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Abstract

We present an approach to the problem of mobile robot motion planning in arbitrary
cost fields subject to differential constraints. Given a model of vehicle maneuverabil-
ity, a trajectory generator solves the two point boundary value problem of connecting
two points in state space with a feasible motion. We use this capacity to compute a
control set which connects any state to its reachable neighbors in a limited neighbor-
hood. Equivalence classes of paths are used to implement a path sampling policy which
preserves expressiveness while eliminating redundancy. The implicit repetition of the
resulting minimal control set throughout state space produces a reachability graph that
encodes all feasible motions consistent with this sampling policy. The graph encodes
only feasible motions by construction and, by appropriate choice of state space dimen-
sion, can permit full configuration space collision detection while imposing heading
and curvature continuity constraints at nodes. Nonholonomic constraints are satisfied
by construction in the trajectory generator. We also use the trajectory generator to com-
pute an ideal admissible heuristic and significantly improve planning efficiency. Com-
parisons to classical grid search and nonholonomic motion planners show the planner
provides better plans or provides them faster or both. Applications to planetary rovers
and terrestrial unmanned ground vehicles are illustrated.
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1 Introduction

Discrete representation of states is a well-established method of reducing the compu-
tational complexity of planning at the expense of reducing completeness. However, in
motion planning, such discrete representations complicate the satisfaction of differen-
tial constraints which reflect the limited maneuverability of many real vehicles. We
propose a mechanism to achieve the computational advantages of discretization while
satisfying motion constraints.

To this end we introduce a search space, referred to as the state lattice. The lattice
is used to formulate a nonholonomic motion planning query as graph search. The state
lattice encodes a graph whose nodes are a discretized set of all reachable configurations
of the system and whose edges are feasible motions which connect these states exactly.
The process of forming edges does not make the standard assumption that adjacent
nodes are necessarily connected. Rather, every node is connected by an edge to only
those nodes in a small neighborhood for which a feasible connecting motion exists.

Conversely, it is typical to assume that adjacent cells in a 2D grid are connected in
a 4-connected or §8-connected arrangement. Such default connectivity fails to capture
nonholonomic and continuity constraints. For example, a 90 degree turn at finite speed
assumes either that wheels can move sideways or steering angles can change infinitely
fast or both. In such search spaces, differential constraints must be considered heuris-
tically in the optimization process during planning, or as an afterthought in plan post-
processing. The state lattice, however, has an important property that each connection
represents a feasible primitive motion. Such a graph topology - one that intrinsically
meets mobility constraints - leads to superior motion planning results because no time
is wasted generating, evaluating, or fixing infeasible plans.

It is convenient to sample state space in a regular fashion so that the motions en-
coded in the edges of the state lattice form a repeating unit that can be copied to every
node while preserving the property that each edge will continue to join neighboring
nodes exactly. This canonical set of repeating edges is called the control set. The num-
ber of edges in the control set is exactly the outdegree of each node in the reachability
graph, so it is important to minimize it for efficiency. We will propose path sampling
methods which automatically produce a minimal set of primitive paths that, when con-
catenated, can reproduce any feasible path in the continuum of state space up to some
resolution.

1.1 Motivation

This work is motivated by a number of applications which have not been served as
well by the planners of the day as they would have been by the planner proposed here.
In the context of unmanned ground vehicles, competence in motion planning in dense
obstacle fields demands the use of sufficiently high fidelity models of constrained mo-
tion, at least in the near field. Our repeated attempts to get by with less have not been
particularly successful. A classic case is that of an Ackerman vehicle which drives into
a winding corridor only to find it is closed off. Then, the robot must turn around using
many reversals of velocity while avoiding the obstacles surrounding it.

Another case of contemporary interest is that of a planetary rover which must visit



a large number of nearby locations when, for every motion, only one of the rocks in
view is (roughly) the goal and everything else is an obstacle. Furthermore, the goal is
the correct vehicle state for deploying a microscopic imager to a 1 cm by lcm patch
of a particular boulder. Hence the planner must not only target a particular heading,
but its ability to do so also depends on eliminating the errors that will be induced by
discontinuous curvatures embedded in the path to get there.

A great deal of the motion planning literature still concentrates on the theoretical
aspects of the problem. Our approach in this paper departs somewhat from this legacy
because we are charged to do our best in the field robotics applications of today. The
approach presented here has been conceived through work with off-road mobile vehi-
cles, and its development has been entirely driven by the humbling business of field
work. The question of efficiency has received considerable attention. We therefore
contribute to the growing trend of describing the efficiency of our results in great detail
and we offer comparisons of our method to other popular approaches.

1.2 Related Work

A significant amount of work has been dedicated in recent years to the problem of
smooth inverse trajectory generation for nonholonomic vehicles: finding a smooth and
feasible path given two end-point configurations. While in general this is a difficult
problem, recent progress in this area produced a variety of fast algorithms. The ground-
breaking work in analyzing the paths for nonholonomic vehicles was done by Dubins
[19] and Reeds and Shepp [49]. Their ideas were further developed in algorithms
proposed by Scheuer and Laugier [54], Fraichard and Ahuactzin [21], and Fraichard
and Scheuer [22] where smoothness of paths was achieved by introducing segments of
clothoids (curves whose curvature is a linear function of their length) along with arcs
and straight line segments. Somewhat different approaches by Scheuer and Fraichard
[53], and Lamiraux and Laumond [36], among others, have also been shown to solve
the generation problem successfully and quite efficiently. On the other hand, Frazzoli,
Dahleh and Feron [23] suggest that there are many cases where efficient, obstacle-
free paths may be computed analytically, e.g. the systems with linear dynamics and
a quadratic cost (double or triple integrators with control amplitude and rate limits).
The cases that do not admit closed-form solutions can be approached numerically by
solving appropriate optimal control problems (e.g. [20], [4]). A fast nonholonomic
trajectory generator by Kelly and Nagy [32], Howard and Kelly [26] generates polyno-
mial spiral trajectories using parametric optimal control. The latest results of this work
appear in another article in this issue.

Some of the methods described above also proposed applications to planning among
obstacles. Since the beginning of modern motion planning research ([45], [44], [50]),
there has been interest in the planning methods that constructed boundary represen-
tations of configuration space obstacles ([15], [2], [1] and others). The complexity
of motion planning algorithms has also been studied ([16], [47], [3], [28]). With the
advent of efficient C-space sampling methods ([6], [25]), there has been interest in
algorithms that sample the space in deterministic fashion ([7], [9], others in [37]). La-
caze et al. [35] utilized these ideas to propose a method for planning over rough terrain
using generation of motion primitives by integrating the forward model. Cherif [18]



advanced these concepts by basing planning on physical modeling. Note that one of
principal differences (and a novelty, to our knowledge) of our approach is leveraging
the research in inverse trajectory generators to generate motion primitives under con-
venient discretization.

Also in the early 1990’s, randomized sampling was introduced to motion planning
([8], among others). The Probabilistic Roadmap (PRM) methods were shown to be
well-suited for path planning in C-spaces with many degrees of freedom ([29], [30],
[27]), and with complex constraints, e.g. nonholonomic, kinodynamic, etc. ([34], [27],
[17], [33]). Another type of probabilistic planning was Rapidly-exploring Random
Trees (RRT) introduced by LaValle and Kuffner ([39],[40]). RRT’s were originally
developed for handling differential constraints, although they have also been widely
applied to the Piano Mover’s problem ([38]). Randomized approaches are understood
to be incomplete, strictly speaking, but capable of solving many challenging problems
quite efficiently ([14]).

As the randomized planners became increasingly well understood in recent years,
it was suggested that their efficiency was not due to randomization itself. LaValle,
Branicky and Lindemann [41] suggest an intuition that real random number generators
always have a degree of determinism. In fact, Branicky et al. [14] show that quasi-
random sampling sequences can accomplish similar or better performance than their
random counterparts. The improvements in performance are primarily attributed to the
more uniform sampling of quasi-random methods, and hence LaValle, Branicky and
Lindemann [41] suggest that a carefully designed low-discrepancy incremental deter-
ministic sequence would be able to do just as well ([42], [43]). For these reasons,
Branicky et al. [14] introduced Quasi-PRM and Lattice Roadmap (LRM) algorithms
that used low-discrepancy Halton/Hammersley sequences and a regular lattice, respec-
tively, for sampling. Both methods were shown to be resolution-complete, while the
LRM appeared especially attractive due to its properties of optimal dispersion and near-
optimal discrepancy. In this light, our approach of sampling on a regular lattice can be
considered to be one of building on the LRM idea and making it more efficient through
a detailed analysis of a fit between the reachability graph of the system and the under-
lying sampling lattice.

Recent works have also discussed lazy” variants of the above planning methods
that avoid collision checking during the roadmap construction phase (e.g. [13], [12],
[14], [51], [52]). In this manner the same roadmap could be used in a variety of settings,
at the cost of performing collision checking during the search. An even “lazier” version
is suggested, in which “the initial graph is not even explicitly represented” [14]. In this
regard, our approach of using an implicit lattice and searching it by means of a pre-
computed control set that only captures local connectivity is similar to the Lazy LRM.
Our contribution is in exploring the conjecture made in that work and successfully
applying it to nonholonomic motion planning.

The question of lattice sampling has also been raised in the context of motion plan-
ning utilizing control quantization. Bicchi, Marigo and Piccoli [11] as well as Pancanti,
Pallottino and Bicchi [48] showed that, for systems that can be expressed as that are not
underactuated, through careful discretization in control space, it is possible to force the
resulting reachability graph of system to be a lattice. It was also shown that this tech-
nique can be applied to a large class of nonholonomic systems. That approach presents



a way to generate a path given its terminal points and shows how under suitable con-
ditions a regular lattice of reachable points can be achieved. However, this is usually
difficult to achieve, and under most quantizations the vertices of the reachability graph
are unfortunately dense in the reachable set [38]. By contrast, our method uses an in-
verse path generator capable of generating essentially any feasible motion, so we can
choose a convenient discretization of state space based on the problem demands and
generate a custom set of controls to suit this discretization.

