. Future
work involves learning a model of system path topology
prediction from human pedestrian data, experimental eval-
uation on a social robot platform and a study to assess its
interactions with humans.
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