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Abstract— We present a novel framework for socially compe-
tent pedestrian navigation based on understanding pedestrians’
intentions and planning intent-expressive robot motion. We
model pedestrians’ intentions as combinations of intended
topological routes and intended destinations. The core of this
approach is a novel topological representation of a pedestrian
scene, based on braid groups. This representation is used as
a basis for the development of an online navigation algorithm,
designed according to conclusions of recent psychology studies
on action interpretation and sociology studies on human pedes-
trian behavior. Simulation results demonstrate the potential of
our approach for use in real world pedestrian environments.

I. INTRODUCTION

Typical pedestrian environments are characterized by a
high level of uncertainty, imposed by the lack of formal
rules to control traffic and the lack of explicit communication
among pedestrians. Nonetheless, humans are capable of
traversing pedestrian workspaces with remarkable efficiency
without hindering each other’s paths (see Fig. 1). Interacting
pedestrians relax uncertainty by mutually agreeing on a joint
motion plan. This joint motion plan is the result of negoti-
ation taking place among them via implicit communication
of their intentions through their motion.

Sociology studies [18] refer to this type of negotiation
as the pedestrian bargain and specify that it is based on
two foundational principles: (1) people must behave like
competent pedestrians and (2) people must trust copresent
others to behave like competent pedestrians. The enforce-
ment of the pedestrian bargain imposes a form of trust among
pedestrians, which is the foundation of socially competent
behavior. Consequently, engineering the pedestrian bargain
is a key for generating socially competent robot motion in
pedestrian environments. Towards this goal, Knepper and
Rus [11] proposed a navigation algorithm enabling robots
to behave as competent pedestrians. In this work, we aim at
moving a step further: beyond generating human-like robot
motion, we also incorporate in the robot’s motion plan the
trust that others will behave as competent pedestrians.

This requires answering the following two questions: (1)
how is social competence defined in a pedestrian envi-
ronment? and (2) how do pedestrians use this notion of
competence to interpret observed behaviors? We approach
pedestrian competence as a combination of three features:
a) moving efficiently towards intended destinations, b) fol-
lowing trajectories that comply with socially acceptable
standards of motion and c) clearly communicating intentions
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Fig. 1: Smooth collision avoidance in a hallway.

to others. Regarding interpretation of observed behavior, our
work based on the conclusions of recent psychology studies
on the mechanisms of action interpretation [5], suggesting
that humans tend to adopt a teleological inference mechanism
to attribute goals to observed actions. We also make use
of the relevant framework of Dragan and Srinivasa [6] for
incorporating observer inferences into motion planning.

In order to incorporate the aforementioned principles in
robot motion, we need a proper model of the pedestrian
scene. The evolution of a pedestrian scene, from the begin-
ning to the end, is the result of several pairwise negotiations
among all agents. We argue that the main component of a
negotiation between an interacting pair of agents concerns
the decision over the passing sides (right or left?) that the
agents will be following. Therefore, reaching to a decision
over passing sides, requires that each agent (1) clearly
expresses its intention of passing side and (2) correctly
identifies the intention of passing side of each other. At
the same time, it is important that each agent has a global
understanding of the scene, involving all future interactions
that it might have.

To properly capture and encode all these features, we
derive a topological representation of the pedestrian scene,
based on braid groups [4]. This representation allows us to
symbolically characterize the interactions among agents and
consequently globally and collectively characterize a pedes-
trian scene from start to end. We demonstrate how braids



can be used by robots to express their own intentions and
infer the intentions of others (either humans or robots) and
how this model can be used to generate socially competent
behavior in a pedestrian context. The core of our approach is
inherently generalizable to any workspace with any number
of agents.

II. RELATED WORK

Initial attempts in the area of pedestrian navigation, typi-
cally treating other agents as obstacles, have resulted in simu-
lations of a variety of pedestrian environments and scenarios
(e.g. [8, 15]). However collision avoidance is not sufficient
in the real world setting; human navigation is a much more
complex process, comprising decisions related to human
comfort and context-specific social conventions. Sisbot et al.
[13] identified the lack of such components in existing plan-
ners and presented a costmap-based planner, incorporating
costs for safety, visibility and surprise. Nonetheless, without
a model of pedestrian cognitive processes, it is impossible
to realistically anticipate pedestrian behaviors or pedestrians’
reactions to robot motion.

