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Abstract. We present a novel planning framework for navigation in dynamic,
multi-agent environments with no explicit communication among agents, such as
pedestrian scenes. Inspired by the collaborative nature of human navigation, our
approach treats the problem as a coordination game, in which players coordinate
to avoid each other as they move towards their destinations. We explicitly encode
the concept of coordination into the agents’ decision making process through a
novel inference mechanism about future joint strategies of avoidance. We repre-
sent joint strategies as equivalence classes of topological trajectory patterns using
the formalism of braids. This topological representation naturally generalizes to
any number of agents and provides the advantage of adaptability to different en-
vironments, in contrast to the majority of existing approaches. At every round,
the agents simultaneously decide on their next action that contributes collision-
free progress towards their destination but also towards a global joint strategy
that appears to be in compliance with all agents’ preferences, as inferred from
their past behaviors. This policy leads to a smooth and rapid uncertainty decrease
regarding the emerging joint strategy that is promising for real world scenarios.
Simulation results highlight the importance of reasoning about joint strategies
and demonstrate the efficacy of our approach.
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1 Introduction
Human environments, such as crowded hallways, sidewalks, and rooms are often char-
acterized by un-structured motion, imposed by the lack of formal rules to control traffic
and the lack of explicit communication among agents. Nonetheless, humans are capable
of traversing such environments with remarkable efficiency and without hindering each
other’s paths. Human navigation not only achieves collision avoidance; it does so while
respecting several social considerations, such as the passing preference of others and
their personal space, ensuring smooth co-navigation. Cooperation has been identified
to be the key for the generation of such a complex behavior (see e.g. Wolfinger [26]).
In the absence of explicit communication, cooperation relies on intention inference,
which in turn is based on trust. Pedestrians infer others’ intentions and preferences by
observing their motion, while communicating their own, essentially negotiating a joint
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strategy of avoidance. Past experiences of cooperatively resolved pedestrian encoun-
ters build and reinforce a form of trust among pedestrians that allows them to relax
uncertainty and agree on a joint strategy of avoidance.

Inspired by the efficiency of humans in resolving pedestrian encounters, we explic-
itly employ the concept of cooperation into the design of an online navigation algorithm
for multi-agent environments. Our approach treats navigation as a cooperative game in
which agents make decisions by compromising between a notion of personal efficiency
and a concept of joint efficiency. The concept of joint efficiency concerns the joint strat-
egy that all of the agents will follow to reach their destinations, while avoiding others.
We model joint strategies as topological patterns of agents’ trajectories using braids [3].

In contrast to the majority of existing approaches that are either too myopic, only
focusing on local collision avoidance resolution, or too specific, reproducing demon-
strated behaviors in specific contexts, we contribute: (1) a topological model of a multi-
agent scene, based on braids, that allows us to reduce the problem of planning joint
strategies to a graph search problem that can be efficiently solved with existing tech-
niques; (2) a framework for collaborative motion planning that generalizes across en-
vironments and numbers of agents; (3) a probabilistic intent inference mechanism for
cooperative navigation that accelerates the rate of convergence among agents’ plans;
and (4) simulation results demonstrating the importance of incorporating a collective,
global topological understanding in the planning process. Our framework was designed
according to the insights of sociology studies on pedestrian behavior and psychology
studies on action interpretation, reflecting our goal to employ it on a mobile robot plat-
form navigating in crowded human environments. The topological structure that our
model offers to the motion planning process is expected to reduce the emergence of
undesired situations such as deadlocks and livelocks that are frequently observed in
human-robot pedestrian encounters.

2 Related Work
2.1 Navigation

Navigation has been the focus of various diverse scientific communities, ranging from
sociology and cognitive science to computer vision and robotics, aiming at understand-
ing and simulating human navigation but also at reproducing robotic navigation.