In this work we also build on a considerable amount of research in analysis of sys-
tem reachability. One line of research uses planning methods themselves to analyze
reachability of complex systems [10]. Since we focus on applications of motion plan-
ning of wheeled vehicles, we have developed a technique based on exhaustive search
that has worked quite well for exploration of the reachability graph. Our method in-
volves pruning this search early to analyze reachability efficiently.

In the development of Rapidly-exploring Dense Trees [38] for motion planning
with differential constraints, the importance of designing off-line a family of motion
primitives that captures the specifics of the system under consideration is noted [38]. In
this light, our proposed control set is precisely that set of primitives that reflects sym-
metries of wheeled vehicles and encodes nonholonomic constraints via off-line reacha-
bility analysis. Thus, this work is aligned with the latest developments of differentially-
constrained motion planning research, while continuing the latest trends of determinis-
tic sampling methods and the efficiencies of lazy” exploration of state space.

Initial concepts of this work were validated in a successful field implementation of a
nonholonomic motion planner built using an earlier version of the state lattice of limited
size represented explicitly [31]. In this article, we propose significant improvements
in efficiency and generality while recasting the approach to generate the reachability
graph on-line as it is searched.

1.3 Problem Statement

The basic problem we address here is that of finding a feasible path between two given
postures in the presence of arbitrary obstacles. If no path exists between the postures,
the solution should indicate that, and otherwise it must find a solution. This rule is
enforced as the sampling resolution approaches zero. The previous statement implies
that the objective is a resolution-complete path planner. We also desire the solution to
be optimal with respect to an arbitrary but well behaved notion of a path’s cost (where
cost could be assigned to path length).

1.4 Approach

The approach presented in this work builds upon a long heritage and many strengths
of earlier motion planning techniques in order to achieve a solution of a highly general
form and real-time performance.

Our aim is to leverage the previous effort, and combine these leading ideas in a
novel and unique manner. In particular, our method builds upon the previous intro-
duction of an implicit representation of the search space [14], latest research in inverse



trajectory generation ([54], [23], [26] among others), incremental deterministic sam-
pling ([41]), and an off-line analysis of the reachability set of the system for greatly
improved on-line performance.

In general terms, the crux of our proposal is the generation of a search space (a
graph) that satisfies differential constraints by construction. The problem of motion
planning is thereby reduced to unconstrained heuristic search and any generated plan
must be feasible. We show that a planner can be built using this search space with node
outdegree comparable to that of a grid. Hence, similar efficiencies are obtained in the
generation of plans of equal numbers of states. Moreover, through a careful design of
a search heuristic, we can preserve this efficiency even with a node outdegree that is
considerably higher.

1.5 Outline

The paper is organized into 9 sections. In Section 2 we embark from our problem
definition and carefully construct the design of a special search space that our technique
is based upon; we discuss its features and requirements. We develop these design
decisions in Section 3 into a concrete specification of a search space that satisfies these
requirements, a state lattice. In the following Section 4, an implicit representation of the
state lattice as a theoretical construct is derived with the goal of practical and efficient
motion planning. Section 5 is dedicated to the details of exploiting the properties of this
space for building an efficient heuristic search algorithm. In Section 6 we analyze the
performance of the presented motion planner using some standard benchmarks and also
in comparison to basic grid search. Section 7 is dedicated to a discussion of concrete
robotics applications where this work can be quite beneficial. Section 8 summarizes
the paper. We conclude in Section 9 with closing remarks, and future plans for this
research.

2 Search Space Design

This section presents a progression of design principles that, when followed, result in
the creation of a search space which is well-suited to motion planning problems subject
to differential constraints. The search space that results satisfies such constraints by
construction, enabling path planning to proceed without considering them at all. The
resulting solution path is therefore always guaranteed to be feasible.

2.1 Conversion to a Sequential Decision Process

Perhaps the most basic and powerful step in the practical formulation of the motion
planning problem is its conversion to a sequential decision process. This conversion
occurs by instantiating both a process which samples space and a process which selects
controls that generate the desired motions between these samples. The search space
then consists of a set of states and a set of controls which connect them.

Such a representation defines an embedded graph where the states are the nodes
and the controls are the edges. The indegree and outdegree of a node are defined



respectively as the number of edges entering and leaving the node. In this graph, motion
planning becomes a process of making decisions (of which control should be executed
next) at the nodes, as those nodes are encountered during the search for a solution. It
is often possible to elaborate the search space in a lazy fashion, as the search proceeds,
leading to memory requirements which only grow directly with the number of nodes
encountered.

2.2 Configuration and State Spaces

One of the basic operations of motion planning is that of testing a candidate path for
collision, or more generally, for its utility or cost score. For this operation to be well
defined, the paths to be tested for collision must be expressed in configuration space (C'
space) so that the position of every part of the vehicle is fully determined everywhere
on a path. It is almost universal to formulate motion planning problems in configuration
space, consisting of perhaps position and heading (x,y, #) in the plane or in the local
terrain tangent plane.

However, C space is often not of sufficiently high dimension to represent all of the
differential constraints which a feasible path must satisfy. For the purpose of encoding
such constraints, state space, which might add dimensions of curvature, , or velocity,
v, to configuration space, is needed.

2.3 Sampled Representations and Spatial Equivalence Classes

In problems where analytic representations are not convenient, a second useful step
in problem formulation is to establish spatial equivalence classes in order to avoid
attempting to search the entire continuum. Under this approach, an arbitrary state is
identified with some canonical state which represents all of the space in the local region
around it. This discretization can be accomplished either by an explicit association or
by a choice of controls (edges) which guarantees that only the canonical states will be
encountered as decision points during the search. It is natural to extend this concept to
apply to paths as well. If regions surrounding the endpoints of a path are considered
equivalent, the same rule could apply to all states forming the path. This leads to an
equivalence class of paths that includes all that can be contained within a contiguous
region in configuration space (Figure 1). Consider two paths 7; and 7 with identical
endpoints. Path 7; will be considered to be equivalent to path 7 if 7; is entirely con-
tained within a region @ around 7. The region @ is defined as the set of configurations
within a distance § determined by some metric p:

Vger,Vq €m,Q=q:plq,q)<d 6]

One of the most basic trade-offs in sampling-based motion planning is that between
the computational complexity and the sampling resolution. In return for the reduced
complexity of lower resolutions, we must accept the possibility that solutions requiring
close approaches to obstacles cannot be resolved as resolution decreases.



Figure 1: Spatial Equivalence Classes for Points and Paths. All of space in a rectangloid
in C' space is placed in an equivalence class represented by the point at the center.
Similarly, all paths contained within the swath swept by a cell following a path can be
placed in an equivalence class of paths.

2.4 Regular Lattices and Grids

Although there are alternatives of a probabilistic nature, this work considers deter-
ministic sampling mechanisms which produce regular lattices of states. A principal
advantage of regular sampling is the fact that any control which joins two given states
will also join many other pairs of identically arranged states, because such pairs occur
throughout the search space. Through an application of the same argument to all paths
joining any node to its neighbors, it becomes clear that the same set of controls emanat-
ing in a repeating unit from a given state can be applied at every other instance of the
repeating unit. Therefore, in this case of a regular lattice, the information encoding the
connectivity of the search space (ignoring obstacles) can be precomputed, and it can be
stored compactly in terms of a canonical set of repeated primitive motions, henceforth
referred to as a control set.

Figure 2: Regular Lattices. Top: rectangular, diamond, and triangular (hexagonal)
lattices. Bottom Left: Controls for a 4-connected lattice. Bottom Right: Discontinuous
heading change.

The simplest case of a regular lattice is a rectangular grid (Figure 2). In this case,
it is common to use a control set consisting of north, south, east, and west motions to
create a "4-connected” graph. While this is straightforward, the transitions between
controls that occur at the nodes can be problematic in practice. Consider, for example,
a path which enters a node from the south (i.e. heading north) and then leaves toward



the east. When heading changes across a node in a generated path, its execution at any
nonzero linear velocity implies an instantaneous (and therefore impossible) heading
change. Similarly, even a transition between two different curvatures at the same head-
ing is infeasible at nonzero velocity. The elimination of such infeasible plans requires
a mechanism to enforce continuity at the nodes.

2.5 Feasible Lattices

If the connections between nodes in a graph are to represent feasible motions, paths
leaving a node toward the north (implied by entering from the south) will not be able to
connect via the same paths to exactly the same states as paths leaving toward the east. If
two states at the same position but of two different headings are connected differently to
their neighbors, they are distinct states from a sequential planning perspective. If they
are distinct states, entry and exit headings will agree by construction. Pure rotations, if
possible, would be represented explicitly in the graph by appropriate edges.

By this argument, enforcing heading continuity requires that heading be included
among the dimensions of the search space. Similarly, if velocity or curvature continuity
were desired, these dimensions would also have to be added, as was hinted in Section
2.2. Note that inclusion in the dimensions means only that (z1,y1,61) and (z1, y1, 62)
will be considered distinct states - not that either will necessarily ever be explicitly
stored in memory.

Once a node and its neighbors are considered to be points in configuration space,
the node at (x;,y;) becomes a line of nodes arranged along the new heading axis. If
the embedded graph is to encode any optional paths, the number of edges in the graph
must also grow so that each of the new nodes has an outdegree greater than unity.
Since the start and the end of an edge may now have different headings, the controls
involved no longer result in straight lines. A simple example of such a search space is
the reachability graph of a special version of the Reeds-Shepp car (Figure 3).

3 The State Lattice

The search space will be called a state lattice and it will be constructed according to
the principles outlined above. The concept is similar to a grid but:

e 3D, 4D or even higher dimensional spaces will be used in order to enforce conti-
nuity constraints at nodes (i.e. to avoid 90 degree turns). In this way, transitions
between controls will remain feasible.

e States will be connected to some of their immediate neighbors using only feasible
motions. In this way, transitions between states will remain feasible.