To address the need for realistically modeling pedestrian
decision making, roboticists have lately employed data-
driven techniques in an effort to learn from humans and
perform online trajectory prediction in order to plan in
an informed way [3, 9, 16, 19]. Such approaches were
engineered towards imitating observed pedestrian behavior in
specific, well-defined contexts, but lack underlying cognitive
models of pedestrians, particularly the mechanisms that
guide their interactions, thus failing to provide a robust,
generalizable solution. To this end, the works of [2, 7]
focused on learning models for predicting pedestrians’ in-
tentions in urban environments to plan safe motion for
autonomous cars. However, navigating a car on streets is a
highly structured problem compared to pedestrian navigation,
as the former can leverage the existence of well established,
formal rules and structured signals. Pedestrian interactions
have not evolved such rigid rules and structure, thus a more
sophisticated infrastructure is needed to identify pedestrian
intentions.

A key to simplifying our problem is the concept of
cooperation among pedestrians. A few works have proposed
approaches that explicitly leverage the fact that human agents
tend to engage in joint cooperative collision avoidance [10–
12, 17]. Our work is conceptually close to this class of
works in that it models pedestrian interactions. We explicitly
make use of conclusions from sociology regarding pedes-
trian navigation and psychology studies regarding action
interpretation to model pedestrian cognitive processes and
incorporate them into the motion planning. We do that
based on a novel pedestrian scene representation based on
braid groups that symbolically encodes topologically distinct
classes of global pedestrian scene evolutions. The braid
representation, unlike most existing models for pedestrian
navigation, offers an inherent generalization to different
environments and arbitrary numbers of agents and allows us
to simultaneously reason about a set of topologically distinct
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Fig. 2: A workspace W with a robot (red color) and a set
of human pedestrians (shown in blue color), each moving
towards its intended destination (one of the doors shown in
brown color). In such a scenario, the robot needs to gain
a global understanding of the scene, which is equivalent to
inferring the pedestrian scenario.

scene evolutions. This way enables us to avoid committing
to a single imperfect prediction and achieve smooth, socially
competent navigation.

III. FOUNDATIONS

A. Pedestrian Scene Model

Consider a set A of n agents moving in a pedestrian
workspaceW ⊂ R2. Each agent a ∈ A moves from an initial
position sa ∈ W towards an intended destination da ∈ D,
where D ⊂ W is a finite set of possible destinations in
the scene (see Fig. 2). Let us collect the starting locations
and the intended destinations of all agents in the tuples
Σ = 〈s1, ..., sn〉 and ∆ = 〈d1, ..., dn〉 respectively. Denote
by t ∈ I = [0, 1] a normalized timing parameter, with t = 0
corresponding to the beginning of observations and t = 1 to
the time when the last agent is reaching its destination.

Define the state of each agent a ∈ A at time t by qa(t) ∈
W . Its trajectory is a continuous function ξa : I →W with
ξa(0) = sa and ξa(1) = da, lying in a corresponding Hilbert
space of trajectories Ξ.

Likewise, we represent the state of the system of all n
agents as a tuple Q = 〈q1, q2, ..., qn〉 ∈ Cn, where the
configuration space Cn =Wn\E with E = {Q : ‖qi−qj‖ ≤
ε} containing the set of system states in collision. The system
trajectory is a continuous function ζ : I → Cn with ζ(0) = Σ
and ζ(1) = ∆, lying in a corresponding Hilbert space of
trajectories Z . As the system of agents is traversing the
workspace from Σ to ∆, each one of them makes discrete
decisions of passing from the right or left side of each other
to avoid leading the system to a state in E. These decisions
are reflected in their trajectories, which entangle in the space-
time domain, forming a pattern β.
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Fig. 3: Braid representations.