Several works have proposed models for crowd dynamics that have been validated
in simulation of various scenarios in different contexts. The social force model [9] and
its variants [12, 19, 24] introduced a physics-inspired way of modeling pedestrian in-
teractions: pedestrians are attracted to their destination and repulsed by obstacles or
other agents. Hoogendoorn and Bovy [11] modeled the problem as a differential game
in which the agents are cost-minimizing predictive controllers. Moussaı̈d et al. [17]
looked at the problem from a cognitive science perspective, proposing a set of behav-
ioral heuristics that guide human walking behaviors. Bonneaud and Warren [4] pro-
posed a decomposition of locomotion into a set of elementary behaviors, each modeled
as an experimentally tuned nonlinear dynamical system. Finally, Zhou et al. [28] pre-
sented a data-driven approach for learning macroscopic collective crowd behaviors.

Designing artificial agents, capable of seamlessly navigating dynamic human en-
vironments typically requires a predictive framework and a planning framework. Over
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the past two decades, the robotics community has made a number of significant contri-
butions related to both components.

In human motion prediction, roboticists have employed learning techniques to de-
rive models of human behavior. Bennewitz et al. [2] clustered human behavior into
typical motion patterns which they used to perform online trajectory predictions on a
mobile robot platform. Ziebart et al. [29] and Henry et al. [10] presented data-driven
approaches, based on Inverse Reinforcement Learning for learning context-specific hu-
manlike navigation behaviors for static and dynamic environments respectively.

In the area of planning and control, emphasis has been given to the design of strate-
gies that would enable robots to integrate smoothly in human environments. To this end,
Sisbot et al. [20] presented a cost-based planner that incorporates considerations of hu-
man comfort and context-specific social conventions, whereas Park et al. [18] proposed
an online model-predictive control framework that generates locally optimal collision-
free smooth trajectories for autonomous robotic wheelchairs. Another class of works
have focused on modeling the interactions among multiple agents. The reactive multi-
robot planning framework of van den Berg et al. [25] made explicit use of the assump-
tion that the responsibility for collision avoidance is shared among interacting agents.
Under the same assumption, Knepper and Rus [13], inspired by human navigation, con-
tributed a sampling-based planner that also incorporates predictions about other agents’
trajectories in the planning process. Kuderer et al. [14] and Trautman et al. [23] pre-
sented learning frameworks for predicting the trajectories of interacting pedestrians,
which they used to plan socially compliant robot motion.

2.2 Human Behavior

One of the central principles guiding human decision making in pedestrian environ-
ments appears to be cooperation. Wolfinger [26] concluded to a concise, high-level
protocol that captures the essence of the cooperative nature of human navigation: the
pedestrian bargain. The pedestrian bargain is a set of foundational social rules that reg-
ulate pedestrian cooperation: (1) people must behave like competent pedestrians and (2)
people must trust copresent others to behave like competent pedestrians. Pedestrians’
trust to the rules of the bargain constitutes the basis of smooth co-navigation in shared
environments.

In the absence of explicit communication, pedestrians rely on inference mechanisms
for both prediction of others’ behaviors and for generation of their own behaviors.
As a result, building an autonomous system capable of seamlessly navigating human
environments requires the design of a realistic, human-like inference mechanism. To
this end, under the assumption of rational action, we design a goal-driven probabilistic
model for action understanding and generation, that is in line with the insights of Csibra
and Gergely [5, 6] regarding teleological action interpretation of humans. The concept
of teleological reasoning, describing the tendency of humans to attribute potential goals
to observed actions, has recently been employed in human robot-interaction by Dragan
and Srinivasa [8], who formalized a framework for intent-expressive robot motion.

