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Abstract—We present a framework for online navigation plan-
ning in multi-agent environments, where no explicit communica-
tion takes place among agents, such as pedestrian scenes. Inspired
by pedestrian navigation, our approach encodes the concept of
coordination into agents’ decision making through an inference
mechanism about joint strategies of avoidance. Strategies of
avoidance represent avoidance protocols that agents engage in
to avoid colliding with each other throughout the scene. In this
work, we model such strategies topologically, by employing the
formalism of braids. This model allows us to characterize the
collective behavior of a set of agents but also to enumerate future
scene outcomes for a multi-agent scene. Inspired by the mech-
anisms of human action interpretation, we design an inference
mechanism that enables an agent to infer future strategies of
avoidance, by observing agents’ past behaviors. We integrate this
mechanism into the agent’s decision making towards generating
intent-expressive and socially compliant behaviors that reduce the
planning effort for everyone in the scene. Results of statistical
significance, generated upon extensive simulation evaluations,
indicate faster average uncertainty reduction and faster average
destination arrival, compared to purely efficient agents.

I. INTRODUCTION

Over the past decade, the importance of nonverbal com-
munication in human-robot interaction has become increas-
ingly appreciated. Several works have proposed frameworks
for intent-expressive motion generation, aiming at achieving
increased productivity and a higher degree of integration of
robots into human environments [4]. To this end, roboticists
have often been following the insights of studies on the
mechanisms underlying human inference, which appear to
be teleological in nature, with humans attributing goals to
observed actions [3].

Human navigation is not an explicitly collaborative activity;
however, the insights of studies on pedestrian behavior indicate
the existence of context-specific mechanisms of cooperation
(e.g. [15]). Inspired by these, we develop a topological model
of collective behavior in navigation, based on braids [2], which
allows us to enumerate distinct classes of collective navigation
strategies of avoidance. This model constitutes the basis for
the design of an inference mechanism, according to models of
human inference, supported by Csibra and Gergely [3]. This
mechanism is incorporated in a policy for intent-expressive
motion planning for crowded environments. Our policy leads
to the generation of socially competent robot behaviors, by
compromising between a cost representing individual effi-
ciency and a cost representing the state of consensus regarding
a strategy of avoidance among all agents.
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Fig. 1: A human and a robot navigating a hallway. From the
perspective of the human, the behavior of the robot so far makes
it unclear how the agents are going to avoid each other, yielding a
high-entropy probability distribution.

This paper contains key results from Mavrogiannis and
Knepper [9], Mavrogiannis et al. [10] but also newer results
from a work in progress. Specifically, we study the effect
of our policy in multi-agent environments under discrete and
continuous settings.

A. Related Work

A significant amount of research has been devoted to the
development of models of crowd dynamics that may generate
realistic simulations. To this end, the seminal Social Force
model of Helbing and Molndr [5] and its variants have
simulated pedestrian flows in various environments. Besides,
several works have proposed planning frameworks towards
generating smooth robot motion in human environments. A
class of works directly incorporates measures of human com-
fort into the motion planning (e.g. Sisbot et al. [12]), whereas
other approaches have focused on the design of mechanisms
for learning to predict human behaviors (e.g. see [14]). Finally,
several works incorporate models of multi-agent interactions
and achieve oscillation-free collision avoidance (e.g., [7]).

Our framework differs from the aforementioned frameworks
by (1) incorporating a model of collective behavior that allows



us to predict classes of trajectories instead of actual trajecto-
ries and (2) incorporating a mechanism for intent-expressive
decision making in a multi-agent context and (3) incorporating
a model of observer uncertainty into agents’ decision making.

II. FOUNDATIONS

We consider the problem of navigation planning in a
crowded workspace where multiple agents navigate towards
their destinations. The agents do not explicitly exchange any
kind of information with each other but are assumed to be
acting rationally, which in our context means that (1) they
aim at making progress towards their destinations and (2) they
have no motive for acting adversarially against other agents
(e.g. blocking their paths or colliding with them). Inspired by
studies on human behavior, we design a planning framework
that enables a planning agent to understand the dynamics of
interaction among all agents in a scene, towards acting in
a socially competent fashion. In the following subsections
we provide a definition for social competence in the context
of navigation in multi-agent environments and describe our
model, that constitutes an abstraction of collective navigation
behaviors.