B. Braid Theory Primer

We abstract a pedestrian scene by defining a Pedestrian
Scenario (see Fig. 2) to be a tuple S = 〈Σ,∆, β〉 ∈ S,
where S is the set of all possible Pedestrian Scenarios
that can be defined in a given scene. We refer to Σ as
the Initialization Scenario, ∆ as the Destination Scenario
and β as the Entanglement Pattern. This modeling decision
is motivated by the observation that the main feature that
qualitatively describes a collection of pedestrian trajectories
is the strategy (right or left) that each agent employs to
avoid each other on its way to an intended destination.
In this paper, we formally model entanglement patterns β
using braid theory [1, 4]. The next subsections introduce
the fundamentals of braid theory and connect them with our
pedestrian scene model.

A braid on n ≥ 1 strands is a system of n curves
embedded in R3, called the strands of the braid, such that
each strand i intersects each plane {x, y, t′} only once for
any t′ ∈ I and connects the point (i, 0, 0) with the point
dp(i) = (p(i), 0, 1), where the sequence p(1), ..., p(n) is a
permutation of the set {1, 2, ..., n}.

A geometrical braid representation is commonly referred
to as a geometric braid (see Fig. 3a). Any geometric braid
can be represented with a Braid Diagram. A braid diagram
(see Fig. 3b) is a projection of a geometric braid to R ×
{0} × I , including indications of which string goes “under”
the other at each crossing.

The set of all braids on n strands form a group Bn. The
group Bn is generated from a set of n−1 elementary braids,
called the generators of Bn (see Fig. 4). A generator σi,
i ∈ {1, 2, ..., n − 1} can be described as the pattern that
emerges upon exchanging the i-th string (counted from left
to right) with the (i + 1)-th string, such that the left string
passes over the right. For any two braids B1, B2 ∈ Bn, the
group operation B1 ·B2 can be described as a concatenation
of the braids, resulting in B2 being placed at the bottom
of B1, by attaching the top endpoints of B2 to the bottom
endpoints of B1 and shrinking each braid by a factor of 2,
along the t axis. The following axioms are also satisfied,
completing the group definition:

• Closure: The product B1 ·B2 is a new braid in Bn.
• Associativity: for any braids B1, B2, B3 ∈ Bn, (B1 ·
B2) ·B3 = B1 · (B2 ·B3).

• Identity Element: The identity braid corresponds to the
trivial case of a braid without any strand crossings, with
each strand i, starting from the point (i, 0, 0) and ending
at the point (i, 0, 1).

• Inverse Element: The inverse of Bi, denoted as B−1
i , is

defined by reversing the order of all crossings in Bi.

Any braid can be written as a product of generators and
their inverses. This product is commonly referred to as braid
word and this form of representation as an algebraic braid.
For an example of transitioning among braid representations,
see Fig. 3: the generators that composed the geometric braid
in Fig. 3a are denoted on the braid diagram depicted in
Fig. 3b and the corresponding braid word is shown in Fig. 3c.

C. Entanglement Patterns as Elements of Braid Groups

We adopt the aforementioned braid representations to
characterize collections of pedestrian trajectories. In par-
ticular, we model the entanglement pattern of a trajectory
collection as a braid word composed of generators describing
the crossings taking place between all pairs of neighboring
pedestrian trajectories, upon their projection onto a selected
plane. We represent an entanglement pattern as a tuple
β = 〈b1, b2, ..., bK〉, where bk ∈ Z, k ∈ {1, ...,K} is an
integer describing the k-th crossing as time increases (e.g.
the integer −i is used to denote the generator σ−1

i ), while
K is the total number of crossings from the start to the end
of time.

For example, Fig. 5 depicts a set of trajectories of five
agents moving towards their intended destinations along
with their entanglement pattern and corresponding algebraic
braid (upon projection onto the x-t plane). The algebraic
representation of this braid can be found to be the word
σ2σ

−1
3 σ−1

4 σ−1
1 σ−1

2 σ−1
3 σ−1

4 and consequently the entangle-
ment pattern for this scenario can be represented as β =
〈2,−3,−4,−1,−2,−3,−4〉.
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Fig. 4: The generators of the Group Bn.