2.3 Topology

Finally, the foundational inspiration for this work is the topological concept of braids.
The formalism of braids, first formulated by Artin [1] and extensively studied by Bir-
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man [3] has been an inspiration for applications in various disciplines, including robotics.
Diaz-Mercado and Egerstedt [7] were the first to develop a framework for centralized
multi-robot mixing, in which the agents are assigned trajectories that contribute to a
specified topological pattern corresponding to a given braid. Although we are also
making use of braids to model multi-robot behaviors, the scope of our approach is
inherently different, since our target application concerns navigation in dynamic envi-
ronments where no explicit communication takes place. In our case the agents do not
follow a pre-specified braid pattern, but rather employ a braid-based probabilistic rea-
soning to reach a topological consensus that best complies with everyone’s intentions
or preferences. For our purposes, braids provide a basis for reasoning about uncertainty
in a principled fashion, as their dual geometric and algebraic representation enables
us to symbolically enumerate diverse distinct topological scene evolutions. As a result,
our algorithm generates socially competent behaviors, i.e., behaviors that explicitly take
into consideration the social welfare of the whole system of agents.

It should be noted that this work solidifies and extends the concepts first presented
in our previous works [15, 16], where we made use of braids in a planning framework
based on trajectory optimization.

3 Foundations
Consider n agents navigating a workspaceW . Each agent i starts from an initial con-
figuration qi ∈ W and aims at reaching a destination di ∈ W by following a trajectory
ζi : I → R2, with I = [0, 1] being a normalized time parametrization. The agents do
not explicitly exchange information regarding their planned paths and are assumed to
be acting rationally, which in our context means that (1) they always aim at making
progress towards their destinations and (2) they have no motive for acting adversarially
against other agents (e.g. blocking their paths or colliding with them). The notion of
rationality is in line with the concept of competence as described by Wolfinger [26] in
his definition of the Pedestrian Bargain.

3.1 Game-Theoretic Formulation

Inspired by Wolfinger’s observations on the cooperative nature of human navigation, we
approach the problem of robotic navigation in multi-agent, dynamic environments as a
finitely repeated coordination game of imperfect information and perfect recall. The
game is repeated a finite number of rounds (until all agents reach their destinations). At
every round t, each agent decides on an action ai from a set of available1 actions Ai.
All agents are simultaneously selecting their actions and therefore they have no access
to other agents’ plans (imperfect information); we assume however that they maintain
a history of all previous rounds (perfect recall).

Based on our assumption of rationality, we can model agents’ decision making to
be the result of optimizing a utility function ui. Agents generally aim at reaching their
destination by spending low energy. However, in a multi-agent, uncertain environment,
each agent’s decisions are not independent of the decisions of others. Many decisions
might lead to collisions, whereas others, greedily serving one agent’s own interests

1 Actions that could probabilistically lead to collisions or actions that violate the agent’s dynam-
ics are excluded.
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might not be able to guarantee long term efficiency in such a complex context. In par-
ticular, the latter might actually lead to undesired outcomes such as longer paths, an-
tisocial hindering of others’ paths or even deadlocks and livelocks. For this reason, it
is important that each agent’s utility function incorporates a term reflecting the social
welfare, i.e., the “common good”, besides its own efficiency.

The set of actions selected by all players at a round t, A = {a1, ..., an} constitute
a strategy profile. The sequence of strategy profiles of all rounds from the beginning to
the end of the game form a global joint strategy s. In this paper, we make use of the
concept of joint strategies to imbue artificial agents with an understanding of how their
own actions affect the actions of others.

3.2 Modeling Joint Strategies

As the agents move from their initial configurations Q = 〈q1, ..., qn〉 to their intended
destinations D = 〈d1, ..., dn〉, their trajectories Z : I → (R2)n form a 3-dimensional
pattern in space-time. This pattern corresponds to the global joint strategy s that the
agents engaged in, to avoid each other and reach their destinations, from the beginning
to the end of the game. Its topological properties are particularly interesting, as they can
provide a qualitative characterization of the strategy and hence of the agents’ interac-
tions. For this reason, we represent joint strategies as equivalence classes of topological
trajectory patterns. Thus, a joint strategy s is an equivalence class of trajectory patterns
from a set of classes S. In this paper, we model this set as the braid group [3].
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t = 1
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t

(a) Geometric braid.