A. Socially Competent Navigation

Based on observations of pedestrian behavior, Wolfinger
[15] concluded to a high-level protocol that appears to be the
basis of the social order of human navigation, the Pedestrian
Bargain. The Pedestrian Bargain comprises a set of social
rules: (1) people must behave like competent pedestrians and
(2) people must trust copresent others to behave like competent
pedestrians.

Although Wolfinger did not explicitly define competence,
from the examples included in his work, we may deduce that
he refers to a notion of Social Competence. The concept of
Social Competence has been extensively studied in the field
of Psychology from different perspectives and for different
scenarios (for an extensive review see [11]). In the context of
navigation, we may define social competence as:

The ability of an agent to perceive the context,
analyze it and pick an action that appears to be
compatible with it, according to a pattern of behav-
ior that the agent assumes observing agents expect
from him/her by having observed and analyzed the
context themselves.

According to Csibra and Gergely [3], humans tend to attribute
goals to observed actions in a given context. Therefore,
socially competent navigation behaviors should be indicative
of agents’ intentions and compatible with the context. In
other words, socially competent agents should be cognizant
of the fact that their behaviors implicitly communicate their
intentions to any observing agents. The importance of implicit
communication for human-robot interaction applications has
lately been increasingly appreciated [4, 8].

A problem that arises though, involves providing an appro-
priate, concrete definition of intentions in the context of multi-
agent navigation. In our problem setup, we make the assump-
tion of rational agents, aiming at reaching their destinations

efficiently. Clearly, the pursuit of destination drives agents’
behavior. However, ensuring collision avoidance and com-
fortable navigation often requires paths of complex shapes,
comprising maneuvers and turns. Even in a densely crowded
scene, multiple such paths may be possible for an agent. Thus,
from the perspective of an observer, inferring where an agent
is going is not sufficient to predict its future behavior; it
is important to be able to infer how the agent is going to
its destination. We argue that in the context of navigation
in a workspace with multiple navigating intelligent agents,
a proper model of intentions should incorporate information
for both where and how but also contain a form of structure
regarding the interactions of agents. In this work, we develop
such a model of collective intentions, based on the topological
formalism of braids [2]. In the following subsections, we
provide a model of multi-agent navigation, introduce braids
and describe how we use them to model collective intentions
in navigation.

B. Modeling Multi-Agent Navigation

Consider a set of n > 2 agents N = {1,...,n} navigating
a workspace Q C R2. Denote by ¢; € Q the configuration
of agent ©+ € N. Agent i starts from an initial configuration
¢ € Q at time t = 0 and reaches a final configuration ¢!
at time ¢ = Tj. The final configuration ¢¢ corresponds to a
landmark d; from a set of landmarks D C () (we assume that
d; # d; for any two agents ¢,j € N). The path that agent §
follows to reach its destination is a function &; : [0, ;] — Q.

Let us collect the state of the system of all agents in a tuple

Q= (q1,---,9,) € Q™. The system state evolves from a start-
ing configuration Q° = (¢f,...,¢>) to a final configuration
Q= (q‘f, ceey qff), by following a path = : [0, 7] — Q", from

the space of system paths Z, starting from ® and ending at
Q?. The system path is a function = : [0, 7] — Q™\A, where
A={Q = (q1.q2,---,qn) € Q" : ¢; = q; for some i #
j € N} is the set of all system states with agents in collision
and T' = max;ecn 75 (it is assumed that agents remain at their
destinations until everyone reaches their own). Naturally A
partitions the space of system paths Z into a set of classes
of homotopically equivalent system paths. Each such class
has distinct topological properties which indicate a distinct
joint strategy behavior that the agents followed to reach their
destinations, while avoiding collisions with each other. To
enumerate such classes of behavior but also to label system
paths, we develop a model of behavior using the concept of
braids [2].

C. Background on Braids

Braids are topological objects with algebraic and geometric
presentations. We first introduce them as geometrical entities,
following a presentation based on Artin [1] and continue with
a discussion of their algebraic presentation and their group
formation.