IV. INFERENCE OF PEDESTRIAN INTENTIONS

The pedestrian bargain [18] is based on a notion of com-
petence, which determines pedestrians’ behaviors but also
shapes their expectations from others. We model pedestrian
competence to be the result of three different motion speci-
fications: 1) move efficiently towards intended destinations,
2) follow trajectories that comply with socially acceptable
standards of motion and 3) clearly express own intentions.
At the same time, pedestrians expect others to behave com-
petently, according to the same definition of competence. In
particular, pedestrians associate observed past behaviors with
potential future behaviors. The mechanisms under which
humans tend to interpret observed actions have lately been
studied from a psychology perspective by Csibra and Gergely
[5], who highlighted the tendency of humans to interpret
any observed action as goal-directed. In the context of a
pedestrian environment, we consider a trajectory collection
ζ to represent the action, while a pedestrian scenario S to
be the goal.

In this respect, we model a pedestrian’s inference as a
prediction of a pedestrian scenario S based on an observed
collection of trajectories ζ, i.e., P (S|ζ) as:

P (S|ζ) = P (Σ,∆, β|ζ). (1)
Upon applying the multiplication rule, and given that Σ and
ζ are known, we have:

P (S|ζ) = P (∆|ζ)P (β|∆, ζ), (2)
where the distributions P (∆|ζ) and P (β|∆, ζ) represent the
pedestrian’s beliefs over the emerging destination scenario
∆ (i.e., where are all the agents going?) and the entangle-
ment pattern β (i.e., how will they get there?) respectively.
Therefore P (S|ζ) represents a pedestrian’s belief over the
ensemble of all agents’ intentions. Thus, prediction of overall
human or robot pedestrian motion is tantamount to modeling
just these two distributions, with countably-many outcomes.
Since humans are already modeling these distributions, we
can leverage them to generate intent-expressive robot behav-
ior.

V. MOTION GENERATION IN PEDESTRIAN
ENVIRONMENTS

In order to generate motion in pedestrian environments,
we employ the aforementioned inference mechanism and
incorporate it in the motion planning. A principled way of
integrating human observer inferences in motion planning
was recently proposed by Dragan and Srinivasa [6], who,
motivated by the conclusions of Csibra and Gergely [5],
mathematically formalized the properties of predictability
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Fig. 5: A trajectory collection (left) and its corresponding
braid representation (upon a projection onto the x-t plane).

and legibility of motion. These properties become important
in environments where robots are operating close to humans
and can serve as cost functions for planning intent expres-
sive robot motion. Intuitively, an observer expects to see
a predictable motion from an agent whose goal is known,
whereas the generation of legible motion allows an observer
to quickly, confidently and accurately predict the agent’s
goal. In pedestrian environments, such concepts appear to
be especially meaningful if we consider the foundations of
the pedestrian bargain [18].

A. Predictability of Pedestrian Motion

Predictable pedestrian motion can be assumed to be the
result of optimization in terms of pedestrian competence.
In a scene with n agents and a set of D destinations,
given a specific pedestrian scenario S∗ = 〈Σ∗,∆∗, β∗〉, the
predictability score of a trajectory collection ζ can be defined
as

Predictability(ζ, S∗) = exp(−C(ζ, S∗)), (3)
where C : Z×S → R represents pedestrian competence of a
trajectory collection for a given scenario S∗. Minimizing the
pedestrian competence cost leads to a trajectory collection
that an observer would expect, given S∗. The exponential
mapping in the predictability score accounts for the enforce-
ment of the Principle of Maximum Entropy, that results to
the following effect: more competent trajectory collections
are considered as exponentially more predictable, while more
competent trajectory collections are not severely penalized.
This is important, since occasionally, pedestrian motion can
be suboptimal.



B. Legibility of Pedestrian Motion

Legible pedestrian motion allows an observer to correctly,
confidently and quickly infer the pedestrian scenario S∗ that
is emerging as a result of the superposition of all agents’
individual intentions. The legibility score for a collection of
trajectories ζ of total duration T , with respect to a pedestrian
scenario S∗ can be defined as:

Legibility(ζ, S∗) =

∫ T
0
P (S∗|ζ)f(t)dt∫ T

0
f(t)dt

, (4)

where P (S∗|ζ) is the probability that the observer correctly
predicts the emerging scenario S∗ at time t. The function
f(t) serves as a weighting factor that favors trajectories that
allow early inference of the actual emerging scenario S∗.