σ2

σ2

σ−1
1

σ1

(b) Braid diagram.

σ2σ
−1
1 σ2σ1

(c) Braid word.

Fig. 1: Alternative braid representations.

3.2.1 Background on Braids
Consider the finite set N = {1, 2, ..., n}, where n ∈ N+ and denote by Perm(N) the
set of permutations on N . A permutation in Perm(N) is a bijection b : N → N , often
represented as:

b =

(
1 2 ... n
b(1) b(2) ... b(n)

)
, (1)

where b(i) is the image of element i ∈ N , through the permutation b.
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From a geometric perspective, a braid on n ≥ 1 strands can be described as a system
of n curves in R3, called the strands of the braid, such that each strand i connects the
point (i, 0, 0) with the point (b(i), 0, 1) and intersects each plane R2 × t exactly once
for any t ∈ I (see Fig. 1a). A braid is usually represented with a braid diagram, a
projection of the braid to the plane R × 0 × I with indications of the strand crossings
(see Fig. 1b).

···

(a) σ1

···

(b) σ2

· · · ···

(c) σn−1

Fig. 2: The generators of the Braid Group Bn.

The set of all braids on n strands, along with the composition operation, form a
groupBn that can be generated from a set of n−1 elementary braids σ1, σ2, . . . , σn−1,
depicted in Fig. 2, called the generators of Bn, that satisfy the following relations:

σjσk = σkσj , |j − k| > 1; σjσkσj = σkσjσk, |j − k| = 1. (2)
Intuitively, a generator σi, i ∈ {1, 2, ..., n − 1}, can be described as the pattern that
emerges upon exchanging the ith strand (counted from left to right) with the (i + 1)th
strand, such that the left strand passes over the right, whereas the inverse element σ−1i

implements the same strand exchange, with the difference that the left strand passes
under the right (see Fig. 1b). A trivial element is a braid where no strand exchanges
occur. The group operation can be described as a concatenation of braids: given two
braids b1, b2 ∈ Bn, the product b1 · b2 results in b2 being placed on the top of b1, by
attaching the top endpoints of b1 to the bottom endpoints of b2 and shrinking each braid
by a factor of 2, along the t axis (e.g. see Fig. 1b). Any braid can be written as a product
of generators and their inverses. This product is commonly referred to as a braid word
(Fig. 1c).

3.2.2 Representing a Trajectory Collection as a Braid
We use the aforementioned braid representations to characterize topologically a collec-
tion of trajectories, based on the method of Thiffeault [21]. Given a trajectory collection
Z and a line ε ∈ W , we can extract the braid word that corresponds to the scene evolu-
tion by (1) projecting the states of all agents at every point in time,Z(t) to ε, (2) labeling
any emerged projected trajectory intersections as generators (or their inverses) accord-
ing to the intersection pattern, and (3) arranging them into temporal order. This word
describes the topological properties of agents’ trajectories Z, from the beginning to the
end of time. Fig. 3 depicts an example of transitioning from a collection of trajectories
to a braid diagram and finally a braid word (considering ε to be the x axis).



Decentralized Multi-Agent Navigation Planning with Braids 7

𝑤
=
𝜎 $%

& 𝜎
'%
& 𝜎
$𝜎
&
𝜎 $
𝜎 '%

&

𝑥𝑦

𝑡

Fig. 3: Projecting a trajectory collection (left) to the x axis to derive a braid diagram and a braid
word (right). The visualization of the braid diagram and the extraction of the braid word was done
using BraidLab [22].

3.2.3 Using Braids to Represent Joint Strategies

In this paper, we make use of the braid group Bn to represent the set of classes of joint
strategies S that a set of n agents could follow in a common workspace to avoid each
other and reach their destinations. Instead of explicitly planning geometric representa-
tions of agents’ potential future behaviors, i.e., predicting their future trajectories Z ′,
the agents are reasoning symbolically about possible emerging collective topologies-
braids. A planning agent i, headed towards a destination di, determines a set of joint
strategies S by considering an appropriate braid definition, i.e., selecting an appropriate
projection line ε to define braids with respect to.

