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Abstract— Autonomous robot monitoring tasks require the
robot to traverse a map over an extended period of time for the
purpose of monitoring some value of interest. The robot must
choose paths that efficiently move through the environment
and perform observations, such that the maximum amount
of information is gained. The robot uses these observations
to predict the state of the entire environment, including un-
observed portions, using a low-rank model built from prior
recorded data. We introduce a path planner that selects a set
of points in the map that maximize the entropy subject to a
cost constraint. We evaluate our method in simulation on the
problem of predicting fall foliage colors using a satellite image
dataset and a UAV traversal of the planned path.

I. INTRODUCTION

Most robots collect information about their environment
but are constrained to sense only a limited area around the
location of the robot. In many problems, like environmental
monitoring [8, 13, 14, 17] or persistent monitoring [17,
18, 21], the mission involves sensing broadly in order to
build up a map of some quantity throughout a larger region.
Consequently, the robot must navigate a path to maximize
information gain. In the absence of any structure in the
data, building a map amounts to a coverage problem. Often
though, there is structure in the data that can be exploited to
at least estimate a complete map from limited observations.
In this paper, we seek to plan a path for a robot through
a region that maximizes the information gathered while
adhering to cost constraints.

The measured quantity can have structural correlations
over space and time, such as recurring patterns over sep-
arate regions or cyclic seasonal repetition. Example mea-
sured quantities include vegetation health [20], ocean prop-
erties [13, 14, 17, 17], hurricane predictors [8], survivor
locations [16], and wireless signal strength [4]. A key insight
of this work is that not all areas of a region hold as
much uncertainty as others, thus providing less information.
Consequently, most of the map may be reconstructed by
observing a minority of the locations within it. To make
initial decisions about where to visit, we consider the case
that there is some prior data about the region to be monitored
that enables entropy computations. Our method maximizes
information gain by sampling points that have the greatest
joint entropy conditioned on prior observations.

A. Problem Statement
A robot travels around a map comprising a finite set of

p locations that constitute possible sampling points. Each
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point in the set holds a scalar-valued, time-varying parameter.
At the time the robot makes each observation, it learns the
true value of the parameter at its location at that time. We
assume the time-varying rate of the quantity is negligible
compared with the time elapsed in traveling around the map
to make observations. A cost function encodes any desired
path qualities, such as end point, and travel cost from one
location to another.

In addition to the map structure, the robot is also given
some prior map data from t earlier times. The prior data
consists of snapshots of the map (or subsets thereof) each
at a single point in time. From these observation, one can
estimate a joint probability density function for any subset
of the random variables corresponding to those observations.

The offline problem is to plan a path through a subset of
locations that maximizes expected information gain overall.
The online planning problem is not addressed in this paper.

In order to illustrate the techniques of our contribution, we
focus on using prior satellite data of eastern North America
to predict fall foliage colors. Some areas in each prior map
are occluded by cloud cover. We model the robot as a UAV
that travels around the region captured by the map and makes
observations about the color of observed pixels in the map.
The cost of a traversal is path length, measured as the sum
of Euclidean distances between consecutive observations.

B. Related Work

Information-based path planning problems concern the
maximization of some information-related function subject
to some constraints. The specific functions and constraints
are selected based on the desired application. Our work
focuses on a relatively simple problem: the maximization
of information gain subject to path length constraints. This
problem is similar to the problems studied in [4, 9, 16, 21].
Our chosen problem formulation lends itself to high-level
solutions where specific motion decisions are deferred to the
controller. As a result, the methods used are fairly general
and can be used on a wide variety of robotic systems. Some
approaches explicitly incorporate real-world constraints, such
as obstacles, environmental conditions and robot kinematics
into the planning problem, passing more control to the
planning algorithm [1, 12, 13, 15, 22]. While our approach
results a path containing way-points for a robotic system to
sample from, solutions to the aforementioned problems are
in the form of a lower-level motion plan. This gain in control
allows for more performant solutions for application-specific
planners, but requires more initial information and results in
the loss of flexibility.



In the information-based planning domain, we want to
minimize the uncertainty of the state of some object(s).
Uncertainty is typically quantified using a form of entropy
or information gain. These information functions can be
computed using prior information about the state of the
object(s) considered. There are two primary ways to model
this prior information, which can then be used to compute the
information functions. In our approach we assume that our
data is normally distributed and represent it using a Gaussian
process, this is similar to methods used in [2, 10, 11, 13, 14].
In cases where the data is not normally distributed, Bayesian
models can be used to model information containing many
variables. This is seen in work where the information func-
tion is represented in terms of a non-Gaussian sensor objec-
tive [1, 12, 22]. In the sensor based approach, the Bayesian
model encodes the probability mass function of sensor
readings. As a result, after taking some sensor readings the
conditional entropy measures the amount of uncertainty of
the value of all other sensor readings. This differs from our
approach, which considers the probability density function of
the states of the sampling points. With this representation,
the conditional entropy represents the amount of uncertainty
about the unseen sampling points after a number of sampling
points are observed. In our approach we can more clearly
consider the mutual information between a set of targets or
sampling points, due to our assumption that a target can be
completely observed at some sampling location.

