
• •

Differentially Constrained
Mobile Robot Motion Planning

in State Lattices

Mihail Pivtoraiko, Ross A. Knepper,
and Alonzo Kelly
Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
e-mail: mihail@cs.cmu.edu, rak@ri.cmu.edu,
alonzo@ri.cmu.edu

Received 6 August 2008; accepted 4 January 2009

We present an approach to the problem of differentially constrained mobile robot mo-
tion planning in arbitrary cost fields. The approach is based on deterministic search in a
specially discretized state space. We compute a set of elementary motions that connects
each discrete state value to a set of its reachable neighbors via feasible motions. Thus, this
set of motions induces a connected search graph. The motions are carefully designed to
terminate at discrete states, whose dimensions include relevant state variables (e.g., posi-
tion, heading, curvature, and velocity). The discrete states, and thus the motions, repeat at
regular intervals, forming a lattice. We ensure that all paths in the graph encode feasible
motions via the imposition of continuity constraints on state variables at graph vertices
and compliance of the graph edges with a differential equation comprising the vehicle
model. The resulting state lattice permits fast full configuration space cost evaluation and
collision detection. Experimental results with research prototype rovers demonstrate that
the planner allows us to exploit the entire envelope of vehicle maneuverability in rough
terrain, while featuring real-time performance. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Capable motion planners are important for enabling
field robots to perform reliably, efficiently, and intelli-
gently. Despite decades of significant research effort,
today the majority of field robots still exhibit various
failure modes due to motion planning deficiencies.
These failure modes range from computational inef-
ficiencies to frequent resort to operator involvement
when the autonomous system takes unnecessary
risks or fails to make adequate progress. On the
basis of our extensive field robotics experience, we
have developed a motion planning method that
addresses the drawbacks of leading approaches. We

have demonstrated it here to be superior to state of
the art. It is a deterministic, sampling-based method
that features a particular sampling of robot state
space, which lends itself well to enabling an array of
performance capabilities.

Discrete representation of robot state is a well-
established method of reducing the computational
complexity of motion planning. This reduction comes
at the expense of sacrificing feasibility and optimality,
the notions denoting the planner’s capacity to com-
pute a motion that satisfies given constraints and to
minimize the cost of the motion, respectively. The
proposed method is based on a particular discretiza-
tion of robot state space, the state lattice. It is used to

Journal of Field Robotics 26(3), 308–333 (2009) C© 2009 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20285

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 309

formulate the problem of motion planning as graph
search, and so it will be referred to as a search space. In
computing motions, we seek to satisfy two types of
constraints: avoiding the features of the environment
that limit the robot’s motion (obstacles) and the limita-
tion of the robot’s mobility due to the constrained dy-
namics of its motion (differential constraints). Motions
that satisfy both types of constraints will be referred
to as feasible motions.

The state lattice is a regular sampling of the state
space. It encodes a graph whose vertices are a dis-
cretized set of all reachable states of the system and
whose edges are feasible motions, controls, which
connect these states exactly. The motions encoded in
the edges of the state lattice form a repeating unit
that can be copied to every vertex, while preserving
the property that each edge joins neighboring vertices
exactly. This property of the search space will be de-
noted regularity. The canonical set of repeating edges
will be called the control set. The number of edges
in the control set is exactly the branching factor, out-
degree, of each vertex in the reachability graph.

1.1. Motivation

This work is motivated by a number of robotics
applications. In the context of terrestrial unmanned
ground vehicles, competence in motion planning in
dense obstacle fields demands the use of sufficiently
high-fidelity, constrained-motion models, at least in
the near field. Repeated attempts to get by with less
have not been particularly successful (Kelly et al.,
2004). A classic case is that of a vehicle with Acker-
man (or car-like) steering that drives into a winding
corridor only to find it closed off. In this case, the
robot must turn around using many velocity rever-
sals while avoiding the obstacles surrounding it. This
application motivates high-fidelity representation of
robot maneuverability.

Another case of contemporary interest is that of
a planetary rover surveying a rocky field. It is often
necessary to approach a target rock in a particular
configuration and with high precision, in order to
deploy onboard instruments. The capacity of the
motion planner to enable the accomplishment of
this mission depends on generating a path that
can be followed reliably with precision. As above,
understanding and utilizing robot maneuverability
while minimizing computational requirements is
critical to accomplishing such missions. Failure of the
robot to compute its own motion is likely to lead to

system failure that requires operator involvement to
resolve. Human participation, even via teleoperation,
significantly reduces the utility of the robotic system.

Practical approaches to motion planning in dif-
ficult field applications differ from the focus of con-
temporary theoretical research in several significant
ways. Difficult three-dimensional (3D) environments
such as rolling vegetated terrain, boulder fields, and
forests cannot usually be partitioned into obstacles
and nonobstacles because the system must reason
about the relative risk of candidate paths, rather
than which physical objects will prevent motion. A
workspace (i.e., x,y) cost map has been a preferred
environmental map representation for us and oth-
ers since the 1980s. This is a discrete field of cost
data whose continuously varying magnitude is repre-
sented in a dense spatial array. The cost of each point
in robot configuration space, also denoted as C space,
can be computed as the sum of all cost cells (area in-
tegral) occupied by the “footprint” area of the vehicle
when it is projected onto the same horizontal plane
as the workspace cost map. In the cost map approach,
the cost of a path is the line integral of the cost field
along the path in configuration space. In such contin-
uous cost fields, C space obstacles cannot be defined,
because there are no obstacle boundaries.

Difficult environments are usually at least
partially unknown, and the topology of naviga-
ble regions can be maze-like even on the scale of
kilometers. Hence, fielded systems emphasize the
use of both a perception system to understand the
immediate environment and a deliberative global
planning system operating on the kilometer scale.
Such planners must replan long paths very regularly
in response to incoming perception information.
Such perception updates might cause a significant
modification of the motion plan. For example, it may
be revealed that a predicted ravine leading to the
goal is actually a blocked box canyon, or that an
unanticipated exit from a dry riverbed has just been
discovered.

For the above reasons, fielded systems often
use variants of the D∗ planning algorithm, which
was invented to address this core problem in field
robotics (Stentz, 1995). In this case, perception causes
continuous changes to the cost map that eliminate
much of the opportunity to precompute the intersec-
tion calculations characteristic of a C space obstacle
representation. Rather, uniform cost field planners
must recompute the cost of each C space point every
time the underlying workspace cost field changes,

Journal of Field Robotics DOI 10.1002/rob

310 • Journal of Field Robotics—2009

so an explicit computation of C space obstacles is
not commonly performed. However, we will see
later (Section 3.3) that our approach permits a partial
recovery of the advantages of an explicit C space
representation.

Difficult environments can also be characterized
by dense obstacles through which maneuvering a real
vehicle can be a difficult challenge. In cost fields, an
obstacle can be identified as a region of high cost. The
satisfaction of the differential constraints of a real ve-
hicle adds to the computational complexity of plan-
ning. Indoor applications with sparse obstacles may
be able to ignore vehicle differential constraints at
planning time in favor of smoothing the path at exe-
cution time. Another approach is to use a second local
planner that satisfies differential constraints but only
in the region near the present vehicle location. Our
field work has moved into environments for which
all of the above smoothing techniques fail utterly be-
cause the smoothed path inevitably intersects obsta-
cles, which leads to collision, exceptions, or a basic
disagreement in the autonomy system for which we
have never found a universal solution. This motivates
our premise that effective motion planning in difficult
environments requires the satisfaction of differential
constraints at planning time.

Our approach in this paper is rooted in the theo-
retical aspects of the problem, but it also puts a sig-
nificant emphasis on applications. The approach pre-
sented here has been conceived through work with
off-road mobile robots, and its development has been
driven by failure modes in the field with which we
have struggled for some time. The question of ef-
ficiency has received considerable attention, even if
trade-offs of other motion planning qualities such as
completeness and optimality are necessary.

1.2. Related Work

A significant amount of work has been dedicated in
recent years to the problem of smooth trajectory gen-
eration for differentially constrained vehicles: find-
ing a smooth and feasible path given two end-point
configurations. Although in general this is a diffi-
cult problem, recent work in this area has produced
a variety of fast algorithms. The groundbreaking
work in analyzing the paths for differentially con-
strained vehicles was done by Dubins (1957) and
Reeds and Shepp (1990). Their ideas were further
developed in algorithms proposed by Scheuer and
Laugier (1998), Fraichard and Ahuactzin (2001), and

Fraichard and Scheuer (2004), where smoothness
of paths was achieved by introducing segments of
clothoids (curves whose curvature is a linear function
of their length) along with arcs and straight-line seg-
ments. Somewhat different approaches by Scheuer
and Fraichard (1997) and Lamiraux and Laumond
(2001), among others, have also been shown to solve
the generation problem successfully and quite ef-
ficiently. On the other hand, Frazzoli, Dahleh, and
Feron (2001) and Bicchi, Marigo, and Piccoli (2002)
suggest that there are many cases in which efficient,
obstacle-free paths may be computed analytically.
The cases that do not admit closed-form solutions
can be approached numerically by solving appropri-
ate optimal control problems (e.g., Anisi, Hamberg, &
Hu, 2003; Fernandes, Gurvits, & Li, 1991). A fast dif-
ferentially constrained trajectory generator by Kelly
and Nagy (2002) and Howard and Kelly (2007) gen-
erates polynomial spiral trajectories using parametric
optimal control.

Some of the methods described above also
proposed applications to planning among obstacles.
Since the early stages of modern motion planning
research (Lozano-Perez, 1983; Lozano-Perez &
Wesley, 1979; Reif, 1979), there has been interest in
the planning methods that construct boundary repre-
sentations of configuration space obstacles (Agarwal,
Amenta, Aronov, & Sharir, 1996; Agarwal, Aronov, &
Sharir, 1999; Canny, Rege, & Reif, 1991, and others).
The complexity of motion planning algorithms has
also been studied (Alt et al., 1990; Canny, 1988; Jean,
2001; Natarajan, 1988). With the advent of efficient
C space sampling methods (Barraquand et al. 1996;
Gottschalk, Lin, & Manocha, 1996), there has been
interest in algorithms that sample the space in a
deterministic fashion (Barraquand & Latombe, 1991;
Latombe, 1991). Lacaze, Moscovitz, DeClaris, and
Murphy (1998) utilized these ideas to propose a
method for planning over rough terrain using gener-
ation of motion primitives by integrating the forward
model. Cherif (1999) advanced these concepts by
basing planning on physical modeling. One novelty
of our approach relative to the prior work is the
generation of motion primitives that are forced to
comply with a convenient state discretization.