3.3 Modeling Agents’ Inference Mechanism

The braid group Bn, for n > 1, is infinite; therefore infinitely many alternative joint
strategies could be mathematically possible. However, under a context M and observa-
tions of past collective behaviors Z, agents may form a belief over the set of emerging
joint strategies S. For a planning agent, this inference process serves as a form of a
context-specific social understanding, in the sense that it enables the agent to understand
how its decision over a navigation strategy is coupled with the decisions of others.

In this paper, we design agents’ inference mechanism in a human-inspired fashion,
reflecting our goal to employ our framework on an autonomous social robot. In partic-
ular, we follow the main insight of Csibra and Gergely [5, 6] regarding the teleolog-
ical nature of human action interpretation: humans tend to attribute potential context-
specific goals to observed actions. In our framework, a joint strategy s ∈ S is a goal,
whereas agents’ state history Z is the action andM is a variable that models the context
of the scene (encoding the understanding of the static environment, such as obstacles,
points of interest but also secondary inferences such as predictions about the destina-
tions of others, agents’ groupings etc). Formally, we model an agent i’s inference as a
belief distribution P (s|Z,M) over a future joint strategy s ∈ S, given past trajectories
Z and the context M .
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3.4 Modeling Agents’ Utilities

We model the interests of an agent i with a utility function ui : Ai → R that maps an
action ai ∈ Ai to a real number, representing a reward for selecting it (higher rewards
are better), whereas the Social Welfare is defined as mean of the individual utilities:

W (A) =
1

n

n∑
i=1

ui(ai). (3)

As we discussed earlier, in a multi-agent environment where no explicit communication
takes place among agents, it is important that agents take into consideration their scene
understanding in their decision making process. For this reason, we model ui to be a
weighted sum, compromising between personal efficiency and social compliance:

ui(ai) = λEi(ai)− (1− λ)Hi(ai). (4)
Ei = exp(−Ci(ai)) represents the efficiency of an action ai ∈ Ai with respect to a
geometric cost to destination Ci : Ai → R, whereas Hi is the information entropy of
the agent’s belief regarding the emerging strategy s, defined as:

Hi(ai) = −
∑
s∈S

P (s|Z+,M) log2 P (s|Z+,M) (5)

where Z+ is Z (the state history so far), augmented with the action in consideration ai
and λ is a weighting factor.

The Efficiency represents agents’ intention of reaching their destinations by spend-
ing low energy and is in line with the principle of rational action as highlighted in the
definitions of the pedestrian bargain [26] and the teleological reasoning [5]. The entropy
reflects the state of the global consensus among pedestrians regarding the joint strategy
to be followed and therefore, it directly incorporates a form of social understanding
in an agent’s decision making policy. The lower the entropy, the lower the uncertainty
regarding the emerging joint strategy. Thus, by consistently picking actions that con-
tribute to entropy reduction, an agent communicates its intention of complying with a
subset of joint strategies that appear to be more likely or “social” according to the model
P (s|Z,M). Another interpretation of the functionality of this policy is that it implic-
itly biases others towards complying with the same strategy. As a result, the agents are
expected to reach a consensus over s easier and faster, avoiding ambiguous situations
such as livelocks or deadlocks and reach their destinations more comfortably; not nec-
essarily faster or with less energy, but with a higher degree of cooperation, requiring a
lower planning cognitive load.

The superposition of the specifications for Efficiency and Entropy reduction, rep-
resent what -to our interpretation of the pedestrian bargain [26]- constitutes competent
behavior in the pedestrian context: (1) rationality and (2) social understanding.