On the basis of the above, the search space will encode only feasible motions.
States are chosen to exhibit the regular structure of a lattice. For example, for the 4D
state space consisting of position, heading, and curvature, this formally means that if
the motion:

(20, Yo, 0o, Kol — @, ys,0f, iyl



Figure 3: A 3D Search Space. The Reeds-Shepp car can move forward and backward
and it can drive straight or turn left or right at a fixed curvature. This control set is de-
rived from these basic controls by carefully choosing their length. Left: The carefully
chosen control set precisely hits nodes in a rectangular grid. Center: The reachability
tree to depth 2. Right: The reachability tree obtained by copying the control set at
every node in a C' space with 4 headings. Each dot represents 4 distinct nodes. While
this search space will not generate a turn exceeding the maximum curvature, and while
heading is continuous across nodes, the instantaneous transitions among curvatures at
the nodes do not respect steering rate limitations.

is feasible, then so is the motion:
[0 + 1Az, yo + 1Ay, Oy, ko] — [xf + 1Az, yr + 1Ay, 0f, K]

for any integers (7, j) and steps (Az, Ay) corresponding to the size of the repeating
unit. Rotational symmetries will be similarly exploited.

3.1 Modeling Vehicle Maneuverability

The generation of a control set requires a capacity to solve the two point boundary
value problem of trajectory generation which can be formulated as follows. Let x
denote the state vector of the system and let v denote the control input. The vehicle
system satisfies some nonlinear dynamics which are generally of the form:

&= f(z,y,1) @)

This differential equation embodies the vehicle model - how the vehicle moves based
on its control inputs.

The trajectory generation problem is that of solving for a control which causes
the vehicle to move from a start state xy to some terminal state xy. The balance of
the paper will assume the existence of such an algorithm. The solution used in the
implementation discussed below is based on [26].

While it is not necessarily the case that only one distinct feasible motion exists be-
tween two well separated states, the trajectory generator will be configured to produce
exactly one, or report failure (meaning that no such motion exists). This limitation may
be relaxed by computing a family of solutions and retaining only the sufficiently dis-
tinct members. For example, in the case of a 4D configuration space for an Ackerman
steer vehicle, a unique solution is generated by finding cubic curvature polynomials,



e.g. equation 3. Such path parametrization will be used in the examples in this report,
unless otherwise noted.

k(s) =a+bs+ cs® +ds? 3)

Edges in the graph can be annotated with the parameter vector of the polynomial
in order to describe the motion between the involved states. Many other alternative
representations are possible with this trajectory generation algorithm. Using the trajec-
tory generators mentioned above, trajectories are computed in sub-millisecond times.
Thus, thousands of trajectories can be processed in a reasonable time period to pro-
duce a control set off-line for a specified vehicle model and choice of configuration
parameters.

3.2 Desiderata and Design Approach

Numerous design freedoms related to the layout of the states and the controls remain
even after the above guidelines are followed. It therefore becomes natural to ask: which
design is best in some overall sense? Two distinct designs could be compared on the
basis of:

1. Directivity: How short are shortest encoded paths (in the absence of obstacles)
to those that would be generated if resolution were infinite?

2. Penetrability: How likely is a given search space to be able to penetrate a field
of obstacles?

3. Complexity: How much computation is required to solve a particular planning
query?

Typically trade-offs exist between all of the criteria in any design problem. The
optimal design problem is that of finding the best design given some, potentially ap-
plication dependent, weighted measures of them all. For the sake of generality, no
optimal design will be attempted here, because the basis for such optimality would re-
quire assuming a particular application. However, the design will at least be somewhat
principled.

A rectangular grid is chosen in part to enable comparisons to other planners later in
the article. Then, on the basis of item 1., it seems that non-uniform heading sampling
is the best approach with no significant negative consequences, as described in the
following section, so it will be adopted. In an attempt to address both 2. and 3., the
paths will be organized into equivalence classes based on their mutual separation. The
elimination of all but one path in each class will achieve similar penetrability to the
entire class but with much reduced computation. The resulting control set will then be
minimal with regard to the definition of equivalence used.

3.3 Sampling the Heading Dimension

Once heading is a bona fide dimension, the question of how to sample that dimension
arises. The search space in Figure 3 is incapable of generating a path, or a portion of
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a path, which is oriented diagonally. Clearly this can lead to inefficient plans when
the start and goal configurations lie on or near a diagonal. This consideration is also a
reason to prefer an 8-connected grid to a 4-connected one.

However, given the advantage of more heading samples, it becomes natural to ask:
why stop at 8?7 Indeed for any sampling, there always remains a direction which is
reproduced with least efficiency in the sampled representation. Each heading sample
creates new options for connecting neighboring states more directly. However, this
advantage comes at the expense of increased planning computation due to the increased
outdegree of each node in the graph (the extra headings make more nodes available to
be reached from a given node).

In a rectangular grid, regular sampling in heading leads to incapacity to generate
straight lines in any direction other than principal and diagonal ones. An irregular
sampling of heading is better from this perspective. Generally a line at orientation 6
will intersect a node if it satisfies § = arctan(s, j) for any two integers ¢ and j. Hence,
an irregular sampling of heading is preferred for a lattice, where the nodes are arranged
in a rectangular grid.

4 Primitive Control Sets

4.1 Extended Neighborhoods

The search space in Figure 3 is useful, because a simple set of controls can be used
to search the entire, unlimited state lattice, while it is not even explicitly represented.
Furthermore, the precise relationship between controls and states makes it possible to
redirect back-pointers in heuristic search while maintaining continuity of the solution.
Despite this, this control set is not practical in a dense obstacle field. The sampling
density ideally should not be driven by the controls, but by the obstacle density (the
narrowest corridor that must be traversed). If the sampling density is increased, the
nodes move closer together. Then, it becomes impossible to connect a state to any of
its immediate neighbors other than the one to which it is pointing, due to an upper
bound on curvature - which might arise for mechanical or safety reasons.

With an outdegree of unity, the search space then collapses into a set of indepen-
dent disconnected straight pathways. In order to maintain a discrete search space, it
becomes necessary to permit nodes to connect to other nearby nodes which are not
immediately adjacent. Once such extended neighborhoods are permitted, the graph
generated by applying the resulting control set at every node makes it possible to gen-
erate complicated maneuvers such as those used in parallel parking.

With this intuition we will now build upon the developed concept of a control set for
a Reeds-Shepp car and extend it to the general case. Once the extended neighborhoods
are permitted in control sets, a few issues arise. It remains to be determined:

e how far the neighborhood should be extended.

e whether a central node should connect to all or only some of the neighbors in the
extended neighborhood.

We will address these issues in the following sections.
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4.2 Redundant Controls and Path Decomposition

When all local neighbors are connected to a central node, redundancy and near re-
dundancy of controls becomes more apparent and more prevalent as the size of the
neighborhood increases. In Figure 4, for example, under a policy of retaining only one
path in an equivalence class of paths (Figure 1), the long control in the left figure would
be declared redundant and eliminated. The motivation for doing so is that significant
computation can be saved while not losing the capacity to generate any paths which are
sufficiently distinct from the ones encoded in the reduced control set.

" " FF RN
T4 % & & 7 &

Figure 4: Redundant Controls. Left: The enlarged nodes are almost on the path of a
control which is bound for a more distant node. Center: If all of the local neighbors
are connected to the center, these particular controls will also be present. Right: A
composition of two of the controls in the center figure is a very good approximation to
each control in the left figure.

Guided by this motivation, we define a process of path decomposition, whereby if
an edge between two nodes is sufficiently close to a third node (in position, heading,
and any other state variables) somewhere along the edge, the edge is considered to be
decomposable into two component edges. The first component edge joins the start to
the intermediate node and the second joins the intermediate node to the end node (see
Figure 5). Strictly speaking, two trajectories with nearly coincident endpoints are not
guaranteed to be nearly coincident everywhere along their length unless the trajectory
generator or the representation has this property. If this is not the case, the test for
decomposition can include an explicit computation of the distance between the old and
the new paths.

We also introduce a decomposition threshold, which denotes a certain distance us-
ing a metric in effect in the given state space. If a path comes within this distance to
a lattice node, it is declared decomposable at that node. The process of path decom-
position is strongly related to path discretization treated in Section 2.3. In fact, the
path is decomposed only if the concatenation of two sub-paths belongs to the same
equivalence class. The sub-paths can themselves also be decomposed recursively.

4.3 Generating Primitive Control Sets with Path Sampling

The discussion thus far has treated the state lattice as an operational data structure used
to represent a state space as a graph. In the generative formulation used so far, the
lattice is constructed from the control set by copying the control set to all regularly
arranged nodes. This section takes an opposite reductionist view. In this view the
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Figure 5: Path Decomposition. Left: The enlarged node is almost on the path. Right:
The composition of two controls which pass precisely through the node is in the same
equivalence class as the original path so it is used to replace the original. Since the
entire path is displaced at the point of decomposition, a closeness threshold smaller
than a cell applies when comparing paths instead of points.

control set is constructed by systematically eliminating all redundant motions from a
conceptual ideal state lattice. This process of path sampling, produces a discretization
of all of the paths in the ideal lattice. Suppose that this ideal lattice somehow originally
contains all feasible motions connecting every state to every other reachable state. Path
decomposition can then be used to develop a primitive control set for a state lattice.

Since the structure is regular, the generation of a primitive control set is accom-
plished conceptually by choosing an origin, since all motions emanating from it, if
feasible, must emanate from every other state. In this case an origin is the set of all
nodes (of differing headings, curvatures etc) at the same position. Next we choose a
decomposition threshold, and sequentially decompose all feasible motions emanating
from that origin. Any generated sub-paths that cannot be further decomposed are stored
in a unique set of primitives (i.e. repetitions are discarded). When no more motions are
decomposable, the unique set of remaining primitives is the control set which encodes
all feasible motions up to a resolution consistent with the decomposition threshold used
for path sampling.