Denote by x,y, z the cartesian coordinates of a Euclidean
space R? x I. A braid string is a curve X (z) : I — R? that
increases monotonically in z, i.e., has exactly one point of
intersection X (z) = (x,y) with each plane z € I. A braid



on n-strings or n-braid is a set of n strings X;(z), i € N =
{1,...,n} for which:

1) Xi(z) #X,(z), fori#jVzeR

2) X(0) = (4,0) and X(1) = (p(é),0),
where p(i) is the image of an element ¢ € N, through a

permutation p : N — N from the set of permutations of
N, Perm(N), defined as:

p:<p<11> o p%)' M

This geometric representation of a braid is commonly referred
to as a geometric braid. More formally, a geometric braid is
often represented with a braid diagram, a projection of the
braid onto the plane R x 0 x I (see e.g. Fig. 2).

The set of all braids on n strings, along with the composition
operation, form a group B,. The group may be generated
from a set of n — 1 elementary braids o;,092,...,0,-1 (see
Fig. 2), called the generators of B,,, that satisfy the following
relations:

j— Kl > 1, @
j— k[ =1. 3)

0j0r = 00y,
0j0k0; = 000k,

A generator oy, i € {1,2,...,n — 1} can be described as the
crossing pattern that emerges upon exchanging the ith string
(counted from left to right) with the (i + 1)th string, such
that the initially left string passes over the initially right one,
whereas the inverse element, o, L implements the same string
exchange, with the difference that the left string passes under
the right (see Fig. 3). An identity element, e, is a braid with
no string exchanges.

Two braids by,by € B, may be composed through the
composition operation (), which is algebraically denoted as
a product by - by. Geometrically, this composition results in
the pattern that emerges upon attaching the lower endpoints
of by to the upper endpoints of b; and shrinking each braid
by a factor of 2, along the z axis (see Fig. 2,Fig. 3). Any
braid can be written as a product of generators and generator
inverses. This form of representation is commonly referred to
as an algebraic braid or a braid word (Fig. 3).

D. Abstracting Collective Navigation Behaviors Using Braids

Denote by f, : Q™ — Perm(N) a function that takes as
input the system state () € Q™ and outputs a permutation
p € Perm(N) corresponding to the arrangement of all agents
in order of increasing z-coordinates.

As the agents move towards their destinations, they employ
navigation strategies — maneuvers to avoid collisions. These
result in a system path =, which corresponds to a path of
permutations 7 : [0,7] — Perm(N) that may be extracted
by evaluating f, throughout the whole path =. This path can
be represented by a sequence of permutations of minimal
length 7* = (p(), ce ,pK), ie., Pj—1 #* Pj, Vj= {1, . ,K}
and consecutive waypoints are adjacent transpositions', i.e.,

A transposition can be described as a permutation involving exactly one
swap of a pair of elements. An adjacent transposition is a transposition
involving an exchange of two adjacent elements.
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Fig. 2: The generators of the Braid Group B,,.

I IV [
T A

o1 02_1 o1 - 02_1
Fig. 3: Example of the Composition operation o - 05 ! for

01,051 € B,.

permutations that differ by exactly one swap of adjacent
elements.

Therefore, due to continuity, a transition from the (j — 1)th
permutation, p;_;, to the jth permutation, p;, implies the
occurrence of an event T;, which may be described as the
intersection of the x-projections of the paths of two agents
that were adjacent in the permutation p;_;. The event T;
may be represented as an elementary braid T; € oz-il,z' €
{1,...,n—1}, where i corresponds to the index of the leftmost
swapping agent in permutation p;_;. Therefore the whole
execution from ¢t = 0 to ¢t = T may be abstracted into the
braid that corresponds to the temporal sequence of events:

T=T1T2...Tg € B,. €]
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Fig. 4: A space-time representation of a system path in a
workspace with 4 agent (left) along with its corresponding
braid diagram (right) and braid word (bottom), defined with
respect to the path’s z-projection. The visualization of the
braid diagram and the extraction of the braid word was done
using BraidLab [13].



This braid word not only constitutes a topological charac-
terization of the system path (see Fig. 4 for an example of
characterizing a system path as a braid) but it also represents a
topological class of system paths that are homotopy-equivalent
with the system path in consideration. In the remainder of
this paper, we will be referring to the sequence T as the joint
strategy or the entanglement of the system path. Essentially,
we model the space of joint strategies 7 as the braid group,
ie., T := B,,.

Remark 1. It should be noted that since braids are defined
with respect to a specific frame of reference, the model of joint
strategies is agent-specific.