Also in the early 1990s, randomized sampling
was introduced to motion planning (Barraquand
& Latombe, 1990, among others). The probabilis-
tic roadmap (PRM) methods were shown to be
well-suited for path planning in C spaces with
many degrees of freedom (Hsu, 2000; Kavraki,

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 311

1994; Kavraki, Svestka, Latombe, & Overmars, 1996)
and with complex constraints, e.g., nonholonomic
and kinodynamic (Casal, 2001; Hsu, 2000; Kindel,
2001; Kuffner, 1999). Another type of probabilistic
planning was rapidly-exploring random trees (RRT)
introduced by LaValle and Kuffner (2001). RRTs
were originally developed for handling differential
constraints, although they have also been widely
applied to the piano mover’s problem (Lavalle
2006). Randomized approaches are understood to
be incomplete, strictly speaking, but capable of
solving many challenging problems quite efficiently
(Branicky, LaValle, Olson, & Yang, 2001).

As the randomized planners became increasingly
well understood in recent years, it was suggested that
their efficiency was not due to randomization itself.
LaValle, Branicky, and Lindemann (2004) suggest an
intuition that real random number generators always
have a degree of determinism. In fact, Branicky et al.
(2001) show that quasi-random sampling sequences
can accomplish similar or better performance than
their random counterparts. The improvements in
performance are primarily attributed to the more uni-
form sampling by quasi-random methods, and hence
Lavalle et al. (2004) suggest that a carefully designed
low-discrepancy incremental deterministic sequence
would be able to do just as well (Lindemann &
Lavalle, 2003, 2004). For these reasons, Branicky et al.
(2001) introduced quasi-PRM and lattice roadmap
(LRM) algorithms that use low-discrepancy Halton/
Hammersley sequences and a regular lattice, re-
spectively, for sampling. Both methods were shown
to be resolution-complete, although the LRM ap-
peared especially attractive due to its properties of
optimal dispersion and near-optimal discrepancy.
In this light, our approach of sampling on a regular
lattice can be considered to be one of building on
the LRM idea and extending it to allow the state
lattice to represent the differential constraints of the
robot.

Recent works have also discussed “lazy” vari-
ants of the roadmap planning methods that avoid
collision checking during the roadmap construction
phase (e.g., Bohlin, 2001; Bohlin & Kavraki, 2000;
Branicky et al., 2001; Sanchez & Latombe, 2001, 2002).
In this manner the same roadmap could be used in a
variety of settings, at the cost of performing collision
checking during the search. An even “lazier” version
is suggested, in which “the initial graph is not even
explicitly represented” (Branicky et al., 2001). In this
regard, the principle of using an implicit lattice and

searching it by means of a precomputed control set
that captures only local connectivity is similar to the
lazy LRM.

In the development of rapidly exploring dense
trees for motion planning with differential con-
straints, the importance of designing offline a fam-
ily of motion primitives that captures the specifics
of the system under consideration is noted (LaValle,
2006). In this light, our proposed control set is pre-
cisely the set of primitives that reflects symmetries
of wheeled vehicles and encodes differential con-
straints via offline reachability analysis. Our work
is therefore aligned with recent trends in differen-
tially constrained motion planning research, while
continuing the study of deterministic sampling meth-
ods and the efficiencies of “lazy” exploration of state
space.

Initial concepts of this work were validated in
a successful field implementation of a differentially
constrained motion planner built using an earlier ver-
sion of the state lattice of limited size represented ex-
plicitly (Kelly et al., 2004). In this article, we propose
significant improvements in efficiency and generality,
while recasting the approach to generate the reacha-
bility graph online as it is searched.

1.3. Problem Statement

The basic problem we address here is that of find-
ing a feasible path between two given robot states
(e.g., consisting of position, heading, and curvature)
for a differentially constrained vehicle in the pres-
ence of arbitrary obstacles. If no path exists between
the states, the system should indicate failure, and
otherwise it must find a path. Our objective is a
resolution-complete path planner, so this rule must
be satisfied as the sampling resolution approaches
infinity. We also desire the solution to be optimal,
up to the chosen sampling policy, with respect to an
arbitrary but well-behaved notion of a path’s cost
(e.g., path length, traversal time, and energy expen-
diture). Further, the planner must be able to han-
dle frequent changes in the environment (e.g., due
to noisy and limited perception information). In this
setting, the motion plan must be updated frequently
enough (e.g., many times per second) to enable effi-
cient operation of the robot. The solution must oper-
ate on relevant scales (kilometers of unknown or par-
tially known terrain) while satisfying all of the above
constraints.

Journal of Field Robotics DOI 10.1002/rob

312 • Journal of Field Robotics—2009

1.4. Approach

Our approach builds upon a long heritage and many
strengths of earlier motion planning techniques. Our
aim is to combine the previous results in a novel
and unique manner. In particular, our method builds
upon the previous introduction of implicit repre-
sentations of regular search spaces (Branicky et al.,
2001; Donald & Xavier, 1995), methods of sampling
of relevant state variables of the robot (Barraquand &
Latombe, 1991), and recent research on inverse trajec-
tory generation (Frazzoli et al., 2001; Howard & Kelly,
2007; Scheuer and Laugier, 1998). Our approach in-
corporates efficient replanning by reusing previous
computation via the D∗ search algorithm and its vari-
ants (Koenig & Likhachev, 2002; Stentz, 1995).

In general terms, the crux of our proposal is a
particular sampling of robot state and control (input)
spaces. This sampling subdivides the state space into
a set of subregions, cells. Each cell is identified with
a canonical value of state space that represents the
cell. These canonical values are arranged in a regu-
lar structure in the state space. A precise trajectory
generation algorithm is used that is equipped with a
mobility model of the vehicle—including differential
constraints and perhaps many other relevant aspects
such as steering rate limits, propulsion dynamics,
and wheel slip predictions. This trajectory generator
is used to compute the controls that precisely con-
nect the states in the above regular arrangement. This
setup allows the following:

• generation of a search space (a graph) that sat-
isfies differential constraints by construction
(Section 2),

• development of an ideal search heuristic
(a precomputed lookup table; Section 3.2),

• introduction of fast and accurate evaluation
of cost of motions (replacement for C space
expansion with precomputed path swaths;
Section 3.3),

• adaptation of existing techniques of efficient
replanning (Section 3.4), and

• enhancement of efficiency via a dynamic,
multiresolution search space (Section 3.5).

The proposed state lattice reduces the problem
of motion planning under differential constraints to
unconstrained, replanning heuristic search. It allows
offline precomputation of aspects of the problem to
enable fast online planning performance.

1.5. Outline

The paper is organized in six sections. In Section 2 we
carefully construct the search space upon which our
solution is based; we discuss its features and require-
ments. Section 3 is dedicated to the details of adapt-
ing standard search algorithms to this search space.
Section 4 provides further details that may help in im-
plementing and evaluating the presented approach.
In Section 5, we demonstrate the performance of the
planner in simulated and real robot experiments us-
ing planetary rover prototype robots. We conclude in
Section 6 with closing remarks and future plans for
this research.

2. SEARCH SPACE DESIGN

This section presents a progression of design princi-
ples that results in the creation of the proposed search
space. It satisfies the robot’s differential constraints
by construction, thereby eliminating the need to con-
sider them explicitly during planning. In this sense,
our solution does not consider differential constraints
at planning time—a desirable property that was cited
earlier. Instead, it considers them offline, during the
design of a vehicle-specific search space, which is
an even better approach from the perspective of en-
abling multiple additional efficiencies.

2.1. Regular Lattices

Beneficial state sampling policies include regular lat-
tice sampling, in which a larger volume of the state
space is covered with fewer samples, while minimiz-
ing the dispersion or discrepancy (LaValle, 2006). It
is natural to extend the concept of regular sampling
from individual values of state to sequences of states
(i.e., paths). As for state space, the function contin-
uum of feasible motions can also be sampled to make
computation tractable. The effective lattice state space
sampling, developed in this work, induces a related
effective sampling of motions.

Suppose that discrete states are arranged in a
regular pattern. Besides sampling efficiency bene-
fits, an important advantage of regular sampling of
state space is (quantized) translational invariance.
Any motion that joins two given states will also join
all other pairs of identically arranged states. By ex-
tension, the same set of controls emanating from a
given state can be applied at every other instance of
the repeating unit. Therefore, in this regular lattice

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 313

Figure 1. Regular lattices. Top: rectangular, diamond, and
triangular (hexagonal) lattices. Bottom left: Discrete mo-
tions in a four-connected lattice. Bottom right: Discontin-
uous heading change in a path.

arrangement, the information encoding the connec-
tivity of the search space (ignoring obstacles) can be
precomputed, and it can be stored compactly in terms
of a canonical set of repeated primitive motions, the
control set.

The simplest case of a regular lattice is a rectan-
gular grid, depicted in Figure 1. The bottom left of
the figure illustrates a popular discretization of mo-
tions that corresponds to a four-connected grid. As
shown in the bottom right, in the illustrated motion
discretization, heading change across a vertex in a
generated path can be discontinuous. Following this
path implies an instantaneous (and therefore impos-
sible) heading change.