Clearly, this process will have discretized and approximated the ideal state lattice,
but the hope is that the fundamental expressiveness will have been retained while dras-
tically reducing the complexity of the search space. To a constructionist, the real test
is to now regenerate the lattice from the control set and compare it to the original. The
path discretization encoded in the decomposition threshold controls the fidelity of the
reconstruction. A smaller threshold leads to more controls and a better reconstruction.
Conversely a larger threshold leads to less controls and a poorer reconstruction. The
selection of a good decomposition threshold depends on the application. At one ex-
treme, the decomposition threshold should be somewhat less than the separation of the
lattice nodes. A value larger than this will produce effects similar to those mentioned
in Section 4.1: the search space will collapse into a set of independent disconnected
straight pathways.

In addition to its consistency with state sampling, path sampling can be justified
by the behavior of real robots: path sampling thresholds can be related to the non-zero
path following error of physical vehicles. Path following error must be accepted at
execution time anyway, so it is wasteful to spend computing resources computing a

13



motion plan that is overly precise.

As was mentioned, the control set will be used in the node expansion of the search
process. The number of controls is the node outdegree. Therefore, there is a clear
trade-off between the quality of the control set and the efficiency of search. The de-
composition threshold is a parameter that a designer can control in favoring either the
quality of representation or the speed of search. This speed-resolution trade-off is per-
vasive in discrete motion planning. A reasonable initial guess for the decomposition
threshold that we have verified experimentally is an order of magnitude less than the
distance between lattice nodes.

At this point we have described a conceptual process to decompose an ideal state
lattice into something practical. However, it is not clear how this ideal lattice can be
produced before it is pruned, and it is not clear that a finite control set necessarily
results from the above decomposition process. In the following section we present
the algorithm to obtain a practical set of primitive controls based on two additional
assumptions. First, we reduce the size of the ideal lattice to that of a local neighborhood
of a canonical node, but that neighborhood is shown to be enough to approximate the
entire space. Second, we decompose only the unique motion to each neighbor which
is produced by our trajectory generator. This second assumption can be removed with
additional effort to elaborate the space of all distinct motions with fixed end states.

4.4 Automatic Generation of the Control Set

To recap, given a suitable trajectory generator, it becomes possible to connect any
state in a lattice to all of its immediate neighbors by a feasible motion, if such a motion
exists. In this section we present a practical formulation of the algorithm for generating
a control set.

A key concept of this formulation is radiation from the central node. Suppose the
control set edges are generated in order of increasing radius from the origin. Suppose
further that each edge is tested immediately after generation for passing sufficiently
close to an intermediate node. If it does, and if the component motions are feasible,
then these component motions must already be in the control set because they must be
shorter and all shorter feasible motions have already been generated or themselves de-
composed. Radiation also solves the question of how large the neighborhood should be
because, eventually, and barring a few pathological cases, all edges are decomposable
at some radius and the process terminates.

The process starts at the central node set. This set includes all of the nodes at the
center position with different headings. First, every node in the central set is tested
against every immediately adjacent node (those of Manhattan distance of unity) to
see if a feasible motion connecting the two exists. There are 4 immediately adjacent
positions in a rectangular grid, and each position will have a node for each heading
sample. Next, the central nodes are tested against the nodes which are one more unit
away. When a feasible motion exists, it is tested to see if it passes sufficiently close
to an intermediate node to decompose the path. There is no guarantee that the two
components are feasible, but if they are, and if their composition is sufficiently close to
the original, the original is discarded. The essential algorithm is as follows:
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Algorithm 1

01 ControlSet = Empty

02 Qi = Lattice Origin

03 R = 0// radius away from Qi

04 do{

05 R+=1;

06  FoundAtLeastOnePath = false

07  for each node Qf s.t. Manhattan(Qi,Qf)==R
08 OrigPath = FindInLattice(Q1,Qf)

09 if(OrigPath was found)

10 gs =Qi

11 do {

12 gs=GetNextSampleAlongPath(OrigPath)
13 Nnear = GetNearestLatticeNode(qs)

14 SubP1 = FindInLattice(Qi,Nnear)

15 SubP1 = FindInLattice(Nnear,Qf)

16 if((SubP1 found OR SubP2 found) &&
17 OrigPath == (SubP1+SubP2))

18 break // goto 07: New OrigPath

19 } while (gs != Qf)

20 Add OrigPath to ControlSet //keep

21 FoundAtLeastOnePath = true

22 end if

23 end for

24 } while(FoundAtLeastOnePath)

On line 08, the path between the origin and a chosen node is verified to be feasible.
This could be done either by looking for the corresponding connection in an existing
lattice or by using a trajectory generator. The function GetNext SampleAlongPath
on line 12 steps along the path in small increments. These candidate points of decom-
position are checked on lines 16-17. If the subpaths are feasible and their concatenation
is equivalent to the original path, then the decomposition is successful, and the algo-
rithm moves to the next node. The variable FoundAtLeastOnePrimPath is a flag
that indicates whether any primitives were added at this value of Manhattan radius R. If
not, then all paths at this radius have been decomposed, and the algorithm terminates.

A few subtleties are not apparent in this code fragment:

e For vehicles of limited turn radius, it can be expedient to avoid generating edges
whose headings differ from the start node by more than, say, 90 degrees. Such
edges will not be a sufficiently direct connection of two nodes to qualify as a
primitive motion. Most will be decomposable anyway.

e Again for vehicles of limited turn radius, the radius from the origin is not guar-
anteed to be monotone with arc length. In these cases it may be advisable to
sort the nodes by arc length rather than Manhattan distance in order to satisfy the
assumptions underlying the basic induction. Since arc length is not known until
trajectories are generated, this approach requires that all be generated, stored,
and sorted before the algorithm starts the elimination pass.
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e The test that the decomposition matches the original is intended to mitigate two
effects. First, it may not be the case that two trajectories with similar endpoints
are sufficiently close together everywhere to be deemed equivalent. It depends
on the properties of the trajectory generator. Second, the equivalence test is
not necessarily transitive. If one trajectory is decomposed into two others and
one of the two is itself decomposed, the path differences accumulate. The test
FindInLattice must be designed to return true even when the tested path
was decomposed.

An example control set generated with this algorithm is provided in Figure 6.

Figure 6: Ackerman Steer Control Set. There are sixteen distinct nodes at the origin
corresponding to four nodes at multiples of 0°, four at reflections of 26.6°, four at
multiples of 45°, and four at reflections of 63.4°.

S Motion Planning using Control Sets

This section is devoted to a detailed discussion of constrained motion planning using
control sets. As was mentioned earlier, the essential principle of the present approach
is that, with the definition of the search space we have constructed, motion planning is
reduced to unconstrained search in this space.

5.1 Search Algorithm

Since the control set is an implicit representation of the search space, the search graph
can be incrementally constructed so that only the states that are explored by the search
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are stored in memory. Any systematic graph search algorithm is appropriate for finding
a path in the lattice. Many types of search, such as greedy algorithms and dynamic
programming, are acceptable. It is typically desired that the planner return optimal
paths with respect to the desired cost criterion (e.g. time, energy or path length) and
it be efficient. The A* heuristic search algorithm was used in this work because it
satisfies these requirements.

A brief review of A* is useful for later reference. A* maintains two state lists,
CLOSED and OPEN. Under an appropriate set of assumptions, the CLOSED list con-
sists of states to which the least costly path is known. The OPEN list is the set of states
to which paths have been found that are not known to be the least expensive; it is sorted
by the estimated total traversal cost from start to goal via each state in the list. During
each step of the search, the state with the shortest path estimate is removed from the
OPEN list, expanded, and moved to CLOSED. The expansion process involves follow-
ing each outgoing edge to its terminal state, which is added to the OPEN list in turn.
Since the graph is dynamically constructed, it is not known beforehand which edges
in the control set collide with obstacles. During each expansion, the cost of each edge
is computed by convolution, a process of placing the vehicle frame (i.e. its geometric
model) along the path in short successive intervals and sampling the cost of each pose
by integrating the cost over the area covered by the vehicle. Convolution is performed
in the workspace rather than by performing a line integral in C' space because in the
general case, computing the appropriate C' space expansion would be more costly.

Next we analyze the features of the motion planner based on such search, and in
later sections we look at portions of it in more detail. Considerable attention is devoted
to estimation of the heuristic in Section 5.5. A heuristic which is as accurate as possible
dramatically improves search efficiency.

5.2 Qualities of Motion Planning in State Lattices

In previous sections we have discussed in detail that discretization of states, controls
and resulting paths plays an important role in our approach. It allows simplifying
the motion planning problem on many levels: from transforming the continuum of
paths into a discretized state lattice, then into finite set of primitive controls. In this
progression, we observe that the quality of this discretization is dictated by the chosen
resolution. If, hypothetically, the resolution were allowed to increase without limit, it
is not hard to see that the state lattice and the corresponding control set, if recomputed
at each resolution level, would in turn approach the continuum. Thus, we conclude that
the presented method of motion planning, based on a systematic search, is resolution-
complete.

Another important quality to be considered is optimality (with respect to path
length, since a kinematics vehicle mobility model has been considered so far). This
property is also closely related to the notion of discretization, and the corresponding
resolution, that permeates this work. We have seen in Section 4.3 that the choice of de-
composition threshold affects the quality with which a control set represents the ideal
state lattice, and so it is with the resolution of the corresponding discretization. If the
limit of this resolution were set at infinity, we would obtain a perfect representation of
the ideal state lattice at infinite resolution - the continuum. Therefore, assuming that
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an admissible heuristic is used in the search, we conclude that the present approach
exhibits resolution-optimality. It is possible, in principle, to plan paths that approach
optimal paths arbitrarily closely.