C. Generating Socially Competent Pedestrian Motion

We incorporate the aforementioned formulations in a
framework for generating socially competent robot motion
in pedestrian environments, based on trajectory optimization.
The framework comprises of two main steps: (1) prediction
and (2) generation.

In the prediction step, a set of likely, topologically distinct
Pedestrian Scenarios S is derived and represented in a
predictable way, using the Predictability criterion. In par-
ticular, for each pedestrian scenario Sj ∈ S, we derive
a corresponding predictable representation by solving the
following trajectory optimization problem:

ζpj = arg max
ζ∈Z

Predictability(ζ, Sj), (5)

and conclude to a tuple Zp = 〈ζp1 , ..., ζpm〉, containing m
collections of predictable trajectories.

We generate robot motion that is aware of all likely scene
evolutions contained in S, in an effort to relax the compli-
cation of prediction uncertainties and ensure continuity of
robot motion between successive replanning cycles. This is
achieved by optimizing the robot’s trajectory with respect to
a weighted sum of the legibilities of all considered scenarios,
where the weight of each scenario j is equal to its respective
probability of occurrence P (Sj |ζ):

ξlR = arg max
ξR∈Ξ

m∑
j=1

P (Sj |ζ)Legibility(ζpj , Sj), (6)

with ξR denoting the robot trajectory (which is a part of a
trajectory collection ζ).

In the beginning, uncertainty is typically high and thus
robot motion will be the result of a weighted synthesis
of legible motion reactions to all scenarios. As the scene
evolves in time, the emerging scenario will gradually be
taken into higher consideration, whereas the rest of them will
gradually be rendered as more unlikely and eventually disre-
garded. This way, the robot motion will neither hinder other
pedestrians’ paths nor impose unpredictable and unrealistic
interactions among them, thus appearing natural and socially
competent, even in case of events considered as unlikely.

The outlined planning architecture implements the prin-
cipal components of the pedestrian bargain as we identified

them earlier, as it leads to (1) efficient, (2) socially compliant
and (3) legible motion generation.

Remark 1. It should be noted that the robot is not able
to enforce a scenario by itself, as by definition, a scenario
is an emergent pattern, synthesized by conscious individual
choices of all agents in the scene. In this respect, legibility
is used to bias observers’ belief towards the scenario that
appears to be the most likely at a given moment.

D. Online Algorithm for Socially Competent Navigation

Our online algorithm for generating socially aware robot
motion for navigation in pedestrian environments can be
summarized as follows:

1) Record the state history of all agents for some prede-
fined amount of time.

2) Derive a set of possible pedestrian scenarios.
3) Score each pedestrian scenario according to its proba-

bility of occurrence.
4) Derive a predictable representation for each pedestrian

scenario.
5) Synthesize a legible robot trajectory by considering all

pedestrian scenarios, each weighted according to its
score.

6) Execute plan.
7) Replan frequently (a rate of 10Hz is necessary to ensure

satisfactory real-time operation).

VI. IMPLEMENTATION

In this section we state implementation details and as-
sumptions for producing the simulation results of Sec-
tion VII.

A. Pedestrian Competence

Pedestrian motion is the result of an interplay of geomet-
rical/energy considerations and socially imposed, context-
specific specifications. In practice, pedestrians tend to follow
short and smooth trajectories while ensuring reasonable
clearance from other pedestrians and obstacles. We encode
the aforementioned properties into robot motion through a
cost function that we refer to as Pedestrian Competence,
C : Z × S → R, which we define as a weighted sum
of the following cost functions, each representing desirable
trajectory properties for agents operating in pedestrian envi-
ronments:

1) Pairwise Clearance Among Agents: In order to
ensure proper clearance for each pair of agents, we use the
cost

Ccl(ζ, S) =
1

2

T−1∑
t=2

∑
ij

aij(t)
2, (7)

with

aij(t) =

{
dij(t)− dcrit, if dij(t) < dcrit

0, otherwise,
(8)

where dij(t) is the distance between agents i and j at time
t and dcrit is a desired distance threshold.