We use this observation to develop two proper-
ties of lattice search spaces that are necessary condi-
tions for satisfying differential constraints:

1. enforcing continuity of relevant robot state
variables across the vertices

2. ensuring that the edges between the ver-
tices of the search space represent feasible
motions

The first condition can be satisfied by adding the rel-
evant dimensions to the search space, in order to rep-
resent the continuity of state variables explicitly. For
example, if a heading dimension is added to the state
space in the figure, then (x, y, north) and (x, y, east)
become distinct states. Absence of an edge between
them makes the above path illegal, and it will not be
generated. To satisfy the second condition, we require

a method of discretizing the robot control space to
force its reachability tree to be a regular lattice in state
space. We identify two methods of achieving this:

• Forward: For certain systems, there are meth-
ods of sampling the control space that result
in a state lattice (Bicchi, Marigo, & Piccoli,
2002; Frazzoli et al., 2001).

• Inverse: A desired state sampling can be cho-
sen first, and boundary value problem solvers
can be used to find the feasible motions (steer-
ing functions) that drive the system from one
state value to another (e.g., Howard & Kelly,
2007; Kelly & Nagy, 2002).

We prefer the inverse approach because it permits
the choice of state discretization to be driven by the
application—including the vehicle and the environ-
ment. Smaller state spacing is desired for denser ob-
stacles or smaller vehicles. Note that in the state
lattice, if state separations are small relative to the dis-
tance required to change vehicle heading by the dis-
tance to the next heading sample, the edges in such a
structure can span many state separations.

Fortunately, the work of constructing the state
lattice can be performed offline, without affecting
planner run time. Once it is constructed and rep-
resented as a directed graph (compactly specified
with a control set), the state lattice can be searched
with standard algorithms. Two examples of simpli-
fied state lattices are shown in Figures 2 and 3.

2.2. Desiderata and Design Approach

Typically, trade-offs exist among the criteria in any
design problem. For the sake of generality, no opti-
mal design of the state lattice will be attempted here,
because the basis of its optimality would require as-
suming a particular application. Instead, we describe
the aspects of the state lattice design that influence
the performance of a planner built using it, with re-
spect to the following important properties:

1. Optimality: how close the cost of an opti-
mal (e.g., shortest) path in the lattice is to the
truly optimal path in the continuum

2. Completeness: the degree to which a given
search space approaches the capacity to ex-
press all available motions

3. Complexity: how much computation is re-
quired to solve a particular planning query

Journal of Field Robotics DOI 10.1002/rob

314 • Journal of Field Robotics—2009

Figure 2. A 3D search space, consisting of position and
heading (x, y, θ). The Reeds–Shepp car can move forward
and backward. It can drive straight or turn left or right at a
fixed curvature. Left: The designed control set precisely hits
vertices in a rectangular grid. It was derived from the car’s
basic motions by carefully choosing their length. Center:
The reachability tree to depth 2. Right: The reachability tree
(search space) obtained by copying the control set at ev-
ery vertex in a C space with four headings. Each dot repre-
sents four distinct vertices overlaid on each other, each rep-
resenting different values of heading. Although this search
space will not generate a turn of less than the chosen cur-
vature, and although heading is continuous across vertices,
the instantaneous transitions of curvature at the vertices do
not respect steering rate limitations. Moreover, considering
only four different heading values typically is impractical.

Figure 3. An example state lattice. A repeated and regu-
lar pattern of vertices and edges comprises the state lattice.
The inset shows the control set, the motions leading to some
nearby neighbors of a vertex. The overall motion plan (thick
black curve) is simply a sequence of such edges. Here,
a greater number of headings was used than in Figure 2.
Reverse motions were omitted for clarity.

Enabling a planner to be well positioned with respect
to properties 1 and 2 is related to the problem of
sampling in the space of motions, and it remains
an active area of our related work (Green & Kelly,
2007; Pivtoraiko, Knepper, & Kelly, 2007). One of
the benefits of the state lattice approach is that it
performs planning strictly in state space, which is
easy to sample effectively. Regular lattice sampling
features minimum dispersion and discrepancy,
which allows the search to proceed effectively. Con-
versely, achieving effective sampling in control space
is hard in general. However, the state lattice induces
a convenient sampling in control space, as motions
that fit the lattice are found a posteriori. Thus, mo-
tion sampling inherits sampling effectiveness from
the state lattice. An approach to satisfying proper-
ties 1 and 2 in state lattice design is presented in
Pivtoraiko and Kelly (2005b). A simplified state
lattice design, described in Section 4.2, can also be
used as a departing point in evaluating the state
lattice concept with a particular motion planner.

The general principle to address property 3 is to
reduce the number of motions in the control set as far
as possible. In the case of deterministic planning, the
size of the control set defines the branching factor of
the search space and, thus, significantly affects plan-
ning complexity.

3. MOTION PLANNING USING STATE LATTICES

This section is devoted to a discussion of constrained
motion planning using state lattices. Here we uti-
lize the search space, developed in the preceding sec-
tions, and discuss the algorithmic details of enabling
planning and efficient replanning under differential
constraints.

3.1. Search Algorithm

Because the state lattice is a directed graph, any sys-
tematic graph search algorithm is appropriate for
finding a path in it. It is typically desired that a plan-
ner return optimal paths with respect to the desired
cost criterion (e.g., time, energy, or path length) and
that it be efficient. The A∗ (Hart, Nilsson, & Raphael,
1968) and D∗ Lite (Koenig & Likhachev, 2002) heuris-
tic search algorithms were used in this work because
they satisfy these requirements.

Let the term fidelity refer to the resolution of
both the state samples and its connecting controls.
If, hypothetically, the fidelity of the state lattice were

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 315

allowed to increase without limit, it is not hard to
see that the state lattice and the corresponding con-
trol set, when recomputed at each resolution level,
would approach the continuum. Therefore, motion
planning based on systematic search of the state lat-
tice is resolution-complete.

Many sequential motion planners can compute
the optimal path in the discrete space searched.
Hence, as the fidelity of the state lattice is allowed
to approach the continuum, it is possible, in princi-
ple, to plan paths that approach optimal paths in the
continuum arbitrarily closely.

3.2. Heuristic Cost Estimate

Heuristic estimates of the remaining cost in a partial
plan are well known to have the potential to focus
the search enough to eliminate unnecessary compu-
tation while preserving the quality of the solution. In
many cases, remaining path length can be used to es-
timate remaining cost, so path length heuristics are
commonly used. Among the simplest options for a
heuristic estimate of path length in the state lattice is
the Euclidean distance metric. This function is com-
putationally efficient, and it satisfies the admissibility
requirement of A∗ (Pearl, 1984). However, for dif-
ferentially constrained planning, it is not a well-
informed heuristic and, in many cases, it vastly
underestimates the true path length, resulting in
inefficient search.

A heuristic for a vehicle with limited turning ra-
dius moving in the plane could be derived from the
methods of Reeds and Shepp (1990). However, the
Reeds–Shepp paths are discontinuous in curvature
(i.e., infeasible to execute without stopping), and they
do not account for discretization, so even these paths
are underestimates. To generate the perfect heuris-
tic distance function for the state lattice, it is neces-
sary to incorporate information about the structure
of its control set. Given ample offline computational
resources, a straightforward and effective way to pre-
dict path lengths is to precompute and store the ac-
tual cost heuristics that a planner will need, using the
planner itself. Such a heuristic lookup table (HLUT)
can be implemented as a database of real-valued
query costs. Under this approach, the computation
of the heuristic becomes a simple table dereference
(Knepper & Kelly, 2006; Pivtoraiko & Kelly, 2005a).
Note that the regularity of the state lattice is a nec-
essary condition for this heuristic to be admissible.
Otherwise, the stored free-space costs of motions are

not invariant with respect to (w.r.t.) translation, and
they cannot be applied throughout the state lattice.

3.3. Computing Edge Costs

The regularity of the state lattice allows an effi-
cient optimization in evaluation of the cost of graph
edges during planning with continuous cost maps,
which is roughly equivalent in computational terms
to precomputing C space obstacles. Recall that the
cost of a configuration is computed as the sum of
the workspace cell costs occupied by the vehicle vol-
ume [i.e., area in two-dimensional (2D) workspace
cost fields]. We denote the set of map cells occupied
by the vehicle volume during execution of a particu-
lar motion as the swath of this motion. Because lattice
edges repeat regularly, so do their associated swaths.
Thus, it is possible to precompute the swaths for all
elements of the control set. When costs change in the
workspace cost map, the only computation required
to update the cost of an edge (motion) is to add the
costs of the cells in the swaths.

The top of Figure 4 depicts a motion of a tractor-
trailer vehicle, along with the swath of this motion.
To evaluate the cost of a motion, the costs of map
cells in the swath (reproduced on the bottom of
Figure 4) are simply summed up—an operation typi-
cally much more efficient than simulating the motion
of the system. The simpler alternative of low-pass fil-
tering the workspace cost map by a circular vehicle

Figure 4. An example of a precomputed swath of a path
for a tractor-trailer vehicle. Bottom: The swath allows com-
puting the cost of a motion w.r.t. a cost map, without explic-
itly considering the motion itself (top).

Journal of Field Robotics DOI 10.1002/rob

316 • Journal of Field Robotics—2009

approximation will be significantly less accurate for
systems with elongated shapes.

3.4. Processing Edge Cost Updates
in Replanning

The design described so far allows creating a motion
planner using A∗ or any other search algorithm that
finds optimal paths in a graph. However, in field
robotics applications, efficient replanning (achieved
by reusing previous computation) can be a critical
design criterion. Because the state lattice is a directed
graph, the variants of the D∗ replanning algorithm
can be adapted naturally. Regularity allows D∗

replanning in the state lattice to be significantly more
efficient, thanks to precomputation as described
below.

D∗ variants were originally applied to grids
(Koenig & Likhachev, 2002; Stentz, 1995). The funda-
mental capacity of such planning algorithms is that of
efficient repair of a plan given a set of workspace cell
cost changes that have been created by perception. In
general, the workspace cost field need not have the
same resolution as the planning search space, and the
connectivity of the latter can be arbitrary. The earliest
work on D∗ used the same resolution for both the cost
map and the search space and implicit “edges” that
connected states only to their nearest eight neighbors.
In this case, the mapping from a modified map cell to
the affected search space edges and vertices is trivial.