III. SociALLY COMPETENT NAVIGATION PLANNING

Generating socially competent navigation behaviors in our
context involves understanding the collective intention of the
system of agents regarding a future strategy of avoidance
and acting in a compliant fashion. Doing so requires (1) a
proper inference mechanism and (2) a corresponding policy for
motion generation. In the following subsections, we describe
our approach to designing them.

A. Inferring Avoidance Strategies from Context

Following the insights of Csibra and Gergely [3] regarding
the goal-directed mechanisms of human action-interpretation,
we design an inference mechanism of the form P(t|Z;, M;),
corresponding to a belief over an emerging strategy T € T,
given a partial system path =; and the state of the context at
time ¢, M;. The strategy T represents a collective intention,
whereas the system path represents a collective action. By
context we refer to publicly available information, such as a
model of the static environment (e.g. a map, obstacles, points
of interest etc) but also information extracted through pro-
cessing, e.g. by employing secondary inference mechanisms
regarding group formations, identification of reactive agents
etc.

From (4), the belief P(t|Z;, M;) may be expanded as:

P(T‘Et?Mt) :P(T17'~'7TK|Et7Mt)9 (5)

which, by applying the chain rule, may be factored as:
K k—1
P(t|Z, My) = [] P(wil () )0 B My). (6)
k=1 j=1

This belief quantifies the likelihood of a sequence of events
T1,..., Tk given observation of agents’ past behaviors and
the context. Essentially, this corresponds to predicting the
emerging sequence of permutations 7* but also the quality
of the physical transitions between consecutive permutation
waypoints.

B. Generating Socially Competent Motion

The outlined inference mechanism is used to develop a
decision making policy that compromises between achieving
personal efficiency and reinforcing a consensus over a joint
strategy among agents.

Let u; : A; — R be a cost function evaluating the quality
of an action a; € A; that agent 7 selects from its action space
A;. We design this cost to comprise two terms: (1) E;, which
represents the action’s Efficiency with respect to the agent’s
destination and (2) C};, which represents the state of Consensus
over a joint strategy among agents, from the perspective of
agent 4, upon taking an action a; € A;:

where A is a weighting factor, expressing the compromise
between efficiency and consensus.

We define the personal efficiency term E;, to be the length
of the shortest path to the agent’s destination, whereas C; is
modeled as the Information Entropy of the belief distribution
over joint strategies P(tT|Z:, M;), from the perspective of
agent 1, i.e.,

Ci(a;) = =Y P(tla;, =, My)logy P(tlai, Z¢, My),  (8)
TeT

Formally, the decision making policy for socially competent
navigation (SCN) may be described as a minimization of eq.
(7):

a; = arg aHél;l w;(ag). 9
Overall, this policy enables an agent to make decisions that
not only contribute progress towards its destination but also
towards a mutually beneficial consensus over a joint strategy.
The faster such a consensus is established, the lower the
uncertainty will be for all agents throughout the remainder of
the execution. The Efficiency term represents agents’ intention
of reaching their destinations by spending low energy and is in
line with the principle of rational action as highlighted in the
definitions of the pedestrian bargain [15] and the teleological
reasoning [3]. The Consensus term scores the current state of
the global consensus among agents regarding the joint strategy
to be followed and therefore, it directly incorporates a form of
social understanding into the agent’s decision making policy.
The lower the entropy, the lower the uncertainty regarding the
emerging joint strategy. Thus, by consistently picking actions
that contribute to entropy reduction, an agent communicates its
intention of complying with a subset of scene outcomes that
appear to be preferable by everyone according to the model
P(t|Z,M). As a result, the agents are expected to reach a
consensus over T faster, avoiding ambiguous situations such
as livelocks or deadlocks and reach their destinations with
lower planning effort.

IV. APPLICATIONS

So far, we have employed the SCN framework on two
different setups: a discrete setup, in which agents navigate a
discretized board, and a continuous setup, in which agents nav-
igate a continuous workspace. For both cases, we demonstrate
the importance of reasoning about the collective behavior of
multiple agents by comparing against greedy baselines that
maximize agents’ progress to destinations. In this section, we
present corresponding models and main results.
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(a) Partial execution from a game with 3 agents on a square board.

(b) Swept volumes of 4 agents navigating a circular workspace.