In practical implementations, these considerations translate into a capability to effi-
ciently generate motion plans that are optimal up to the chosen discretization. The user
has the power to control the closeness to optimality through the decomposition thresh-
old parameter. This is another benefit of the approach, and a novelty, to our knowledge.
In an extended experimental study described in Section 6, we have observed that the
algorithm typically returns paths that are practically indiscernible from optimal.

5.3 Implementation Considerations

In this section we describe several techniques that are helpful for improving the effi-
ciency of the implemented motion planner.

If the terrain shape is known sufficiently well at planning time, the terrain-aware
version of the trajectory generator [26] can be used to generate unique versions of each
edge encountered during the search. This is, of course, more computationally expen-
sive than assuming flat terrain and using the precomputed, terrain independent control
set, but it is important to note that the planner incorporates an integral trajectory gener-
ator which allows it to function correctly in rough terrain. In most realistic situations,
the environment is not known perfectly at planning time. In the case of terrain shape, it
is practical to regenerate each of the edges of the solution path as the terrain involved
enters the field of view of the terrain sensors. It is possible in the worst case for an
edge that was created for flat terrain to become infeasible on rough terrain. However,
this case is no different than the appearance of an unknown obstacle, and a replanning
strategy would presumably already be in place to handle such events.

When velocity is added to the state space, the planner can also plan high speed
motions using a control set that is aware of dynamic effects. Turns would become pro-
gressively less ambitious as velocities increase but a different topology would emerge
naturally in the control set at the higher speeds. Of course, the approach is not immune
to the curse of dimensionality but such high dimensional spaces could be employed at
least for local obstacle avoidance planning.

The performance of our implementation of A* was improved by a modification to
the expansion step. Convolution takes a substantial portion of the algorithm’s runtime,
as is the case with other sampling based planners, including probabilistic roadmaps
[51]. Convolution was delayed in our implementation by substituting the curve’s min-
imum possible cost for its score, until its terminal state is selected for expansion from
the OPEN list. At this point, the edge has its true cost computed via convolution. If
it does not run into an obstacle, the score is computed so that it can be compared with
the next best state on the OPEN list and reinserted if necessary. This procedure still
guarantees optimality since an optimistic estimate of the curve’s true cost is used, but
it avoids expending unnecessary effort due to the fact that only one edge out of many
from each expansion is actually needed for the solution. In environments where the
cost density of the terrain is nearly constant, this technique causes little overhead since
the true path cost is nearly proportional to path length. This optimization is particularly
valuable for the state lattice, where the outdegree may be high and edges can be rela-
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tively long. While in general, it is necessary to evaluate full cost of all members of the
OPEN list, we found that in the binary obstacle environments, this technique resulted
in appreciable speed-ups.

Lastly, to improve the efficiency of our implementation of A*, we found it useful
to use a dual heap-table data structure for OPEN and CLOSED. The heap was used for
all typical operations, while the table was set to contain a copy of the heap’s data. Each
cell of the table was one float for the cost of the corresponding lattice node. In such
a way, queries to the CLOSED list as to whether a node was previously visited could
be computed in constant time. The overhead cost to maintain this data structure were
shown to be much less than its gain.

In order to compute the overall cost of a node in the OPEN list, A* also requires a
heuristic function to estimate the remaining cost-to-goal. For optimality, A* requires
that the heuristic must return an underestimate on every possible query. For efficiency,
the estimate should be as close to the true cost as possible. In the case of the state
lattice, this turns out to be a difficult problem, though a surmountable one, as outlined
below.

5.4 Heuristic Cost Estimate

The heuristic function required by A* estimates the cost-to-goal from any state encoun-
tered during search. In estimating this cost, most heuristics cannot take terrain variation
into account. In the absence of such terrain-specific cost information, the best that can
be done is compute a minimum cost that is directly proportional (by minimum cost per
unit distance) to distance traversed. Therefore, distance will be used interchangeably
with cost in the rest of this discussion.

Among the simplest options for a heuristic estimate in the state lattice is the Eu-
clidean distance metric. This function is computationally efficient and it satisfies the
admissibility requirement of A*. However, in many cases, it vastly underestimates the
true path length in the lattice, resulting in inefficient search.

A heuristic for a vehicle with limited turning radius moving in the plane could be
derived from methods of Reeds and Shepp [49] using only three controls: maximum
left, maximum right and straight. The authors offer a list of 48 formulas which enumer-
ate the shortest path for particular configurations of start and goal states. Cherif [18]
also used a heuristic consisting of CSC paths (where C is a circular arc of minimum
admissible radius and S is a straight line).

However, even the Reeds-Shepp heuristic is too much of an underestimate for some
lattice control sets, and hence the resulting search is not as efficient as possible. The
effects of discretization on path optimality, considered in Section 5.2, contribute to
the fact that paths in the lattice may be slightly longer than what a vehicle moving
continuously in the plane could actually accomplish. Additionally, the Reeds-Shepp
paths are discontinuous in curvature (i.e. infeasible to execute), resulting in further
underestimates. Therefore, to generate the perfect heuristic distance function for the
state lattice, it is necessary to incorporate information about the structure of its control
set.
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5.5 Heuristic Look-Up Table

Given ample computational resources, a straight-forward and, more importantly, an
effective way to predict path costs is to pre-compute and store the actual costs that
planner will need, using the planner itself. Such a Heuristic Look-Up Table (HLUT)
can be imagined as a large multi-dimensional array of real-valued query costs. As-
suming that such a table could be generated, the invocation of the heuristic function
becomes a simple table dereference.

Like most other heuristic functions, the HLUT cannot take into account obstacles
or other terrain variation when precomputing queries, so an obstacle-free policy must
be assumed. The HLUT discussed here is designed for an Ackerman steered vehicle,
but the techniques are applicable to any control set for any type of vehicle with any
kind of differential constraints. The notion of an HLUT suggests some issues to be
considered, namely the utility of a table of reasonable size, the amount of time required
for generating it, as well as the policy for heuristic queries which are not in the table.

5.5.1 Constructing the Heuristic Look-Up Table

The memory issue can be addressed merely by exploiting symmetries in the lattice
control set to reduce duplicate information. Those symmetries include translation, ro-
tation and reflection (Figure 7). Because the discretization of the lattice is regular in
position, all queries can be treated as if they originate from the origin. Only a subset of
possible initial headings needs to be generated. For example, if the control set exhibits
8-axis symmetry, it is sufficient to precompute only 1/8th + 1 discrete initial headings.
Finally, many goal states are redundant. For instance, with an initial heading of zero,
there is symmetry about the x-axis. With all of these massive space savings, a useable
size HLUT can be stored in 200,000 entries, consuming perhaps 2.5MB.

~ O <

Figure 7: Symmetries of the State Lattice. Many different lattice edges and combi-
nations of edges are equivalent under a small set of transformations. Exploitation of
these properties dramatically reduces the total size of the HLUT. Symmetries shown
from left to right: translation, rotation, and reflection.

To generate such a table requires solving many A* queries. If an average A* lattice
planning query with the Euclidean heuristic takes about 0.1 second, then generating
200,000 entries by the most naive method would require more than five hours. Fortu-
nately, several properties of A* allow the table to be populated much more efficiently.
When a search is performed, much more is learned about the graph than just the final
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path length. Every time a state is expanded and put on the CLOSED list, the lowest
cost path to that state is known, so another optimal query cost can be inserted into the
HLUT. Secondarily, it is wasteful to delete the A* lists and start from scratch between
queries, as these lists contain valuable state. The CLOSED list can be reused as-is, but
the OPEN list is sorted according to distance estimates to the old goal state. Depending
on the size of the OPEN list, it may be cheaper to delete it and begin anew or to recom-
pute each estimate according to the new goal location. For a particular implementation,
this cut-off was found to occur at approximately 150,000 OPEN states, so that several
queries can be processed in a row before the lists need to be expunged. Finally, the
order in which queries are populated in the HLUT has a significant effect, because the
exact solutions of earlier queries can be used as a heuristic in later queries. The issue
of population of the table is considered below.

The look-up table cannot be infinite in size. Therefore, some queries will occur for
which no entry exists in the table. An alternative backup heuristic such as Euclidean
distance must, of course, already be in use for purposes of generating the HLUT. It
can also be used to satisfy queries missing from the table during planning. Doing so is
easily justified by the fact that Euclidean heuristic gives better approximations on more
distant queries.

When generating the table, there must be some termination condition. Such a con-
dition should be automatic, principled, and tunable according to the needs of various
applications. This issue really breaks down into two separate questions. First, which
queries should be included or excluded? And second, how many entries should be
included?

To answer the first question, it is helpful to define the trim ratio as the ratio of the
backup heuristic’s estimate for a particular query to the true path cost which the HLUT
would include for that query. There are two considerations for including a particular
entry in the HLUT. Queries with low trim ratios should be included because the backup
heuristic does a poor job of estimating them (hence, they should be “trimmed” last).
Secondly, frequently needed queries should be included for the sake of efficiency, since
failing over to the backup heuristic results in loss of efficiency. Figure 8 shows trim
ratios in a slice of the HLUT where initial and final headings are zero for each query.
Note that paths into dark regions (of low trim ratio) would correspond to compositions
of maneuvers which result in ultimate sideways motion. These are the queries whose
costs are most valuable to have stored in the HLUT.

When performing A* searches to populate the look-up table, an important con-
sideration is the order in which queries are performed. Ordering affects the ultimate
selection of queries due to the inclusion of all states on the CLOSED list. Also, the
ability to reuse previously computed state varies considerably with ordering of queries.
Three different approaches to HLUT population are considered below.

5.5.2 Populating the Heuristic Look-Up Table

The simplest method of look-up table population is the naive approach, which iterates
through each entry in the table in a raster-scan fashion. The result of A* when run on
each query is inserted in order. This is the slowest of the methods which were tested.
It does not share significant state between sequential queries, and the most difficult
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Figure 8: Visualization of HLUT. This cross-section of an example 4D HLUT shows
a slice of paths from the origin to various (x,y) positions in which 6y = 65 = 0.
Brightness represents trim ratio, the ratio of Euclidean distance / nonholonomic path
length. Dark regions correspond to low ratios.

queries are presented to the planner first, when no HLUT has yet been built up to
improve performance.