More generally, workspace cell cost changes
induce changes in perhaps several search space
edge costs that, in turn, induce changes in search
space vertex (edge endpoint) costs. For a state lattice
whose edges may span several map cells, the above
historical simplifications of these issues are no longer
feasible.

Suppose that the replanner uses a priority queue
to ensure optimality of the solution. For every change
in the cost of the directed edge from the vertex xi to
xj , c(xi, xj), a replanning algorithm requires recom-
puting the cost of xj and potentially inserting it into
the priority queue. Assuming that a map cell mij ∈ N

2

changes cost, the planner needs to know the set of
vertices Vc that potentially need to be reinserted into
the priority queue with new priority. Thus, the plan-
ner requires a mapping Y : N

2 → Vc.
To develop this mapping, we use the concept of

swath, introduced in Section 3.3. More formally, we
consider the swath a set Cs ⊂ N

2 of cost map cells that
are occupied by the robot as it executes a motion. The

cost of an edge that represents this motion is directly
dependent on the costs of map cells in Cs . Recall that
once we precompute the control set of a regular lat-
tice, it is possible to precompute the swaths of the
edges in it.

Because the mapping between edges and their
terminal vertices is trivial, it is easier first to develop
the mapping Y ′ : N

2 → Ec, where Ec is the set of
edges that are affected by mij (i.e., the set of edges
whose swaths pass through the cell). Determining Y ′

may still appear as a formidable task, given the high
density of edges in the multidimensional state lattice.
However, we again exploit the regularity of the lattice
to simplify the problem. If we have Y ′′ : O → Ec,
where O is the map origin, then Y ′ = Y ′′ + n,∀n ∈ N

2.
In other words, the set of edges affected by mij = O is
identical for any other cell, up to the translation coor-
dinates. Further, recall that the swath Cs of each edge
in Ec is known. In principle, Ec contains all edges uc,
such that mij belongs to Cs of uc. Hence, the map-
ping Y ′′ is exactly the set of edges whose swaths pass
through the 2D origin. Figure 5 illustrates this idea.
Like the control set and path swaths, the resulting
set of edges can be precomputed due to the regular-
ity of the state lattice. An example of the Vc for the
implementation described in Section 5 is shown in
Figure 6.

3.5. Graduated Fidelity of Representation

By virtue of the state lattice’s general representation
as a directed graph, it can be naturally extended with
multiresolution enhancements. Significant planning
run time improvement was achieved in the literature
via a judicious use of the quality of representation
of the planning problem (e.g., Bohlin, 2001; Ferguson
& Stentz, 2006; Pai & Reissell, 1998, among others).
In field robotics, it is frequently beneficial to utilize
a high fidelity of representation in the immediate
vicinity of the robot (perhaps within its sensor range)
and reduce the fidelity in the areas that are either
less known or less relevant for the planning problem.
Lower fidelity of representation is designed to in-
crease search speed, whereas higher fidelity provides
better quality solutions. Because grids have tradition-
ally been utilized in replanning, the notion of varying
the quality of problem representation has been identi-
fied with varying the resolution of the grid. However,
our method varies the discretization of both the state
and motions. We refer to managing the fidelity of
state lattice representation as graduated fidelity.

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 317

a c

d e f

b

Figure 5. The first several steps of precomputing the list
of graph vertices that are affected by a change in cost of a
map cell. (a) A single element of a control set is chosen for
this example. It emanates from the origin of the state lattice
(thick square) and connects it to another graph vertex (thick
circle). Gray cells are the swath of this motion. Suppose that
a map cell, located at the origin of the state lattice (thick
square), changes cost. We attempt to find all translational
versions of the chosen motion whose swaths are affected
by the changed map cell. (b)–(e) We iterate through sev-
eral such translational versions of the motion. The result-
ing (edge end-point) vertices that are considered for inser-
tion to the priority queue are shown in (f). Typically, many
more such vertices are processed for each edge [as sug-
gested by ellipsis in (f)]. The process repeats for all edges
in the control set. Precomputation allows eliminating any
redundancy by generating a unique list of such vertices.

In designing the connectivity of search space
regions of different fidelities, care must be taken to
ensure that all regions consist of motions that are
feasible with respect to the robot’s mobility model. If
this rule is violated, mission failures become possible
due to the differences in the representation of vehicle
mobility. Figure 7 illustrates this situation using
a simple example. Suppose that a search space is
used in which a high-fidelity region of finite size
surrounds and moves with the vehicle, and a disjoint
lower fidelity grid is used beyond that. Suppose that
the A∗ algorithm is used to plan paths in this hybrid
graph. A car-like robot attempts to travel to a goal on

Figure 6. A 2D projection of an example of Vc, the set of
lattice states that are to be reconsidered for every updated
map cell. The units in the plot are state lattice cells. For the
purposes of exposition, here the size of map cells is set to be
equal to the size of state lattice (x, y) cells. For each map cell,
mij , that changes cost, we place the set of vertices above in
this figure onto mij [i.e., the origin of the set of vertices, de-
noted with coordinates (0, 0), is identified with mij]. Next,
we iterate through the depicted list of the vertices and place
each one on the priority queue, if it was indeed affected by
the cost change of mij .

the other side of a collection of obstacles that forms
a narrow corridor. As long as the low-fidelity region
includes the corridor (black line), the planner will
find a solution in the graph. However, the 90-deg
turn in the path is actually infeasible, because the car-
like robot cannot turn in place. As the vehicle moves,
the high-fidelity region will eventually include the
turn in the corridor and the planner will then fail
to find a solution. The only viable alternative will
be to back up, thereby moving the corridor to the
low-fidelity region once again. Because the original

Goal

Figure 7. A simple example of a motion planning prob-
lem, in which a car-like robot that attempts to follow the
infeasible path (black line) experiences a failure.

Journal of Field Robotics DOI 10.1002/rob

318 • Journal of Field Robotics—2009

state of the scenario has now been achieved, it is
easy to see that this behavior will repeat forever. To
avoid such difficulties, it is necessary to ascertain
that all levels of fidelity include feasible motions. In
particular, the connectivity of low-fidelity regions
must be a subset of that of the higher fidelity regions.

To implement graduated fidelity planning, the
above A∗ planner-based design requires only a minor
modification. Once the state lattice graph is separated
into subgraphs of different fidelities as desired, each
subgraph uses its own control set to achieve the cho-
sen fidelity. Each control set defines the successors of
a vertex being expanded during search. Care must be
taken to design the control sets such that they ade-
quately span the boundaries between the subgraphs.
Note that control set design is the sole procedure
needed to enable graduated fidelity. Replanning al-
gorithms require no changes and will achieve the de-
sired effects automatically.

It can be useful to enable a high-fidelity subgraph
to move along with the mobile robot as described
in the example above. As shown in Pivtoraiko and
Kelly (2008), such flexibility can be accomplished by
undoing the effects of previous expansions of the
vertices on the perimeter of the moving subgraph.
Accomplishing this once again requires no change to
the actual replanning algorithm. The change of graph
connectivity that occurs between replans is presented
to the planning algorithm as a change in cost of the
affected graph vertices. Such topology-based cost
changes appear to replanning algorithms to be iden-
tical in nature to perception-based cost changes. If
the vertex expansion step is considered to be part of
an external search space module, the planner actually
cannot tell that the graph topology is changing.

More generally, it is straightforward to extend the
concept of graduated fidelity to allow multiple sub-
graphs of different fidelity to move or change shape
between replans. Such flexibility results in a dynamic
search space, which complements dynamic replanning
algorithms to improve planning efficiency. Thus, the
graduated fidelity extension of state lattice planning
is conceptually simple and straightforward to imple-
ment, and it can be designed to result in significant
savings in run time and memory usage in replanning.

HLUT that stores vehicle-specific optimal path
costs can be very effective in the case of gradu-
ated fidelity, because D∗ is typically configured to
plan backward from the goal to the robot. The dis-
tance in the search space from topology-induced
cost updates (typically perimeter of fidelity subgraph

around the robot) to the robot is therefore limited
enough to make it possible to store a HLUT for even
multidimensional state spaces on contemporary com-
puters. In this case, the perception and topology up-
dates generated during operation can be propagated
toward the vehicle with the efficiency of an ideally
informed heuristic.

4. IMPLEMENTATION DETAILS

4.1. Sampling the Heading Dimension

If the position variables of the state lattice are sam-
pled as a square grid, and there are more than eight
samples of the heading dimension, regular sampling
in heading leads to incapacity to generate straight
paths in any direction other than the cardinal and or-
dinal ones. An irregular sampling of heading is a bet-
ter solution from the perspective of encoding more
straight-line paths. Generally, a line at orientation θ

will intersect a vertex if it satisfies θ = arctan(i, j) for
any two integers i and j . Hence, an irregular sam-
pling of heading is preferred for a lattice with this
arrangement.

4.2. Control Sets with Shortest Edges

Algorithm 1 is a simple inverse method for gener-
ating a control set, as introduced in Section 2.1. Re-
ferred to as the shortest edges algorithm, it may serve
as a departing point to evaluate our proposed ap-
proach to search space design. To better illustrate
the algorithm, in this section we assume a four-
dimensional (4D) state lattice that consists of 2D
translation, heading, and curvature. Suppose that �

and K are user-defined subsets of discrete values of

Algorithm 1. A simple method of generating a control set

Input: State discretization in the state lattice: position,
discrete values of heading (�) and curvature (K)

Output: A control set, Ex

Ex = ∅;
foreach θi , θj ∈ � and κi, κj ∈ K do

foreach xf , yf s.t. L∞(O, [xf , yf]) = [1 · · · ∞) do
ui = trajectory([0, 0, θi , κi], [xf , yf , θf , κf]);
if ui �= ∅ then

Ex ← ui ;
break;

end
end

end

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 319

heading and curvature in the state lattice, respec-
tively. By exploiting rotational symmetries in the state
lattice, these sets can be convenient strict subsets of
all possible discrete values of these states variables.
The outer for-loop selects the permutations of dis-
crete values of initial and final heading and curva-
ture. The inner for-loop cycles through all discrete
value pairs of x and y, such that the maximum norm1

L∞ between the origin O and (xf , yf) grows from 1 to
infinity. For each value of L∞, if the trajectory gener-
ator finds a solution to the boundary value problem,
a feasible trajectory ui , we add it to the control set.
At this point we break from the inner for-loop and
proceed with another choice of terminal heading and
curvature values. The algorithm terminates when a
trajectory is generated for every permutation of head-
ing and curvature values.