4 Planning Global Joint Strategies with Braids
As discussed in Sec. 3.3, the braid groupBn is infinite; however, in practice, only a sub-
set of joint strategies-braids are meaningful under the context of a scene and given ob-
servations of agents’ past behaviors. In particular, given predictions of agents’ destina-
tionsD, we can determine a set S, comprising only strategies that take agents from their
current configurations to their predicted destinations. Making use of the observation that
all braids in Bn describe transitions between permutations of the set N = {1, 2, ..., n},
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𝜀

𝑏#

𝑏$

𝑠

Fig. 4: A multi-agent scene from the perspective the planning agent (blue color). The robot ar-
ranges all agents according to the projections of their current configurations on the line ε (coinci-
dent to the x-axis of its body frame) and derives a corresponding permutation b0. Given agents’
past trajectories (dashed lines) and the context it also makes a prediction of their intended des-
tinations (denoted with crosses) and derives a corresponding permutation b1. Transitioning from
b0 to b1 is implemented with a joint strategy s ∈ S.

we convert the problem of planning joint strategies to a graph search in a permutation
graph.

Fig. 4 illustrates the concept of our method. Assume that at planning time, the agents
have already followed trajectories Z, denoted with thick dashed lines and are located
at positions Q (circles in vivid colors, thick lines). The planning agent (blue color) has
predicted that they are aiming for the destinations contained in the tuple D (denoted
with crosses). From its perspective, Q and D correspond to the permutations b0 and b1
respectively, derived upon their projection on the line ε (parallel to the x-axis of its body
frame).

4.1 Permutation Graph Construction

The set of all permutations on N , Perm(N), along with the composition operation,
form the symmetric group Sn. Sn is a group of order n!, that can be generated by a
set of adjacent transpositions βk =

[
k k + 1

]
, with 1 ≤ k < n − 1 (i.e., the set of

permutations that implement exactly one swap of a pair of adjacent elements in the set).
It should be noted that these transpositions/generators just implement swaps of adjacent
pairs, whereas braid generators, besides implementing adjacent swaps, also prescribe a
swapping quality (which strand passes over or under, as discussed in Sec. 3.2.1).

We construct a permutation graph G = (V,E), comprising a set of vertices that
correspond to the elements of Sn. A pair of nodes vi, vj ∈ V is connected iff there
exists a permutation βk (from the set of the generating transpositions described in the
previous paragraph) that permutes vi into vj . Our graph can be graphically represented
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Fig. 5: A permutation graph for a scene with four agents, represented as a permutohedron of
order 4. Three alternative paths implementing the transition from the permutation 1234 to the
permutation 3412 are depicted in different colors. Each path consists of a sequence of transitions,
each of which can be implemented topologically with a braid generator or its inverse.

as a permutohedron [30]. Fig. 5 depicts a permutohedron of 4th order (for a scene with
four agents) along with example paths and indications of braid transitions.

4.2 Searching in the Permutation Graph

Two vertices vi, vj ∈ V corresponding to the permutations pi, pj ∈ Sn respectively can
be connected with a path of vertices Pij , corresponding to a sequence of permutations
that transitions pi into pj . Each edge in the graph corresponds to a generator of Sn that
can only be implemented topologically with a generator ofBn or its inverse. Therefore,
given a path Pij , a corresponding joint strategy (braid) s, transitioning pi into pj , can be
derived by assigning a braid at each transition between consecutive waypoints (vertices)
in the path. For each transition, there are always two candidate braid generators, i.e., a
σ+
i and its inverse, σ−i . Fig. 5 schematically demonstrates the assignment of braids to

permutation transitions in three different paths implementing a symbolic plan with the
same starting and ending permutations.

5 Algorithm Design
Algorithm 1 describes our online algorithm for socially competent navigation (SCN) in
multi-agent environments. The Algorithm starts by updating the context2 M with func-
tion UpdateContext. Next, the function DetermineReactiveAgents returns
a subset of all observed agents that should be taken into consideration in the motion
plan (e.g. ignoring agents that are behind the planning agent or agents that are too far

2 The context M comprises a static component (map, obstacles, points of interest in the scene
etc) and a dynamic component that depends on agents’ behaviors.