The table can be populated much faster by the use of Dijkstra’s algorithm. In this
approach, the search is run in such a way that the next node expanded in the graph is
always the unexpanded node closest in cost to the origin. This algorithm very quickly
populates many HLUT entries, but those states are the easiest ones to reach, meaning
that they generally have higher trim levels (Figure 9). The Dijkstra’s search can be
terminated at an arbitrary time.

-

Figure 9: Populating the HLUT Using Dijkstra’s Algorithm. Expansion of the lowest
cost unexpanded state in the tree is an efficient way of finding the shortest distance to
many states at once.

The final method, brushfire, is more principled in that it selects first those queries
with the lowest trim levels. This algorithm maintains a HORIZON list of queries sorted
by trim level, similar to the way in which A*’s OPEN list is sorted by cost. The
HORIZON list is initially populated with queries in which both states are at the origin
in every combination of initial and final heading. Each is assigned a trim ratio of 0.0,
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since that is the Euclidean distance between overlapping points in a plane. During
each iteration, the lowest-valued query is popped from the HORIZON list and given to
A*. Each neighboring state in the (x,y)-plane (with the same orientation) is pushed
onto the HORIZON list and sorted according to its parent’s trim ratio. The ratio of
the parent state is used since the exact cost of the query is required and it isn’t yet
known for the child. The brushfire algorithm terminates when a desired trim level is
reached. The process is depicted graphically in Figure 10; note that symmetry can be
considered to speed up the algorithm. In order for this method to find all states below a
given trim level, it must be possible to draw a path outward from the origin through an
arbitrary state such that the trim ratio increases monotonically along the path (Figure
11). Brushfire is a faster algorithm than the naive approach because it makes better use
of precomputed state, but it is slower than Dijkstra’s algorithm because it requires A*
list resets.

Figure 10: Growth of HLUT in Brushfire. As the HORIZON grows outward, queries
of higher trim ratio are incorporated into the HLUT.

The Dijkstra’s search algorithms may leave gaps in the HLUT, as shown in Figure 9,
while the two slower techniques produce dense results. A gap occurs in the table when
an entry is absent but is surrounded by neighboring entries which are included. Gaps
are undesirable because they result in less predictable search time among potential A*
queries using the heuristic. Furthermore, a major underestimate resulting from falling
back to a backup heuristic due to a gap causes a false lead for A*, which would then
expend a lot of unnecessary search time.

In order to fully populate the HLUT as quickly as possible while retaining desired
properties, a combination of methods can be used. First, Dijkstra’s algorithm fills in
the majority of the HLUT. Then the gaps are filled in using the brushfire method. In
this case, brushfire skips over those queries which were previously filled in to avoid
duplication of effort.

Taken together, these techniques are remarkably efficient. Table 1 shows computa-
tion time required to generate several different sizes of HLUT on an ordinary desktop
computer. Each size look-up table was produced by performing Dijkstra’s algorithm
out to some size (ranging from 70 to 90 cells depending on the desired trim ratio), and
then running the brushfire algorithm to fill in the gaps.
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Figure 11: Monotonicity of Trim Level. Several example paths are shown in the (z, y)-
plane which are monotonic in trim level. Every point in the plane must have at least
one such path which passes through it in order for the brushfire algorithm to populate
the HLUT with all queries below a certain trim level.

Trim ratio | HLUT entries | Generation time (mm:ss)
0.6 202,338 1:15
0.7 365,345 3:28
0.8 648,877 13:33

Table 1: Generating the HLUT. Through a combination of techniques, sizable heuristic
look-up tables can be generated efficiently. The runs shown here were performed on a
3 GHz Pentium 4.

6 Results

A large set of experiments was conducted on the planner in order to assess its perfor-
mance. These experiments invoke the planner with a number of queries in a variety
of configurations. Here we compare our planner with other algorithms: the basic grid-
based planner (on 4-, 8-, and 16-connected grids) and the well-known Barraquand and
Latombe (BL) nonholonomic planner [9]. In doing so, we attempted to level the play-
ing field for fair comparison. Therefore, the same implementation of A* was used for
all algorithms. The primary differences were in the node expansions, and the cost and
heuristic estimates. For the former, we have adopted a notion of a generalized con-
trol set: for the grid search it is simply a grid-based node expansion (straight paths),
whereas for the BL planner it is the node expansion as described in that work. The first
set of tests looks at how the sample lattice control set performs in comparison to other
types of generalized control sets. Next the impact of the heuristic look-up table on state
lattice performance is examined.
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6.1 Experimental Setup

A representative lattice control set was used in all tests. Its state space consisted of
the 2D translational coordinates, heading and curvature (x,y,0, ). For the sake of
simplicity, curvature was constrained to be zero at each discrete state. This control set
is depicted in Figure 12.
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Figure 12: Lattice Control Set Used in Experiments. The state lattice control set se-
lected for testing has 16 discrete headings, a maximum curvature of 1/8 of cell, and an
average outdegree of 12, for a total of 192 curves. The straight edges cannot be seen
because they are obscured by the longer curved edges.

For these tests, a list of 10,000 random queries was generated, consisting of an
initial and final state, also expressed as position, heading, and curvature. The set of
queries was generated with the intent to require the planner to produce paths ranging
from simple (nearly straight paths) to complex (e.g. parallel parking or n-point turn
maneuvers) among obstacles. Each query was tested with a wide variety of config-
urations, including different obstacle fields, alternative control sets such as a grid or
Barraquand-Latombe, and A* heuristic functions.

Start and goal states were produced with a random number generator that pro-
vides evenly distributed real values in a requested range. Initial positions were selected
at random from the free space in order to produce the maximum possible variety of
queries. The goal position was then specified by a randomly selected radius and angle
specified in polar coordinates with respect to the start, repeating this step as necessary
to ensure that the goal is also in the free space. Initial and final headings were ran-
domly selected, and curvature at end-points was constrained to be zero. Goal states
were constrained to be no more than ten minimum turning radii (80 cells) from their
corresponding start states when projected onto x, y space.

Each query was tested in two worlds. In both worlds, cost to traverse free space was
held constant at 1 unit per cell of free space. Hence, path cost was equal to the distance
traveled. The baseline case was an obstacle-free world, meaning that the HLUT gave
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exact solutions for cost. Results were also obtained using a world with randomly placed
point obstacles, shown in Figure 13 with paths generated by two different planners.
These obstacles are the size of one map cell, which in this control set corresponds to
1/8th of the minimum turning radius. Points were generated with uniform distribution
and 5% density in the plane.

Figure 13: World with Obstacles. A portion of the world with point obstacles used in
the experiments is shown here. Two plans are shown which solve the same query. The
black line shows the plan generated by the state lattice, while the grey line traces the
path returned from the BL planner.

Metrics for performance included time, memory consumption, and the quality of
the resulting plan. In analyzing the performance of the planner, it is necessary to distin-
guish among the spectrum of queries ranging from simple to complex, as was suggested
above. In the case of a grid, Euclidean distance would be an appropriate measure of
difficulty. When planning in full state space, however, the length of the path followed
by a nonholonomic vehicle can vary widely even in cases where Euclidean distance
between the end-points is held constant.

In order to quantify the complexity of a particular query, the distinction is made
between absolute difficulty, which is proportional to path length, and relative difficulty,
which reflects how much the resulting path deviates from a straight line. Figure 14 il-
lustrates the two concepts. Both factors contribute to the overall resource requirements
for a particular planning problem. Absolute difficulty is measured here by the path
length. In the case of relative difficulty, the ratio of Euclidean distance / nonholonomic
distance was used. In this scale, values near one mean that the resulting path is nearly
a straight line, while those values nearest to zero indicate that much maneuvering is
necessary to reach the final pose. In the analyzes below, results are shown for queries
with absolute difficulty of 40 cells. This number was chosen arbitrarily for clarity of
presentation. Any other absolute difficulty would have conveyed similar results.

6.2 Comparison of the Lattice to Other Control Sets

In this section, a variety of alternative control sets are considered. In each set of cases,
the same framework is used, including an A* planner, heuristics, and world represen-
tation. The only distinction is the method by which neighboring states are generated
during the expansion step. A standard lattice control set, depicted in Figure 12, was
used across all tests. An overview of all the control sets which are considered here
is presented in Table 2. Conceptually, a control set with longer edges requires fewer
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Figure 14: Absolute and Relative Query Difficulty. The difficulty of a query can be
quantified in two dimensions. Each path, A, B, and C, starts at O. Query A is high
in absolute difficulty as well as relative difficulty because it is long and has multiple
cusps. B is simple in both measures. Query C has the same absolute difficulty as A
(same length), but the same relative difficulty as B (nearly a straight line).

expansion steps to reach the goal but a greater total length to integrate, proportional
to the outdegree. Correspondingly, a higher outdegree increases memory requirements
for the planner and computation in the expansion step, but also improves the chance of
finding a more direct route in fewer plan steps. Below, the best performing of several
combinations is empirically determined.

Control Set Total Edges | Ave. Edge Length | Ave. Outdegree
original control set 192 8.72 12

ctrl set w/ turn-in-place 224 7.47 14

BL 96 4.00 6

grid-4 4 1.00 4

grid-8 8 1.21 8
grid-16 16 1.72 16

Table 2: A Quantitative Look at the Control Sets. Parameters of a control set have a
strong influence on how the planner will perform while using them.

6.2.1 Comparison to a Grid Planner

The basic grid search method of planning does not consider heading, which leads to
several drawbacks. First, it is not clear what the heading state is unless two adjacent
states on the path are compared and even in this case, the heading can only have 4
values. Second, it is impossible to plan feasible paths for vehicles incapable of a point
turn. Third, heading continuity constraints cannot be enforced. A grid has nonetheless
been widely used due to its simplicity and efficiency.