The sets of motion primitives generated by
Algorithm 1 have a number of attractive properties:

• this is the minimal set that contains primitives
that concatenate at all discrete values of head-
ing and curvature in the state lattice

• the primitives in the set are minimum length,
given terminal constraints and discretization,
so they encode locally optimal solutions

• they encode aggressive maneuvers that will
result in plans that exploit the entire maneu-
verability envelope of the robot

• the computed controls exhibit some work-
space separation by construction, thereby re-
ducing dispersion in motion sampling

4.3. Application Specific Planner
Configurations

In very difficult environments, feedback control may
not be an adequate solution to compensating for un-
modeled terrain following or disturbances such as
well slip. On the contemporary Mars rovers, for ex-
ample, wheel slip is high enough to cause complete
mobility failure and only infrequent visual odome-
try updates are available to observe the slip that oc-
curs. If the 3D terrain shape is known sufficiently
well at planning time, a terrain-aware version of our
trajectory generator (Howard & Kelly, 2007) can be
used to generate appropriate edges that fit the ter-
rain spanned during the search. This is more compu-

1L∞ norm of a vector x = [x1, x2, . . . , xn] is maxi |xi |.

tationally expensive than assuming flat terrain and
using the precomputed, terrain-independent control
set. However, this is an important extension that al-
lows the planner to consider rough 3D terrain explic-
itly. An edge that was created for flat terrain may
become infeasible in a particular location in rough
terrain. However, this case is no different from the
appearance of an unknown obstacle, and a replan-
ning strategy would presumably already be in place
to handle such events.

Additional state variables can be added to the
state lattice. In particular, the addition of velocity
can enable a planner to compute feasible robot mo-
tions at various speeds that satisfy vehicle propulsion
dynamics.

5. RESULTS

A differentially constrained motion planner was im-
plemented based on the state lattice and tested in a
variety of scenarios, including in simulation and on
real robots. In the sequel, we will refer to this imple-
mentation as the lattice planner. In this section, we of-
fer the quantitative results of our evaluation.

A representative lattice control set was used in
all tests. Its state space consisted of 2D position
and heading (x, y, θ). This control set, depicted in
Figure 8(a), was generated using the shortest edges
algorithm (Section 4.2). A trajectory generator in
Kelly and Nagy (2002) was used to generate the mo-
tions between the given values of robot state. Motions
were parameterized as cubic polynomial curvature,
κ , functions of path length s, as shown in Eq. (1):

κ(s) = a + bs + cs2 + ds3. (1)

Subsection 5.1 is devoted to comparing the lat-
tice planner to popular motion planning approaches.
This subsection focuses on single static invocation of
all considered planners; replanning and graduated fi-
delity were not used, because not all evaluated plan-
ners support such capabilities. The goal of fair com-
parison also influenced the chosen configuration of
the lattice planner. A 4D state lattice that considers
curvature in addition to position and heading was
also implemented and successfully validated. It al-
lows explicit goal specification in all four dimensions
but none of the other evaluated planners support
such capability. Subsection 5.2 presents the results of
testing state lattice replanning and graduated fidelity
in a realistic setting.

Journal of Field Robotics DOI 10.1002/rob

320 • Journal of Field Robotics—2009

(a) (b)

Figure 8. Differentially constrained control sets used in experiments. (a) The state lattice control set selected for testing has
16 discrete headings, a minimum turning radius of 8 cells (i.e., maximum curvature 1/8), and an average out degree of 12,
for a total of 192 controls. The straight-line controls cannot be seen because they are obscured by the longer curved ones.
(b) The chosen BL control set consists of 96 controls, each of length 4.

5.1. Comparison of the State Lattice
to Other Search Spaces

In this section, we discuss a comparison of the
state lattice to several leading search spaces in mo-
tion planning. The state lattice is compared to the
following:

• 2D grid (4-, 8-, and 16-connected grids)
• search space used in the well-known

Barraquand and Latombe (BL) differen-
tially constrained planner (Barraquand &
Latombe, 1991) [Figure 8(b)]

We have adopted a notion of a generalized control
set: for the 2D grid, it is simply a grid-based vertex
expansion (straight paths), whereas for the BL plan-
ner, it is the vertex expansion as described in that
work. A planner based on each search space was im-
plemented by running the identical implementation
of the A∗ search algorithm using the corresponding
generalized control set. An overview of the control
sets that are considered here is presented in Table I.

5.1.1. Experimental Setup

In the presented experiments, we generated a list of
10,000 random queries, each consisting of an initial

and final state, expressed as position and heading.
The set of queries was engineered to induce the plan-
ner to generate paths ranging from simple (nearly
straight paths) to complex (e.g., parallel parking or
n-point turn maneuvers).

In the case of a grid, Euclidean distance between
start and goal is an appropriate estimate of free-space
planning difficulty. As argued in Section 3.2, it can be
an unacceptable underestimate of the true planning
difficulty under differential constraints. To quan-
tify the complexity of a particular query, we distin-
guish between absolute and relative difficulty. Figure 9
illustrates the two concepts. Absolute difficulty is

Table I. A quantitative look at the control sets. Parameters
of each control set have a strong influence on how a planner
performs while using it. (Units are 2D grid cells.)

Total Avg. edge Avg. out
Control set edges length degree

Lattice control set 192 8.72 12
Lattice with turn in place 224 7.47 14
BL 96 4.00 6
Grid-4 4 1.00 4
Grid-8 8 1.21 8
Grid-16 16 1.72 16

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 321

Figure 9. Absolute and relative planning difficulty. The difficulty of a planning query can be quantified in two dimensions.
Each of three paths to endpoints A, B, and C starts at O. Query A is high in absolute difficulty as well as relative difficulty
because it is long and has multiple cusps. B is simple in both measures. Query C has the same absolute difficulty as A (same
length) but the same relative difficulty as B.

measured here by the path length. For relative dif-
ficulty, the ratio of Euclidean distance (between start
and goal) to the length of a differentially constrained
path is used. With this scale, a value of unity means
that the resulting path is a straight line, whereas val-
ues near zero indicate that a series of reversal maneu-
vers is necessary to reach the final pose.

In the analyzes below, start and goal states were
sampled randomly within a rectilinear grid whose
resolution matched that of the state lattice. The goal
poses were sampled relative to the start state using
a polar coordinate system. We took this approach in
order to restrict the length of queries presented to the
planner to a desired range from 0 to 10 turning radii
(80 cells). For this study, we chose queries with abso-
lute difficulty of 40 cells. This number was chosen ar-
bitrarily for clarity of presentation. Experimentation
showed that other values of absolute difficulty con-

vey similar results. Initial and final headings were
randomly selected.

Each query was tested using each generalized
control set in a variety of settings, in particular with
different choices:

• obstacle fields
free space (no obstacles)
single map-cell obstacles, uniformly
distributed with 5% density in the plane
(Figure 10)

• heuristic functions
zero heuristic (constant value of 0)
Euclidean distance
HLUT

Free space experiments were conducted in order
to review planner performance independent of any

Figure 10. World with obstacles. A portion of the world with point obstacles used in the experiments is shown here. Two
plans are shown that solve the same query. The black line shows the plan generated by the state lattice, and the gray line
traces the path returned by the BL planner.

Journal of Field Robotics DOI 10.1002/rob

322 • Journal of Field Robotics—2009

Figure 11. Grid control sets. Three different grid control sets were tested. A point is connected to the 4, 8, or 16 nearest
neighbors that have unique headings.

particular obstacle arrangement. Path cost was set
to distance traveled; cost to traverse free space was
held constant at 1 unit per cell of free space. The de-
pendent (observed) variable in this study is planner
run time, which we verified to be proportional to the
omitted second dependent variable, memory usage.

5.1.2. Comparison to a Grid Search Space

2D grid search spaces comprise possibly the sim-
plest and oldest mobile robot planning context. It
may seem inappropriate to compare lattice and grid
planners because a grid does not permit us to en-
force full state continuity across graph vertices. How-
ever, part of our aim in comparing the two is to
make the case that the computational cost of enforc-
ing differential constraints at planning time is not as
high as might be assumed by many readers. Grid-
based paths do not ensure feasibility of execution
by mobility-constrained vehicles. Nevertheless, grid
planners have often been employed to find approxi-
mate solutions for differentially constrained vehicles
despite their incapacity to follow the solution path
exactly. In such applications, a path tracker is typi-
cally employed to smooth out the corners and follow
the path inexactly. Indeed, it was our implementation
of this approximate mobility approach that the lattice
planner was developed to replace.

An important question is, “Is the grid approach
inherently faster than searching in a full-dimensional
state space?” Differential constraints actually reduce
the number of paths encoded, whereas the extra di-
mensions of state space increase the number. The
answer is not immediately obvious. To find it, we
ran the A∗ planner with four different control sets,
in each case using the appropriate heuristic func-
tion that returns the exact distance to the goal. The

basic state lattice was matched with a large HLUT.
Three grid control sets were tested, in which each
state is connected to its 4, 8, and 16 nearest neighbors
(Figure 11), using a perfect heuristic for each level of
connectivity.

Performance of the control sets in the absence of
obstacles is shown in Figure 12. The data are pre-
sented across a spectrum of relative difficulty. In the
absence of obstacles, the lattice generally performs on
par with basic grid search. For only the most diffi-
cult queries does the lattice consume more CPU time
than a grid control set. This disparity occurs because
the differentially constrained path solution diverges
more dramatically from a straight-line solution. For
such problems, the answer returned by the grid is in-
creasingly difficult to execute on a real vehicle, even
if a path tracker is used. In essence, the extra effort on
the part of the lattice planner is compulsory to obtain
a feasible path. Hence, for our test setup, in the ab-
sence of obstacles, a state lattice is just as efficient as
a grid on easy problems and an order of magnitude
slower on hard problems.