Fig. 5: Example executions from the discrete setup (left) and the continuous Setup (right).
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(a) Average Entropy profiles for the case of 4 agents navigating
a discretized square board. Error bars indicate 25-75 percentiles,
full black circles, circles and crosses indicate statistically different
distributions with p-values < 10™%, extracted by performing a T-test
on every round.
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(b) Average Entropy profiles for the case of 4 agents navigating a
continuous circular workspace. Different colors represent different
setups, as shown in the legend. Circled datapoints correspond to
timesteps at which 1SCNv3SF exhibited significantly lower entropy
than all other setups (t-test, p-values < 0.02).

Fig. 6: Average Entropy profiles for a discrete setup on a square board (left) and a continuous setup on a circular workspace
(right), each derived upon running 100 experiments with the corresponding algorithm implementation.

A. Discrete Setup

Inspired by Wolfinger’s observations on the cooperative
nature of human navigation [15], we approach the problem
of navigation in dynamic multi-agent environments, where
no communication takes place among agents, as a finitely
repeated coordination game of imperfect information and
perfect recall [9]. The game is repeated a finite number of
rounds M, which is unknown a priori and corresponds to
the round at which the slowest agent reached its destination.
At each round m € {1,..., M}, each agent i decides on an
action a¥ from a set of available actions (actions that could
potentially lead to collisions and actions that violate the agent’s
dynamics are excluded) A" by minimizing a cost function
u;. The agents are simultaneously selecting their actions and
therefore they have no access to other agents’ plans (imperfect
information); we assume however that they maintain a history
of all previous rounds (perfect recall).

To evaluate our approach, we constructed an analytical
heuristic for approximating the distribution P(t|Z;, M) (for
more details see Mavrogiannis and Knepper [9]). Fig. Sa
represents an example execution with 3 agents, whereas Fig. 6a
depicts average entropy profiles for 100 different scenarios
involving 4 agents navigating the same workspace, by running
our algorithm (red curve) or by only maximizing efficiency at
every step (blue curve). It can be observed that agents running
SCN achieve a faster entropy reduction, which represents a
faster consensus over a joint strategy of avoidance.

B. Continuous Setup

In order to apply our framework to more realistic settings,
we employed a data-driven approach to learn a model of
the inference mechanism P(t|Z;, M;) from demonstrations of
multi-agent behaviors [10]. To do so, we generated a dataset
of system paths by employing the Social Force (SF) model



[5] on different scenarios involving multiple agents navigat-
ing rectangular or circular workspaces. Each scenario was
generated by sampling agents’ initial and final configurations
on the circumference of the workspace. Each agent traverses
the workspace towards a diametrically opposed destination by
executing control inputs generated by an individual instance
of the social force model. The model parameters, as well
as agents’ initial positions and destinations are varied across
agents and experiments according to gaussian distributions.
The experiments were explicitly designed to enforce intense
agent encounters in order to obtain interesting behaviors.
Experiments on the circular workspace loosely simulate pedes-
trians crossing paths in free areas such as atriums or parking
lots, whereas the rectangular workspace captures pedestrians
passing in hallways with mostly parallel and orthogonal tra-
jectories.

We extract models of the conditional probabilities of eq.
(6) by employing a sequence to sequence encoder-decoder
learning architecture. The encoder and decoder RNNs were
implemented by following the Long Short-Term Memory
(LSTM) paradigm [6] due to its effectiveness in capturing
long-term sequence dependencies.

We evaluate our algorithm by comparing against the Social
Force model in 4 different setups: (1) 1 agent runs SCN
and 3 agents run SF, (2) 4 agents run SF, (3) 3 agents
run SF, (4) case 1, upon removing the agent running SCN.
Fig. 6b depicts corresponding average entropy profiles for
100 different scenarios. It can be observed that by putting
1 agent running SCN around a system of 3 agents running
SF (red curve) results in significantly accelerated uncertainty
decrease, compared to all other setups. Fig. 5b depicts an
example execution with 4 agents.

V. DISCUSSION AND FUTURE WORK

We presented a planning framework for socially competent
navigation in multi-agent environments with no explicit com-
munication among agents. Simulation results demonstrated a
faster decrease of uncertainty among agents in a scene that
appears promising for application in human environments. Fu-
ture work involves an experimental evaluation of our approach
with a social robot in a crowded human workspace and a user
study to get feedback from humans.
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