But is this approach inherently faster than searching in a full-dimensional state
space? For this test, the planner was run with four different control sets, in each case
using a heuristic function which always returned the exact distance to the goal. The
basic state lattice was matched with a large HLUT. Three grid control sets were tested,
in which each state is connected to its 4, 8, and 16 nearest neighbors (Figure 15), using
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a perfect heuristic for each level of connectivity.
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Figure 15: Grid Control Sets. Three different grid control sets were tested. A point is
connected to the 4, 8, or 16 nearest neighbors that have unique headings.

Performance of the control sets in the absence of obstacles is shown in Figure 16.
In order to normalize the results, only queries of absolute difficulty equal to 40 cells
were used. The data are presented across a range of relative difficulty. In the absence
of obstacles, very interestingly, the lattice performs on par with basic grid search. Only
on most difficult queries, the lattice consumes more CPU time than a grid control set
because the nonholonomic path solution diverges more dramatically from a straight
line solution. Of course, for more difficult problems, the answer returned by the grid
is increasingly infeasible to execute on a real vehicle - and the path is also unlikely to
arrive at the correct heading.
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Figure 16: Lattice vs. Grid without Obstacles. Queries with an absolute difficulty of
40 cells are shown. The lattice performs similarly to the grid planners overall. Only for
the greatest relative difficulty (nearest zero) does the lattice require more CPU cycles.
Of course, the benefit of this extra computation is a plan which is feasible.
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Results in the presence of obstacles are shown in Figure 17. It is intuitive that
the grid should outperform the lattice in this obstacle field for any class of query. If
an obstacle appears in the path of a grid plan, that plan is often displaced by only
a few cells in order to circumvent the obstacle. In the case of the lattice under test,
however, only smooth continuous paths with a maximum curvature of 1/8 = 0.125
are considered. These requirements substantially limit the planner’s options, making it
more difficult to find a satisfactory path through an obstacle field as shown in Figure 18.
So while the grid path deviates slightly in the cluttered environment, paths generated
by the state lattice are often much more sophisticated in order to plan around obstacles.
Thus, the difficulty experienced by the lattice planner reflects the true mobility limits of
the vehicle. In plain terms, a grid planner produces faster answers, but they are usually
wrong. Despite the increased search requirements, the lattice remains consistently only
one order of magnitude slower than the grid planner, returning on average in less than
0.1 second for all classes of query.

— b
=g
01 f|—gus
e /_\_/_W\_/
g I,
E
S g — =

nonn —/

nongi

1} ol o2 03 [IL] o0s 06 o7 [1E] o9 |
Bebtive Difficu by (Ratk of Fuclidean ! Honho knomic Datance)

Figure 17: Lattice vs. Grid with 5% Obstacle Density. Queries of length 40 cells are
shown. The grid outperforms the lattice, but it usually returns infeasible solutions in a
dense obstacle field. Lattice planner runtime is still acceptably fast.

|

Figure 18: Obstacle Avoidance with Two Control Sets. Grid planners can easily avoid
small isolated obstacles, as shown by the black path. By contrast, the grey path has
limited curvature and so can be feasibly traversed by a constrained vehicle.
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6.2.2 Comparison to Full C' Space and Nonholonomic Planners

The comparison between the state lattice and grid-based planner is not entirely fair,
since the two planners search different spaces, and the grid results cannot be traversed
by nonholonomically constrained vehicles without post-processing. The Barraquand
and Latombe (BL) planner is well known and has been a popular nonholonomic planner
for over a decade. It has also been used in a variety of real mobile robot applications [5],
[46]. In this section, several different implementations of that planner are examined.
In all cases, the identical A* algorithm was applied, but the heuristic cost estimate
was altered to produce a fair comparison. In the first case, the algorithm was run as
documented in [9], with a zero heuristic applied. In the second case, Euclidean distance
was used as heuristic. Finally, an attempt was made to produce a perfect heuristic by
generating an HLUT for the BL planner, for a fair comparison with an HLUT-enabled
lattice planner.

In order to make the BL control set work in a fashion compatible with the state
lattice test framework, an adjustment was necessary. Barraquand and Latombe [9]
describe the edge lengths as being the L! diameter of a cell and assert that their planner
requires the discretization of the search parameters to be fine enough. The state lattice’s
discretization settings were experimentally adjusted to allow proper operation of the BL
planner: the edge lengths were set to four cell widths. The resulting reachability tree
is shown in Figure 19 along with the standard state lattice tree. Reverse edges were
omitted from both trees for clarity.

The performance of BL with three different heuristics is shown in Figure 20 along
with the state lattice using two different heuristics. The heuristic which enforces opti-
mality for the BL planner is zero, as proposed by authors, but the computational time
required makes this impractical in most situations. In a fair match-up using the Eu-
clidean distance heuristic, the two planners perform comparably, but only the lattice
retains optimality (Figure 21). However, note that the Euclidean heuristic was used for
the lattice planner only for the fairness of the comparison. The lattice planner using the
HLUT significantly outperforms our implementation of BL, both with and without its
own HLUT, as shown below.

The HLUT generation algorithm was run using a BL control set in an attempt to
produce a perfect BL heuristic. However, in A* runs which used this heuristic, many
false leads were still explored. The HLUT generation algorithms discussed above make
a fundamental assumption that the cost between two points in the graph depends only
on their relative states because the lattice is regular in translational discretization. The
BL algorithm, however, does not operate on a regular search space. As edges grow
outward, other edges are excluded, such that the path between two points depends on
the order in which states were expanded to produce each edge between the two points.
So while using the HLUT resulted in the best BL performance, this heuristic cannot be
guaranteed to be admissible for that algorithm. Note, however, that with any non-zero
heuristics the planner does not guarantee optimality anyway.

An alternative lattice was also tested. This control set has the same controls as
the basic lattice, except that extra zero-length edges were added so that the vehicle is
permitted to turn in place. The cost of these additional edges was computed based on
the aggregate distance of travel of each of the wheels in the vehicle. The effect of this
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Figure 19: Reachability Trees for the Lattice and BL. At top, the first 1400 expansions
of the basic state lattice control set in best-first order. At bottom, the first 1400 expan-
sions of the BL control set were generated using the same algorithm. Lighter edges are
older in both images.

capability on resulting plans is depicted in Figure 22, where the path is substantially
shortened by avoiding circuitous maneuvering. These additional controls have no sig-
nificant effect on overall planner performance (Figure 23), but they provide valuable
added flexibility in negotiating dense obstacle fields. Moreover, for practical applica-
tions, the lattice planner algorithm allows tuning the robot’s preference for performing
point turns versus smooth maneuvers by assigning appropriate costs to the zero-length
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Figure 20: Lattice vs. BL without Obstacles. Queries with an absolute difficulty of
40 cells are shown. Various heuristics are considered for each planner. Only when the
slow Zero heuristic is used does BL return optimal paths.

edges.

6.3 Heuristics

The lattice has been demonstrated to have some benefits over other control sets, but
those experiments relied on an HLUT with approximately 2.3 million entries consum-
ing over 28MB. This table was generated by first using best-first search to a distance
of 100 cells, followed by the brushfire method with a trim ratio of 0.9. Even though
this amount of memory is not significant for today’s systems, it would be desirable to
devote fewer resources to the heuristic function if possible. Therefore, the impact on
the planner of using smaller HLUTs was examined.

There is a basic trade-off involving HLUT size, which is defined according to its
backup heuristic (Euclidean distance). A trim ratio of 0.0 is tantamount to a simple
Euclidean distance heuristic function, which we have seen to perform poorly on many
lattice queries due to the increased number of A* expansion steps. Conversely, if the
HLUT is very large, the minimal number of expansions is performed at the expense
of increased demands for memory to store the HLUT itself. The ideal HLUT is large
enough to efficiently solve queries without being so large that gains in memory saved
in exploration are consumed by the HLUT itself.

The effect of trim level on average processor requirement can be observed by ag-
gregating all queries for a given trim level and examining the effect of varying the
HLUT size on CPU consumption. In Figure 24, the effect of trim level on computation
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Figure 21: BL sub-optimality example. In black, the BL planner with Euclidean heuris-
tic is used. In grey, the standard lattice control set with Euclidean heuristic returns an
optimal path. BL does not because it does not permit revisiting of states.

Figure 22: Lattice Control Set with and without the Ability to Turn in Place. In black,
a control set with a minimum turning radius of 8 cells is used. In grey, the same control
set is augmented by two additional controls which allow the vehicle to turn in place at
a cost equal to traversing 5 cells. This plan performs the turn-in-place maneuver twice
in order to execute a sharp turn.

time is shown. There is a clear minimum in the curves both with and without obstacles,
which occurs at trim level 0.8, corresponding to an HLUT of approximately 2.5MB.

In Figure 25, the same data are examined from the perspective of memory usage.
Here it is apparent that there is a trade-off between the amounts of memory consumed
by the HLUT and as a result of the graph search itself. Once again, the optimal size is
a trim level of 0.8.
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Figure 23: Lattice vs. Enhanced Lattice without Obstacles. Queries with an absolute
difficulty of 40 cells are shown. Performance for the two lattices is comparable.

When using this new look-up table as a heuristic rather than the original one (that
was ten times larger), the reduction in performance of the planner was shown to be
quite insignificant, since only large trim ratio queries were removed. But the size of
the HLUT can be easily tuned as desired for any application, simply by selecting the
desired trim ratio.

7 Applications

Here we discuss several important mobile robotics applications that could benefit from
the presented approach to constrained motion planning.

7.1 Off-road Navigation

The initial motivation for this work came from experiences with car-like mobile robots
operating in cluttered natural terrain. Unstructured environments often pose significant
challenges to mobile robots. The perception problem is known to be difficult; how-
ever, even if detailed, timely, and accurate perception information is available, it is
still a difficult problem to fully utilize it in motion planning, especially under real-time
constraints. Today’s navigation algorithms often make mistakes that result in the ve-
hicle being trapped in a set of dense obstacles with no way to proceed in the forward
direction.
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Figure 24: Time Comparison of HLUT Sizes. Upper trim levels are annotated. A*
search time varies inversely with HLUT size, but there is a clear knee to the curve,
with limited gains at trim levels above 0.8.