Results in the presence of obstacles are shown in
Figure 13. It is intuitive that the grid should outper-
form the lattice in this obstacle field for any class of
query. If an obstacle appears in the path of a grid
plan, that plan is often displaced by only a few cells
in order to circumvent the obstacle. In the case of
the lattice under test, however, only smooth contin-
uous paths are considered. These requirements sub-
stantially limit the planner’s options, making it more
difficult to find a satisfactory path through an obsta-
cle field, as shown in Figure 14. So while the grid
path deviates slightly in the cluttered environment,
paths generated by the state lattice often must be
much more complex in order to plan around ob-
stacles. However, the difficulty experienced by the

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 323

 1e-05

 0.0001

 0.001

 0 0.2 0.4 0.6 0.8 1

P
la

n
n

er
 R

u
n

ti
m

e
(s

ec
)

Relative Difficulty

Lattice
16-Grid
8-Grid
4-Grid

Figure 12. Lattice vs. grid without obstacles. Queries with an absolute difficulty of 40 cells are shown. The lattice performs
similarly to the grid planners overall. Only for the greatest relative difficulty (nearest zero) does the lattice require more
CPU cycles. Of course, the benefit of this extra computation is a plan that is feasible.

lattice planner reflects the true mobility limits of the
vehicle, rather than some inadequacy relative to a
grid search space.

In plain terms, a grid planner produces faster
answers, but they are usually wrong. Despite the
increased search requirements, the lattice planner
remains consistently only one order of magnitude
slower than the grid planner, returning on average in
less than 0.1 s for all classes of query.

5.1.3. Comparison to Full C Space and Differentially
Constrained Search Space

The above comparison between the state lattice plan-
ner and grid-based planner is intended to evaluate
the search spaces, not the identical planning algo-

rithms. Of course, paths planned in the grid cannot
be traversed by curvature-constrained vehicles with-
out postprocessing. However, the BL planner is well
known and has been a popular differentially con-
strained planner for more than a decade. It has also
been used in real mobile robot applications (Morris,
Silver, Ferguson, & Thayer, 2005). As described by the
authors, the BL planner runs A∗ with a zero heuris-
tic, resulting in a breadth-first graph traversal. Each
graph edge has equal cost and represents one of six
possible controls combining forward/reverse with
hard left/straight/hard right. To limit the exponen-
tial growth in reachable states, BL treats the least-
costly method of reaching a given discrete state as
the canonical route. Costlier paths terminating in the
same C space cell are discarded.

Journal of Field Robotics DOI 10.1002/rob

324 • Journal of Field Robotics—2009

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.2 0.4 0.6 0.8 1

P
la

n
n

er
 R

u
n

ti
m

e
(s

ec
)

Relative Difficulty

Lattice
16-Grid
8-Grid
4-Grid

Figure 13. Lattice vs. grid with 5% obstacle density. Queries of length 40 cells are shown. The grid outperforms the lattice,
but it usually returns infeasible solutions. Lattice planner run time is still acceptably fast.

On careful examination, it is clear that a com-
parison to the search space of the BL planner is also
not as clearly meaningful as one would hope, be-
cause the state lattice supports much more sophisti-
cated planning algorithms (in particular, D∗ replan-
ning). Specifically, the original BL planner search
space uses the number of reversals of velocity as edge
cost. For example, as configured in the original paper,
the BL planner may choose a shorter path through
a high-cost area instead of a longer path through a

lower cost area. To render this algorithm more suit-
able for field applications, the breadth-first algorithm
must be replaced with one that is optimal for graphs
with variable cost of edges embedded in continuous
cost fields—such as A∗ implemented with a priority
queue. A heuristic to guide the search was also nec-
essary in our experiments to achieve acceptable run
times.

In this section, several different variants of the
BL planner are examined. In all cases, an identical

Figure 14. Obstacle avoidance with two control sets. Grid planners can easily avoid small isolated obstacles, as shown by
the black path. By contrast, the gray path has limited curvature and so can be feasibly traversed by a constrained vehicle.

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 325

Figure 15. Reachability trees for the state lattice and BL. At left, the first 1,400 expansions of the basic state lattice control
set in best-first order. At right, the first 1,400 expansions of the BL control set were generated using the same algorithm.
Darker edges indicate greater depth in the tree.

A∗ algorithm was applied, but the heuristic cost es-
timate was altered to produce a fair comparison. In
the first case, the algorithm was run as documented in
Barraquand and Latombe (1991), with a zero heuristic
applied. In the second case, Euclidean distance was
used as the heuristic.

To make the BL control set work in a fashion com-
patible with the state lattice test framework, some
tuning was necessary. Barraquand and Latombe de-
scribe the edge lengths as being the L1 diameter
of a cell and assert that their planner requires the
discretization of the search parameters to be “fine
enough.” We set the BL curve length to four di-
ameters of our cost map cells because a C space
cell spans four discretized unit dimensions in our
cost map. To ensure fairness, several other curve
lengths were tried, but the original length of four was
found to be the best match with our standard lat-
tice discretization. This basic BL control set is shown
in Figure 8(b), and the resulting reachability tree is
shown in Figure 15 along with the standard state lat-
tice tree. Reverse edges were omitted from both trees
in the figure for clarity.

The performance of the lattice planner is com-
pared to BL with two different heuristics in Figure 16
(no obstacles, free space) and in Figure 17 (with
obstacles, per Section 5.1.1). In a fair matchup us-
ing the Euclidean distance heuristic, the two plan-
ners perform comparably. The Euclidean heuristic
was used for the lattice-based planner only for fair-
ness of the comparison. The lattice planner using the
HLUT significantly outperforms our implementation
of BL.

5.1.4. State Lattice with Turn-in-Place Motions

Finally, we tested an alternative lattice control set. It
is identical to the baseline lattice control set, except
that it includes two extra controls—each representing
an incremental turn in place left and right (change of
heading to the two nearest discrete values). We com-
puted the cost of these additional edges based on the
aggregate distance of travel of each of the wheels of
a planetary rover, capable of turning in place. The ef-
fect of this capability on resulting plans is depicted
in Figure 18, where the path is substantially short-
ened by avoiding tortuous maneuvering. These ad-
ditional controls have no significant effect on overall
planner run time performance (Figures 19 and 20),
but they provide valuable added flexibility in ne-
gotiating dense obstacle fields. Moreover, for prac-
tical applications, the state lattice allows tuning the
robot’s preference for performing point turns versus
smooth maneuvers by assigning appropriate costs to
the turn-in-place edges.

5.2. Autonomous Navigation

Here we present the results of experiments, simulated
and real, that demonstrate planner performance us-
ing replanning and graduated fidelity in a realistic
setting, where the robot moves through a challenging
environment toward a distant target.

The rover size is approximately 1 × 0.8 m. Its mo-
bility is characterized by a minimum turning radius
of 0.5 m and a capacity of point turns, which bear
a high cost due to the time and energy required for

Journal of Field Robotics DOI 10.1002/rob

326 • Journal of Field Robotics—2009

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

P
la

n
n
er

 R
u
n
ti

m
e

(s
ec

)

Relative Difficulty

BL with Zero Heuristic
BL with Euclidean Heuristic
Lattice with Euclidean Heuristic
Lattice with HLUT

Figure 16. Lattice vs. BL without obstacles. Queries with an absolute difficulty of 40 cells are shown. Various heuristics are
considered for each planner.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

P
la

n
n

er
 R

u
n

ti
m

e
(s

ec
)

Relative Difficulty

BL with Zero Heuristic
BL with Euclidean Heuristic
Lattice with Euclidean Heuristic
Lattice with HLUT

Figure 17. Lattice vs. BL in a world with uniformly distributed single map-cell obstacles of density 5%. Queries with an
absolute difficulty of 40 cells are shown. Various heuristics are considered for each planner.

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 327

Figure 18. Lattice control set with and without the abil-
ity to turn in place. In black, the aforementioned state lat-
tice control set is used. In gray, the same control set is aug-
mented by two additional controls that allow the vehicle
to turn in place at a cost equal to traversing five cells. This
plan performs the turn-in-place maneuver twice in order to
execute a sharp turn.

reorienting wheels. Both cost map cells and (x, y) cells
of the state lattice are square with 20-cm side length;
both types of cells coincide in position.

In the simulated experiment, the robot has a per-
ception region limited to 21 × 21 cells (L∞-radius of
2 m), centered around the robot. No perception infor-
mation is available outside this horizon. The size of
the high-fidelity region, centered about the robot, is
the same as that of the perception region. Otherwise,
the setup is the same as above. For clarity, Figure 21
shows a 40-m subset of a 500-m path, traversed in
this setting. Gray cells are obstacles that have not yet
come into view of the robot and are unknown to it.
Black cells (and gray cells in the insets) are obsta-
cles that were seen by the robot. The dark-gray line
is the path the robot traveled. Note that it entered
many cul-de-sacs due to the limited perception (such
as replan cycles 39 and 53), and the planner was effec-
tive at guiding the robot out of all of them by exploit-
ing the robot’s maneuverability. Replanning occurred
continuously due to both obstacle discovery and fi-
delity modification in the search space. This experi-
ment was performed on a conventional laptop com-
puter with 2-GHz CPU and 2 GB of RAM.

The lattice planner was integrated with research
prototype rovers at the NASA/Caltech Jet Propulsion
Laboratory (JPL). It enabled the rovers to navigate

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

P
la

n
n

er
 R

u
n

ti
m

e
(s

ec
)

Relative Difficulty

Standard Lattice with Euclidean heuristic
TIP Lattice with Euclidean heuristic

Standard Lattice with HLUT
TIP Lattice with HLUT

Figure 19. Lattice vs. turn-in-place lattice without obstacles. Queries with an absolute difficulty of 40 cells are shown.
Computational cost for the two lattices is not significantly different despite the extra turn-in-place maneuvers.