2) Clearance from Workspace Bounds: Respecting
the workspace bounds is enforced by considering the cost
function

Cw(ζ, S) =
1

2
Crep

T−1∑
t=2

n∑
i=1

γi(t)
2, (9)

where Crep is a gain expressing repulsiveness and

γi(t) =

{
δ(ξi(t), ∂W)− hcrit, if δ(ξi(t), ∂W) < hcrit

0, otherwise,
(10)

with δ(ξi(t), ∂W) being the signed distance between agent’s
state at time t and the closest workspace boundary ∂W and
hcrit a selected distance threshold.

3) Path Shortness: The specification for short path
generation represented by the cost

Csh(ζ, S) =
1

2

T∑
t=2

n∑
i=1

‖qi(t)− qi(t− 1)‖2. (11)

4) Trajectory Smoothness: The specification for smooth
trajectory generation is enforced through the cost

Csm(ζ, S) =
1

2

T−1∑
t=2

n∑
i=1

‖qi(t+ 1)− 2qi(t) + qi(t− 1)‖2,

(12)
which emerged by considering central finite differences.

Pedestrian Competence is finally defined to be a weighted
sum of the aforementioned costs:

C = wclCcl + wwCw + wshCsh + wsmCsm, (13)
where wcl, ww, wsh, wsm denote weights corresponding to
the cost functions defined above.

Remark 2. It should be noted that the considered Pedestrian
Competence Cost is used to provide a proof of concept for
our framework and not as a definitive model of a pedestrian
reward function.

B. Intention Expression and Understanding

The entanglement pattern β of each pedestrian scenario
encodes a sequence of crossings, each involving a pair of
agents. Being legible with respect to a considered scenario
corresponds to a robot trajectory refinement towards com-
municating its intended passing sides in the crossings that
involve it in this particular scenario. In other words, given
a braid word representing β, the effect of Legibility is the
reinforcement of the observer’s belief towards expecting the
generators specified by β, in which the robot is involved.

In the absence of a well tested, data-driven model of the
distribution P (β|∆, ζ), in order to engineer legible behaviors
as described above, we use the cost function

CB(ζ, S) =
1

2

N∑
k=1

T−1∑
t=2

f(t)λ2
k(t), (14)

where

λk(t) =

{
δb(bk, ξi(t))− δb,crit, if δb(bk, ξi(tk)) < δb,crit

0, otherwise,
(15)

and δb(bk, ξi(tk)) represents the signed distance between
the generator specified by the scenario in consideration
and the corresponding generator emerging by the current
trajectory collection at time tk, while δb,crit is a desired

threshold distance and f(t) is a function that favors legible
trajectory modifications that take place in the beginning of
the trajectory.

Finally, to ensure that the emerging legible trajectory will
be sufficiently smooth, we combine the aforementioned cost
with the smoothness functional to conclude to the following
legibility score

Legibility(ζ, S) = −(wBCB + wsmCsm). (16)

C. Reasoning about the Destinations of Other Agents

Under the assumption that the destinations of all agents
are independent given their trajectories so far, we model the
probability P (∆|ζ) as

P (∆|ζ) =
∏
a∈A

P (da|ζ) =
∏
a∈A

P (da|ξa). (17)

To model the probability P (da|ξa), we take an approach
similar to the one followed by Dragan and Srinivasa [6]. For
every possible destination Di ∈ D, given a partial trajectory
of agent a, ξa, from its starting position sa to its current
position qa we can approximate P (da = Di|ξa) as

P (da = Di|ξa) =
1

H

exp(−Csh(ξa)− VDi(qa))

exp(−VDi(sa))
P (Di),

(18)
where VDi(qa) = arg minξ′a∈Ξ Csh(ξ′a), with ξ′a representing
a trajectory starting from qa and ending at da, H is a
normalizer across all possible destinations D, Csh is a cost
function quantifying path shortness and P (Di) is a prior on
destinations.