Decentralized Multi-Agent Navigation Planning with Braids 11

ahead). Subsequently, the algorithm determines the set of actions A that are available
to the planning agent, taking into consideration its dynamics and the positions and in-
tentions of others (function GetAvailableActions). In case there are not other
agents to which the planning agent should be reacting, the algorithm returns the most
efficient action towards the agent’s destination (function MaximizeEfficiency).
Otherwise, the algorithm continues with the function GetStrategies that derives a
set of topological joint strategies/braids S. Finally, the function MaximizeUtility
returns a control command a that corresponds to the action that both makes progress
towards the planning agent’s destination and communicates compliance with the most
likely joint strategies at the given time. The algorithm runs until the planning agent
reaches its destination, i.e., until the boolean variable AtGoal becomes 1.

Algorithm 1 SCN(q, d,map,N,Z,AtGoal, a)
Input: q − agent’s current state; d − agent’s intended destination; map; Z − state history of all

agents; AtGoal − boolean variable signifying arrival at agent’s destination; M − context
Output: a − action selected for execution
1: while ¬AtGoal do
2: M ← UpdateContext(Z,M)
3: R← DetermineReactiveAgents(M)
4: A ← GetAvailableActions(M)
5: ifR then
6: S ← GetStrategies(M,R)
7: a←MaximizeUtility(A,S, d,M,R)
8: else
9: a→MaximizeEfficiency(A, d)

10: return a

6 Application
We tested our algorithm in simulation in the following game. Consider a workspaceW ,
partitioned into a set of m polytopes (Fig. 6). A set of n agents navigate the workspace,
each starting from an initial configuration qi ∈ W and aiming at reaching a final config-
uration di ∈ W . The game is played in rounds until all agents reach their destinations.
At every round, the players simultaneously pick an action, i.e., a neighboring square.
Forward, backward, left, right and diagonal, collision-free transitions are allowed. Since
at planning time each agent has no access to others’ plans, in order to ensure collision
avoidance, transitioning to a square that is adjacent to a square currently occupied by
another agent is not allowed.

To demonstrate the importance of considering the emerging joint strategy in the
decision making stage, we compare the performance of our algorithm against a simple
baseline that only plans actions that seek to maximize the efficiency (the progress to the
agent’s destination) at every round. This baseline is conceptually similar to the widely
used social force algorithm [9]. We show that explicitly reasoning about the emerging
joint strategy when planning an action, benefits everyone in the scene, as it leads to
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a rapid uncertainty decrease that simplifies everyone’s decision making. This allows
agents to avoid ambiguous situations that could lead to livelocks or deadlocks.

6.1 Implementation Details

For the simulations we made the assumption that the agents were aware of others’
destinations. The agents were starting from one side of the board and aiming at reaching
a destination in the opposite side of the board. As a geometric cost Ci we selected the
Manhattan distance to destination. For each agent, the projection line, with respect to
which braids were defined, was selected to be constantly parallel to the line defining
their starting board side (and coinciding with agent’s body frame x-axis). The belief
over strategies was modeled as:

P (s|Z,M) =
1

Λ

∏
j=1:l

exp(−(l − j)∆xj) (6)

where l is the length of the word representing a strategy s, ∆xj is the current distance
along the x-axis between a pair of swapping agents, corresponding to the jth generator
in the braid, and Λ is an appropriate normalizer. This distribution is a simplified approx-
imation that cannot guarantee robust performance and generalization. We are using it in
this paper to provide a proof of our concept. We plan on approximating it using human
pedestrian data. Finally, for deriving a set of candidate paths in the permutation graph,
we use the algorithm of Yen [27] for finding K shortest paths.
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Fig. 6: Partial Execution: 4 agents play the same game (same initial configurations and destina-
tions) running the baseline (Fig. 6a) and our algorithm (Fig. 6b). The destination of each agent
corresponds to the square of the same color. The actions taken by each agent at every round so
far are noted with a corresponding round number.