Journal of Field Robotics DOI 10.1002/rob

328 • Journal of Field Robotics—2009

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

P
la

n
n
er

 R
u
n
ti

m
e

(s
ec

)

Relative Difficulty

Standard Lattice with Euclidean heuristic
TIP Lattice with Euclidean heuristic

Standard Lattice with HLUT
TIP Lattice with HLUT

Figure 20. Lattice vs. turn-in-place lattice in a world with obstacles. Queries with an absolute difficulty of 40 cells are
shown. Computational cost for the two lattices is not significantly different despite the extra turn-in-place maneuvers.

efficiently in rough rocky terrain in the JPL Mars
Yard. Figure 22 shows the results of a typical experi-
ment with the FIDO rover running the lattice planner
onboard to navigate autonomously amid dense rocks.
In this experiment, the rover was given a command to
drive to a goal 15 m directly in front of it, as shown
by the black line in the top of the figure. This motion
was infeasible due to large rock formations. However,
the rover, under guidance of the lattice planner, ne-
gotiated this maze-like and previously unknown en-
vironment and found a feasible path (white dots) to
accomplish its mission, despite a very limited per-
ception horizon of 3 m and ±40-deg field of view.
The lattice planner was configured as above, includ-
ing a high-fidelity region of 21 × 21 map cells (L∞-
radius of 2 m), centered around the rover. The rover
traversed approximately 30 m during this mission
and achieved the goal successfully (only the first two-
thirds of the rover path are shown in the photograph
due to the limited field of view of the camera). No
path tracking was used, and the rover executed ver-
batim the smooth and feasible motion computed by
the lattice planner.

The rover used a single 1.6-GHz CPU and 512 MB
of RAM, shared among all processes of the rover,

including state estimation, stereo vision perception,
and communication systems. The planner was ported
to the VxWorksTM hard real-time operating system
that runs on the rover’s computer. We have not had a
chance to optimize memory usage of our planner im-
plementation; nevertheless, the peak memory usage
of the lattice planner over all our experiments with
the FIDO rover was less than 100 MB. The bottom
part of Figure 22 shows the semilog plot of the on-
board lattice planner run time per replan cycle, aver-
aging at approximately 10 Hz. This plot serves well
to illustrate two points regarding typical planner run
time onboard FIDO: the computation time per replan-
ning operation can vary greatly (depending on the
difficulty of the problem at hand), and the replanning
run time was frequently lower than the time resolu-
tion of the rover’s operating system (5 ms), which
is observed via the bottom-limited segments of the
plot.

Owing to limited perception and previously un-
known environment, the rover entered into a num-
ber of difficult planning scenarios during its mission.
First, the rover steered out of the potential cul-de-sac
by exploiting a high-curvature maneuver. Next, after
going around the bend in the hope of resuming its

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 329

Figure 21. A simulated experiment of traversing about 500 m among previously unknown obstacles. Top: The first 40 m
of the path are shown for clarity. Note that all motions generated by the planner were globally feasible, and backing-up
maneuvers were generated automatically when necessary. Bottom: Planner run times.

Journal of Field Robotics DOI 10.1002/rob

330 • Journal of Field Robotics—2009

Figure 22. A field experiment in the JPL Mars Yard. Top:
The FIDO rover was commanded to go straight 15 m
(black line). The rover navigated autonomously among pre-
viously unknown maze-like obstacles, while running the
graduated fidelity lattice planner onboard. White dotted
line is the path traversed by FIDO. The rover encountered
multiple difficult planning scenarios due to the very lim-
ited perception. It traveled approximately 30 m in order to
achieve its goal. Bottom: Throughout numerous field exper-
iments, the lattice planner onboard FIDO averaged replan-
ning frequency of approximately 10 Hz.

course along the straight line, it arrived at a narrow
cul-de-sac. At this point, a portion of the previously
computed rover path was invalidated as soon as the
rover’s perception system recognized that the pas-
sage was closed off. However, thanks to D∗ capacity
to repair the plan efficiently, a new plan was found
that guided the rover through an n-point U-turn to
resume its course. Shortly afterward, the rover ap-
peared in another tricky situation (bottom right of
the path), where it had to back out in order to con-
tinue navigating. Throughout the experiment, the lat-
tice planner regularly updated the smooth and feasi-

ble motion plan of the rover, despite many challenges
during its mission.

6. CONCLUSION AND FUTURE WORK

This work has been motivated by a fairly acute need
to endow our field robots with sufficient understand-
ing of their own mobility to allow them to efficiently
plan correct and intricate paths in response to their
challenging surroundings. Our efforts have produced
a search space designed for differentially constrained
motion planning in the continuous cost fields used in
the field robot applications of today.

Our approach inherits its understanding of mo-
bility from a competent and high-fidelity, real-time
trajectory generator. It uses this module to construct
what amounts to an ideal discrete search space:

• it is of high enough dimension to enforce rel-
evant state continuity

• its controls acquire goal states exactly
• its controls satisfy arbitrary differential con-

straints, so they encode only feasible motions
• its controls are a reduced set in a path sam-

pling sense, meaning unnecessary computa-
tion is avoided

This search space can be generated offline, and be-
cause of this property, many planning computations
peculiar to differentially constrained motion plan-
ning in continuous cost fields can also be precom-
puted offline to enhance efficiency. This ideal search
space can be searched using an ideal heuristic, con-
structed by a heuristic planner itself, from a world
free of obstacles.

With all of the above elements in place, the daunt-
ing problem of optimal, efficient, smooth differen-
tially constrained motion planning in the presence of
obstacles is reduced to an implementation of heuris-
tic search of a graph. We have shown that the A∗ al-
gorithm and even the D∗ algorithm can be configured
to run on this search space even while the topology of
the space is dynamically changing.

State lattice planners (planners based on the state
lattice search space) are resolution complete because
the control set can be automatically adjusted to gener-
ate new controls as resolution increases and the space
is searched systematically. Such planners are both op-
timal and smooth because precision controls that ac-
quire states exactly permit the redirection of back-
pointers without introducing discontinuities in the

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 331

solution path. In algorithms derived from dynamic
programming, such redirection is fundamental to op-
timal sequential search with nonuniform edge costs.
The completeness, smoothness, satisfaction of differ-
ential constraints, and optimality of state lattice plan-
ners result from the precision of the trajectory gener-
ator used to create the control set.

State lattice planners are also efficient due to a
principled implementation of a path sampling policy.
We have shown that they are up to two orders of mag-
nitude faster than our best-effort BL planner, while
remaining optimal and smooth, while also allowing
efficient replanning and significant precomputation.
They are not as fast as a grid planner when obsta-
cles are present—being roughly an order of magni-
tude slower than a 16-connected grid. However, se-
vere problems with grid planners producing infeasi-
ble plans motivated the work to start with. According
to our results, a mere 3 years of operation of Moore’s
law should have been enough to allow grids to be
abandoned long ago, at least for near-field planning,
so the common use of infeasible grid search spaces is
difficult to justify on computational grounds.

The contribution of this work is not a planning al-
gorithm. The contribution is a principled mechanism
to construct an efficient, precision, differentially con-
strained search space upon which any planner may
operate. We have also presented a compelling case for
why it is superior to prevailing alternatives.

Future work includes further research in optimal
sampling in the space of motions to further increase
the effectiveness of search spaces. Further, the state
lattice planning approach appears to lend itself well
to other applications, including mobile manipulation,
and we hope to explore these ideas in the future.

ACKNOWLEDGMENTS

This research was conducted at the Robotics Insti-
tute of Carnegie Mellon University, sponsored by
NASA/JPL as part of the Mars Technology Program.

REFERENCES

Agarwal, P., Amenta, N., Aronov, B., & Sharir, M. (1996,
August). Largest placements and motion planning of
a convex polygon. In Proceedings 2nd Annual Work-
shop Algorithmic Foundations of Robotics, Toulouse,
France (pp. 143–154).

Agarwal, P., Aronov, B., & Sharir, M. (1999). Motion plan-
ning for a convex polygon in a polygonal environment.

GEOMETRY: Discrete and Computational Geometry,
22(2), 201–221.

Alt, H., Fleischer, R., Kaufmann, M., Mehlhorn, K., Naher,
S., Schirra, S., & Uhrig, C. (1990, June). Approximate
motion planning and the complexity of the boundary
of the union of simple geometric figures. In Proceed-
ings of the ACM Symposium on Computational Ge-
ometry, Berkeley, CA (pp. 281–289).

Anisi, D. A., Hamberg, J., & Hu, X. (2003). Nearly time-
optimal paths for a ground vehicle. Journal of Control
Theory and Applications, 1(1), 2–8.

Barraquand, J., Kavraki, L., Latombe, J.-C., Li, T.-Y.,
Motwani, R., & Raghavan, P. (1996, October). A
random sampling scheme for robot path planning.
In G. Giralt & G. Hirzinger (Eds.), Proceedings
of the 7th International Symposium on Robotics
Research, Osaka, Japan (pp. 249–264). New York:
Springer.

Barraquand, J., & Latombe, J.-C. (1990, May). A Monte-
Carlo algorithm for path planning with many degrees
of freedom. In Proceedings of the IEEE International
Conference on Robotics and Automation, Cincinnati,
OH (pp. 1712–1717).

Barraquand, J., & Latombe, J.-C. (1991, April). Nonholo-
nomic multibody mobile robots: Controllability and
motion planning in the presence of obstacles. In Pro-
ceedings of the IEEE International Conference on
Robotics and Automation, Sacramento, CA (vol. 3,
pp. 2328–2335).

Bicchi, A., Marigo, A., & Piccoli, B. (2002). On the reachabil-
ity of quantized control systems. IEEE Transactions on
Automatic Control, 47(4), 546–563.

Bohlin, R. (2001, November). Path planning in practice;
Lazy evaluation on a multi-resolution grid. In Proceed-
ings of the IEEE/RSJ International Conference on Intel-
ligent Robots & Systems, Maui, HI (pp. 49–54).