D. Reasoning about Trajectory Entanglements

The distribution P (β|∆, ζ) represents how likely each
considered entanglement pattern is, given a destination sce-
nario ∆ and an observed trajectory collection ζ. This dis-
tribution incorporates elements such as social conventions
and context particularities. It is in our current research
plans to learn such a model from human demonstrations. In
this paper, we approach it as follows. For each destination
scenario ∆j , j ∈ {1, ...,m}, we first derive a predictable
representation ζpj and then a corresponding nominal braid
word βo, encoding all crossings taking place among the
trajectories of all agents of this predictable representation.
This braid word is assigned a probability P (βo|ζpj ,∆j) = 1,
while for any other braid βk, with k 6= o, we consider
P (βk|ζpj ,∆j) = 0.

VII. DEMONSTRATION

We demonstrate the potential of our approach for intention
expression and understanding in pedestrian environments
through a series of simulated examples. Trajectory opti-
mization computations were implemented using CHOMP
[20], whereas trajectory collections were mapped to algebraic
braids using BraidLab [14].

Fig. 5 demonstrates the output of trajectory optimization
with respect to predictability for a pedestrian scenario involv-
ing five agents moving to different destinations in a common
workspace. Fig. 6 depicts the trajectory optimization process
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Fig. 6: Two agents moving in a hallway: Demonstration of
the trajectory Optimization process for legibility for the agent
in red.

for legibility. Two agents are moving towards opposing di-
rections in a rectangular hallway. One of them (cyan) moves
straight towards its destination without reacting, while the
other one (red) runs the legibility optimizer. Identifying the
cyan agent’s intention of passing from its right side, the red
agent, initializing from a straight line, reshapes its trajectory
to express its cooperation/compliance with the intention of
the cyan agent. The figure shows progressive stages of the
optimization process (from right to left). The final, leftmost,
legible trajectory was derived after 50 iterations.

Fig. 7 depicts the outcome of an online execution of our
algorithm by two agents moving to opposing directions in
a common rectangular workspace. Fig. 7a shows the swept
volumes of the agents as they traverse the workspace (the
red agent initializes from the right side whereas the cyan
agent initializes from the left side). Each agent identifies the
intention of each other (destination and passing preference),
derives a predictable representation of the corresponding
pedestrian scenario and expresses its own intention by being
legible with respect to the predicted scenario. Legibility
optimization favors intent expression from early on in the
trajectory, thus effectively facilitating a consensus in the col-
lision avoidance, which is in compliance with the pedestrian
bargain [18]. Fig. 7b is a plot of the agents’ trajectories in
the space-time domain, which corresponds to the braid σ1.

Finally, Fig. 8 depicts the result of an online execution of
our algorithm for a scenario involving four agents moving
to different sides of a square workspace. Fig. 8a shows the
swept volumes of all agents. The cyan agent is moving from
the top to the bottom, whereas the red agent is moving from
the bottom to the top. At the same time, the purple agent
is moving from the left side to the right side, whereas the
green agent is moving from right to left. Fig. 8b depicts their
corresponding trajectories in the space-time domain. The tra-
jectory of each agent is essentially a superposition of legible
reactions to their beliefs over possible emerging pedestrian
scenarios. The outcome of the execution corresponds to the

braid diagram depicted in Fig. 8c and the algebraic braid
σ−1

1 σ−1
3 σ2σ

−1
1 σ−1

1 σ−1
1 .

VIII. DISCUSSION

We presented a novel framework for generating socially
competent motion in pedestrian environments. The foun-
dation of our approach is a topological pedestrian scene
representation based on braid groups. We used this repre-
sentation to develop an online navigation algorithm, relying
on a mechanism of intention recognition and expression,
supported by psychology studies [5]. Proof of concept sim-
ulations demonstrated a socially competent behavior that
is in line with sociology studies on pedestrian locomotion
[18]. Our results show that contrary to conventional wisdom,
computationally expensive or sophisticated trajectory predic-
tions are not necessary for navigating among other agents in
a safe, socially compliant manner. Ongoing work involves
learning predictive models from human demonstrations and
conducting a user study as well as real world experiments to
validate the efficiency of our algorithm in realistic everyday
life situations.
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