6.2 Simulation Results

Figs 6a and 6b depict partial executions of the same game, after three rounds, for the
case of the baseline and our algorithm respectively. It can be observed that the agents
running our algorithm (“social agents”) have achieved a better status, as all of their
encounters are essentially resolved by the end of the third round. On the contrary, the
agents running the baseline (“greedy agents”) are about to engage in an ambiguous
encounter involving three of them aiming to pass from the same region of the board.
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Fig. 7: Comparative Performance plots for the game of Fig. 6: Fig. 7a depicts the comparison of
the mean entropy progression between the agents running our algorithm (red color) and the agents
running the baseline (blue color), whereas Fig. 7b depicts the mean progress to destinations (mean
efficiency) per round.

Fig. 7 depicts comparative performance diagrams for the game of Fig. 6. The pro-
gression of the quality of agents’ decision making is demonstrated by plots of the mean
entropy across all agents (Fig. 7a) and the mean progress to the destination (Fig. 7b)
per round of the game. Comparative plots of the complete trajectories of the game are
shown in Fig. 8. It can be noticed that the social agents achieve a rapid decrease in un-
certainty, expressed by the smooth convergence of the entropy, whereas in the case of
the greedy agents, the entropy fluctuates before the agents reach consensus, reflecting
the ambiguity of agents’ actions. At the same time, it appears that the social agents’
actions are also ensuring faster progress to their destinations compared to the greedy
ones.

Fig 9 depicts performance diagrams extracted from a similar scenario that besides
four agents involves a static obstacle that blocks the agents’ way to their destinations.
The obstacle is treated as an extra static agent. For our braid model an obstacle is not
different than an agent, as it can be represented with a stationary strand. Fig. 9a demon-
strates again an improved entropy progression, reflecting a faster consensus, while Fig.
9b shows that our algorithm stays quite close to the baseline in terms of efficiency. The
complete trajectories for the two cases are depicted in Fig. 10.

7 Discussion and Future Work
We presented an online framework for navigation in multi-agent environments with no
explicit communication, inspired by the insights of recent studies on the cooperative
nature of pedestrian behavior [26] and the goal-directed inference of humans [6]. Our
framework explicitly incorporates the concept of cooperation by modeling multi-agent
collective behaviors as topological global joint strategies, using the formalism of braids
[3]. Our topological model forms the basis of an inference mechanism that associates
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(a) Greedy agents’ trajectories (b) Social agents’ trajectories

Fig. 8: Comparative plot of the trajectories followed by agents running the baseline (Fig. 8a) and
our algorithm (Fig. 8b).

observed behaviors with future collective topologies. In the decision making stage, each
agent decides on an action that corresponds to a compromise between its personal effi-
ciency (progress towards destination) and a form of joint efficiency (the status of a con-
sensus on a joint strategy of avoidance). Simulation results on a discretized workspace
demonstrated the benefit of incorporating this joint efficiency in the decision making
stage, as opposed to picking actions that only contribute progress to one’s destination.
Our approach was shown to lead to a rapid drop in uncertainty that allows agents to
efficiently cooperate towards avoiding each other and reaching their destinations.
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Fig. 9: Performance comparisons in a workspace with four agents and an obstacle.

Ongoing work involves the development of a continuous implementation of our
algorithm and learning a distribution over topologies from human data. This will enable
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us to design a more realistic and accurate belief distribution over joint strategies and
test our algorithm experimentally, in real world scenarios involving human agents in a
variety of pedestrian environments. Finally, we plan on conducting a user study to get
feedback from humans and improve our design.

(a) Greedy agents’ trajectories (b) Social agents’ trajectories

Fig. 10: Comparative plots of trajectories for a scenario involving an obstacle (purple trajectory)
for greedy (Fig. 10a) and social agents (Fig. 10b).
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