Bohlin, R., & Kavraki, L. (2000, April). Path planning us-
ing lazy PRM. In Proceedings of the IEEE International
Conference on Robotics & Automation, San Francisco,
CA (pp. 521–528).

Branicky, M., LaValle, S., Olson, S., & Yang, L. (2001, May).
Quasi-randomized path planning. In Proceedings of
the International Conference on Robotics and Automa-
tion, Seoul, Korea (pp. 1481–1487).

Canny, J., Rege, A., & Reif, J. (1991). An exact algorithm for
kinodynamic planning in the plane. Discrete and Com-
putational Geometry, 6, 461–484.

Canny, J. F. (1988). The complexity of robot motion plan-
ning. Cambridge, MA: MIT Press.

Casal, A. (2001). Reconfiguration planning for modular
self-reconfigurable robots. Ph.D. thesis, Aeronautics
and Astronautics Department, Stanford University,
Stanford, CA.

Cherif, M. (1999, May). Kinodynamic motion planning
for all-terrain wheeled vehicles. In Proceedings of the
IEEE International Conference on Robotics & Automa-
tion, Detroit, MI (pp. 317–322).

Donald, B., & Xavier, P. (1995). Provably good approxi-
mation algorithms for optimal kinodynamic planning:
Robots with decoupled dynamics bounds. Algorith-
mica, 14(6), 443–479.

Journal of Field Robotics DOI 10.1002/rob

332 • Journal of Field Robotics—2009

Dubins, L. E. (1957). On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of Mathematics, 79, 497–516.

Ferguson, D., & Stentz, A. (2006, March). Multi-resolution
Field D*. In Proceedings International Conference on
Intelligent Autonomous Systems (IAS), Tokyo, Japan
(pp. 65–74).

Fernandes, C., Gurvits, L., & Li, Z. X. (1991, April). A varia-
tional approach to optimal nonholonomic moton plan-
ning. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, Sacramento, CA
(pp. 680–685).

Fraichard, T., & Ahuactzin, J.-M. (2001, May). Smooth path
planning for cars. In Proceedings IEEE International
Conference on Robotics and Automation, Seoul, Korea
(pp. 3722–3727).

Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s
to continuous-curvature paths. IEEE Transactions on
Robotics, 20(6), 1025–1035.

Frazzoli, E., Dahleh, M., & Feron, E. (2001, June). Real-
time motion planning for agile autonomous vehicles.
In Proceedings of the American Control Conference,
Arlington, VA (pp. 43–49).

Gottschalk, S., Lin, M., & Manocha, D. (1996, August). OBB-
tree: A hierarchical structure for rapid interference
detection. In Proceedings of ACM SIGGRAPH, New
Orleans, LA (pp. 171–180).

Green, C., & Kelly, A. (2007, November). Toward opti-
mal sampling in the space of paths. In Proceedings
of the International Symposium of Robotics Research,
Hiroshima, Japan (pp. 171–180).

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernet-
ics, 4(2), 100–107.

Howard, T., & Kelly, A. (2007). Optimal rough terrain tra-
jectory generation for wheeled mobile robots. Interna-
tional Journal of Robotics Research, 26(2), 141–166.

Hsu, D. (2000). Randomized single-query motion planning
in expansive spaces. Ph.D. thesis, Computer Science
Department, Stanford University, Stanford, CA.

Jean, F. (2001). Complexity of nonholonomic motion plan-
ning. International Journal of Control, 74(8), 776–782.

Kavraki, L. (1994). Random networks in configuration
space for fast path planning. Ph.D. thesis, Computer
Science Department, Stanford University, Stanford,
CA.

Kavraki, L., Svestka, P., Latombe, J.-C., & Overmars,
M. (1996). Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE
Transactions on Robotics & Automation, 12(4), 566–
580.

Kelly, A., Amidi, O., Happold, M., Herman, H., Pilarski,
T., Rander, P., Stentz, A., Vallidis, N., & Warner, R.
(2004, June). Toward reliable off-road autonomous ve-
hicle operating in challenging environments. In Pro-
ceedings of the International Symposium on Experi-
mental Robotics, Singapore (pp. 599–608).

Kelly, A., & Nagy, B. (2002). Reactive nonholonomic tra-
jectory generation via parametric optimal control. In-

ternational Journal of Robotics Research, 22(7/8), 583–
601.

Kindel, R. (2001). Motion planning for free-flying robots
in dynamic and uncertain environments. Ph.D. thesis,
Aeronautics and Astronautics Department, Stanford
University, Stanford, CA.

Knepper, R., & Kelly, A. (2006, October). High perfor-
mance state lattice planning using heuristic look-up ta-
bles. In Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems, Beijing, China
(pp. 3375–3380).

Koenig, S., & Likhachev, M. (2002, March). D∗ Lite. In Pro-
ceedings of the AAAI Conference of Artificial Intelli-
gence (AAAI), Edmonton, AB, Canada (pp. 476–483).

Kuffner, J. (1999). Autonomous agents for real-time ani-
mation. Ph.D. thesis, Computer Science Department,
Stanford University, Stanford, CA.

Lacaze, A., Moscovitz, Y., DeClaris, N., & Murphy, K.
(1998, September). Path planning for autonomous ve-
hicles driving over rough terrain. In Proceedings of the
IEEE International Symposium on Intelligent Control,
Gaithersburg, MD (pp. 50–55).

Lamiraux, F., & Laumond, J.-P. (2001). Smooth motion
planning for car-like vehicles. IEEE Transactions on
Robotics and Automation, 17(4), 498–501.

Latombe, J.-C. (1991). Robot motion planning. Boston:
Kluwer.

LaValle, S., Branicky, M., & Lindemann, S. (2004). On the
relationship between classical grid search and proba-
bilistic roadmaps. International Journal of Robotics Re-
search, 23(7/8), 673–692.

LaValle, S. M. (2006). Planning algorithms. Cambridge, UK:
Cambridge University Press.

LaValle, S. M., & Kuffner, J. J. (2001). Rapidly-exploring
random trees: Progress and prospects. In B. Donald,
K. M. Lynch, & D. Rus (Eds.), Algorithmic and Com-
putational Robotics: New Directions (pp. 293–308).
Wellesley, MA: AK Peters, Ltd.

Lindemann, S., & LaValle, S. (2003, October). Current is-
sues in sampling-based motion planning. In Proceed-
ings of the International Symposium of Robotics Re-
search, Siena, Italy (pp. 36–54).

Lindemann, S., & LaValle, S. (2004, June). Steps toward de-
randomizing RRTs. In Proceedings of the Fourth In-
ternational Workshop on Robot Motion and Control,
Puszczykowo, Poland (pp. 271–277).

Lozano-Perez, T. (1983). Spatial planning: A configura-
tion space approach. IEEE Transactions on Computers,
C-32(2), 108–120.

Lozano-Perez, T., & Wesley, M. A. (1979). An algorithm
for planning collision-free paths among polyhedral
obstacles. Communications of the ACM, 22(10), 560–
570.

Morris, A., Silver, D., Ferguson, D., & Thayer, S. (2005,
April). Towards topological exploration of abandoned
mines. In Proceedings of the IEEE International Con-
ference on Robotics, Barcelona, Spain (pp. 2117–
2123).

Natarajan, B. K. (1988). The complexity of fine motion plan-
ning. International Journal of Robotics Research, 7(2),
36–42.

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko et al.: Differentially Constrained Robot Motion Planning in State Lattices • 333

Pai, D., & Reissell, L.-M. (1998). Multiresolution rough ter-
rain motion planning. IEEE Transactions on Robotics
and Automation, 14(1), 19–33.

Pearl, J. (1984). Heuristics: Intelligent search strategies for
computer problem solving. Boston: Addison-Wesley
Longman Publishing Co.

Pivtoraiko, M., & Kelly, A. (2005a). Constrained motion
planning in discrete state spaces. In Field and service
robotics (vol. 25, pp. 269–280). Berlin: Springer.

Pivtoraiko, M., & Kelly, A. (2005b, August). Differentially
constrained motion replanning using state lattices with
graduated fidelity. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, Edmonton, AB, Canada (pp. 2611–2616).

Pivtoraiko, M., & Kelly, A. (2008, September). Differentially
constrained motion replanning using state lattices with
graduated fidelity. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, Nice, France (pp. 2611–2616).

Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2007). Opti-
mal, smooth, nonholonomic mobile robot motion plan-
ning in state lattices (Tech. Rep. CMU-RI-TR-07-15).
Pittsburgh, PA: Robotics Institute, Carnegie Mellon
University.

Reeds, J. A., & Shepp, L. A. (1990). Optimal paths for a car
that goes both forwards and backwards. Pacific Journal
of Mathematics, 145(2), 367–393.

Reif, J. (1979, October). Complexity of the mover’s problem
and generalizations. In Proceedings of IEEE Sympo-
sium on Foundations of Computer Science, San Juan,
PR (pp. 421–427).

Sanchez, G., & Latombe, J.-C. (2001, November). A single-
query bi-directional probabilistic roadmap planner
with lazy collision checking. In Proceedings of In-
ternational Symposium on Robotics Research, Lorne,
Victoria, Australia (pp. 403–417).

Sanchez, G., & Latombe, J.-C. (2002). On delaying colli-
sion checking in PRM planning: Application to multi-
robot coordination. International Journal of Robotics
Research, 21(1), 5–26.

Scheuer, A., & Fraichard, T. (1997, April). Collision-free
and continuous-curvature path planning for car-like
robots. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, Albuquerque,
NM (pp. 867–873).

Scheuer, A., & Laugier, C. (1998, October). Planning sub-
optimal and continuous-curvature paths for car-like
robots. In Proceedings of the International Conference
on Robotics and Automation, Victoria, BC, Canada
(pp. 25–31).

Stentz, A. (1995, August). The focussed D∗ algorithm
for real-time replanning. In Proceedings of the Four-
teenth International Joint Conference on Artificial In-
telligence, Edinburgh, Scotland (pp. 1652–1659).

Journal of Field Robotics DOI 10.1002/rob