During the DARPA Perception for Off-Road Robotics (PerceptOR) project, our
vehicle faced such problems several times an hour in challenging terrains. The initial
ideas of the approach presented herein were investigated first on this program. An
implementation was developed using most of the central concepts of this method: an
explicit state lattice based on the mobility model of the PerceptOR vehicles (Figure 26)
was precomputed, and the A* algorithm was utilized to search it [31]. The algorithm
was invoked as an aggressive limited scope behavior when simpler alternatives failed
to produce a solution.

Note that the final formulation of the method presented here achieves about two or-
ders of magnitude speed up relative to the one utilized on PerceptOR. Custom, obstacle
avoiding n-point turn maneuvers can now be generated in reactive fashion. Moreover,
the new implicit representation of the lattice reduces memory requirements signifi-
cantly. The extended horizon of the planner would enable the generation of a backup
maneuver all the way out of a discovered cul-de-sac, if this maneuver was considered
preferable to a complicated n point turn.

7.2 Planetary Rover Locomotion

Motion planning for planetary exploration rovers is in many ways similar to the terres-
trial problem discussed above. However, it is also has many distinctive features. One
significant difference is that rovers typically move fairly slowly, only several centime-
ters per second, for a variety of reasons including stringent weight, computational and
power limitations. Moreover, the rovers are typically designed to move in stop and go
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Figure 25: Memory Comparison of HLUT Sizes. Upper trim levels are annotated.
Memory consumption varies with HLUT size, but a minimum occurs at trim level 0.8.

Figure 26: PerceptOR robot. A preliminary version of this algorithm was verified on
PerceptOR vehicles, designed to navigate in natural environments.

fashion. GESTALT, the rover navigation algorithm that drives the MER rovers uses
higher level perception, such as stereo vision, while it is stationary and selects the best
arc path to follow. Afterwards, the rover commits to driving the selected arc without
perception, using only lower level sensors such as current sensors [24].

Despite these differences, the lattice planner can be applied to the rover locomotion
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problem in a straight-forward manner. One way to apply it is similar to the terrestrial
case, i.e. as a backup behavior that is invoked only when the rover is no longer able
to navigate further due to errors in perception, path following, state estimation, etc. In
this case the rover would compute a rescuing path and get back on track autonomously.
Future adoption of technologies such as this will undoubtedly reduce the effort and cost
of manual rover path planning.

The presented planner may also be applied in other ways. For example, given
its efficiency, it’s reasonable to imagine that navigation algorithms such as GESTALT
could be enhanced with lattice planning capability, such that instead of arc selection,
they might perform lattice search and produce the complete path: not only an arc, but an
”S” shape or anything else as required by the environment. Given the efficiency of the
planner, the computation required is promising to be comparable to the conventional
method of evaluating the requisite number of arcs and running an arbiter.

Figure 27: ROAMS simulation of the planner in action. A CLARAty implementation
of the state lattice planner is controlling the ROAMS simulation of the Rocky8 rover in
this screenshot. The planner generated a smooth path to go around the large rock next
to rover in order to drive the rover to explore a crevasse between the two rocks at the
left edge of figure.

As was discussed above, in simple to medium obstacle fields, the lattice planner
compares in efficiency to grid search, primarily because the heuristic we designed ac-
curately guides the search such that backtracking is minimized. The search can be
visualized as proceeding in depth-first manner, but leading invariably towards the goal,
thanks to the ideal heuristic encoded in the look-up table. In many implementations,
obstacle avoidance arc evaluation is performed like breadth-first search to unity depth:
many arcs are evaluated, but only is ultimately used. With careful design, the pre-
sented planner could save computation and extend the planning horizon to the limits of
perception.

An implementation of the state lattice planner has been integrated with the Cou-
pled Layer Architecture for Robotic Autonomy (CLARAty) system at the Jet Propul-
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sion Laboratory. This allowed us to test the application of the planner to rover loco-
motion through simulation using JPL’s high-fidelity rover dynamics simulation sys-
tem, ROAMS (Rover Modeling and Simulation). Figure 27 depicts a simulation of a
Rocky8 research prototype rover performing the instrument placement task. The goal
is to move toward the goal in a field spotted with large obstacles. Thanks to the general
nature of CLARAty software architecture, the same code that drives the ROAMS simu-
lation can also control the actual rover. Our plans for the near future include validating
this algorithm on the actual rover vehicle at JPL’s Mars Yard. An important motiva-
tion for this work is to assist in the single-cycle instrument placement task. Currently
it takes three to four Martian days for rover drivers to move the rover to the desired
science target. By using this planner, we believe the instrument placement task will be
simplified by making the navigation efficient computationally, by fully utilizing high-
level perception information by computing as long ”blind drive” paths as perception
allows, and by guaranteeing that the rover’s navigator never gets stuck, as unlimited
search will always find the path out of cul-de-sacs, whereas typical arc-based naviga-
tors typically are not designed for this purpose.

7.3 Reactive Motion Planning and Path Modification

By virtue of its efficiency, the presented planner can be useful in a variety of other tasks.
In particular, it could be applied to automatic mobile equipment that performs routine
and repetitive tasks, e.g. earth movers, harbor transporters, convoy vehicles, etc. It
is worth noting that such systems can benefit from more structured environments than
unknown natural terrain. It is possible to build a reactive motion planning system that
will be able to modify its current path immediately upon perceiving an unexpected ob-
stacle. Moreover, as we have shown in the discussion of admissibility of the heuristic,
the new path will be optimal, which is likely to result in minimum deviation from the
original course, just enough to negotiate the unexpected obstacle.

8 Summary

This work has proposed a novel approach to motion planning under differential con-
straints and a generative formalism for the construction of discrete control sets for
differentially constrained motion planning. The inherent encoding of constraints in the
resulting representation re-renders the problem of motion planning in terms of uncon-
strained heuristic search. The encoding of constraints is an offline process that does
not affect the efficiency of on-line motion planning.

We have begun by carefully outlining the assumptions and the process of formu-
lating constrained planning in terms of the search in a specialized search space. The
policy of including curvature and possibly velocity in this space in order to guarantee
their continuity was explained. We then discussed the requirements for the proposed
search space: regularity, symmetry and feasibility, such that only feasible motions are
included in this representation. Further, the concept of path equivalence classes was
derived from the notion of state discretization.
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From this discussion, it was a natural progression to define extended neighborhoods
of states that are reachable by the system through the primitive motions, and it was
noted that due to the connectivity of the state lattice, some of the primitives will be
redundant. By combining this observation with our earlier notion of path equivalence
we proceeded to introduce the process of path decomposition, whereby the redundant
motions are efficiently culled from the state lattice.

Once the search space is clearly defined, we described how a basic unconstrained
heuristic search algorithm can be used to search the state lattice very efficiently. This
efficiency is due in large part to the heuristic used by the search. We were able to
get appreciable performance gains by constructing a heuristic that was well-suited for
efficient search, a Heuristic Look-Up Table (HLUT). Through a careful cost benefit
analysis, we were able to extract maximum benefit from this structure while using an
amount of memory that is relatively insignificant to modern motion planning systems.
We further presented a comparison to other popular motion planners. Lastly, some
notions for applying this technology in today’s mobile robotics systems was also pre-
sented.

9 Conclusion and Future Work

This work has been motivated by a fairly acute need to endow our field robots with suf-
ficient understanding of their own mobility to allow them to efficiently plan correct and
intricate paths, consisting of many primitive motions, in response to their challenging
surroundings.

Our approach inherits its understanding of mobility from a competent and high
fidelity real-time trajectory generator. It uses this module to construct what amounts to
an ideal discrete search space because:

e It is of high enough dimension to enforce state continuity.
e [ts controls acquire goal states exactly.

o Its controls satisfy arbitrary differential constraints, so they encode only feasible
motions.

e Its controls are minimal in a clearly defined path sampling sense, meaning un-
necessary computation is avoided.

Furthermore, we search this ideal space using an ideal heuristic, constructed by
the planner itself, for a world free of obstacles. With all of this in place, the daunting
problem of optimal smooth nonholonomic motion planning in the presence of obstacles
is reduced to an implementation of heuristic search of a graph.

The planner is resolution complete because the control set can be automatically
adjusted to generate new controls as resolution increases, and the space is searched
systematically. The planner is also optimal because precision controls permit the redi-
rection of back-pointers which is fundamental to optimal heuristic search. The com-
pleteness and the optimality of the planner result from the precision of the trajectory
generator.
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The planner is also efficient due to a principled implementation of a path sampling
policy. We have shown that it is up to two orders of magnitude faster than the BL
planner while remaining optimal. It is not as fast as a grid planner when obstacles
are present. It is roughly an order of magnitude slower than a 16 connected grid.
However, problems with grid planners producing infeasible plans motivated the work
to start with. According to these results, a mere 3 years of operation of Moore’s law
should have been enough to allow grids to be abandoned long ago, at least for near field
planning.

The planner is also capable of planning motions over rough terrain, if the terrain
is known at planning time, or of adjusting its controls to preserve the topology of the
primitive motion sequence as the terrain becomes known during execution.

In fact, the contribution of this work is not a planning algorithm. The contribution is
a principled mechanism to construct an efficient, precision, differentially constrained
search space upon which any planner may operate. We have also presented a com-
pelling case for why it is superior to prevailing alternatives.

Future work includes the evaluation of the search space in both applications men-
tioned earlier in addition to introducing real-time replanning by replacing the A* al-
gorithm with D*. We also intend to develop a search space whose fidelity decreases
with distance from the present position in order to scale our results to be applicable to
kilometers of traverse.
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