There are two primary approaches used to solve
information-based path planning problems: greedy and sam-
pling. Greedy solutions are often used in this domain, due
to the submodular property of entropy-based information
functions [5, 6, 14, 15]. With minor modifications, classical
sampling-based planners can be adapted for use in the
information planning domain [4, 7, 12, 22]. Our method uses
a greedy approach introduced in [23].

C. Contributions

We introduce an offline planner which uses the submod-
ularity of entropy to choose a set of sampling points that
approximately maximizes the joint entropy while remaining
within a given cost budget. We present an algorithm for
sampling observations subject to a cost constraint on path
traversal. We show that the joint entropy of the path returned
by our algorithm is at most 1

2 (1 − e−1) times the optimal
solution.

In order to demonstrate the utility of our general method
for predicting the entire region using a small number of
samples, we propose the use of a low-rank model to predict
the values of unobserved sampling points using the observed
points.

In the remainder of this paper, we present our method
for computing entropy in Section II and our algorithm that
finds an optimal information-gain path in Section III. We
show how the information gained by traversing this path
can be used to estimate the complete map in Section IV.
Then we evaluate the algorithm in Section V and conclude
in Section VI.

II. COMPUTING ENTROPY

Our method requires a submodular set function f that
yields differential entropy given a set of observations of
Gaussian random variables. For the following methods we
assume that the sample space S is a finite set of random
variables and that each random variable has a set of prior
values and a Gaussian distribution. S is drawn from the map
locations indexed as {1, . . . , p}.

A. Joint Differential Entropy
Joint differential entropy (hereafter called joint entropy) is

a measure of the uncertainty of a set of continuous random
variables and can be computed from a covariance matrix.
Let Σ be a covariance matrix of the random variables in
the sample space S and let s′ be a subset of the random
variables in S. A square submatrix of Σ representing the
covariance matrix of s′, called Σs′ , is composed of the rows
and columns of Σ corresponding to the random variables in
s′. Then the joint entropy of the samples in s′ is equal to
log det(Σs′) [6]. Since the covariance matrix is a symmetric
positive definite square matrix, the function f = log det(Σs′)
is a submodular function.

III. ALGORITHM

In this section we introduce our offline planner, which is
based on the generalized cost-benefit algorithm by Zhang
and Vorobeychik [23].

A. Cost function
The cost function will be used to compute the cost of the

shortest path between a set of points and can be constructed
to enforce any desired path properties. In many cases, such
as when a tour is desired, the cost function is an NP-hard
problem. In order to make the planner tractable we allow for
approximate cost functions. In order to make an optimality
guarantee about the planner the approximate cost function
should be a v(n)-approximation where n is the number of
points in the set. A cost function is a v(n)-approximation
when it is at most v(n) times greater than the true cost.
In addition the cost function should be α-submodular, that
is when x,A,B are minimized and A ⊂ B the quotient
cost(A∪x)−cost(A)
cost(B∪x)−cost(B) is equal to α [23].

B. Offline Planner
Given the covariance matrix of the sampling points, and a

starting point and a budget, the offline planner returns a set
of points to sample such that the joint entropy of the points
is approximately maximal and that the approximate cost of
a path between the points is within the budget.

The algorithm used to select the sampling points is based
on a method introduced by Zhang and Vorobeychik [23],
which has the following optimality guarantee: the joint
entropy of the points selected is within 1

2 (1−e−1) times the
maximum joint entropy possible within the cost constraints.
We modified the original algorithm to improve its efficiency
and supplied joint entropy as the submodular function. The
cost constraint was expressed in terms of nearest neighbor
distances. Our method is shown in Algorithm 1.



Algorithm 1: Offline Planner
Data: covariance matrix, start point, all points, budget
Result: sample points

1 begin
2 sample points = [start point]
3 current entropy = entropy(sample points,

covariance matrix)
4 current cost = 0
5 points = [] # only consider points that are close

enough to the start
6 for point ∈ all points do
7 if cost(point, sample points) ≤ budget then
8 points = points ∪ point

9 while points 6= ∅ AND current cost < budget do
10 for point ∈ points do
11 cost change[point] = cost(point,

sample points) - current cost
12 entropy change[point] = entropy(point,

sample points, covariance matrix) -
current entropy

13 # if the cost of sampling a point is ever
over budget, remove it from consideration

14 if cost(point, sample points) + current cost
> budget then

15 points = points \ point

16 # add the point that maximizes the ratio of
entropy change to cost change to the list of
sample points

17 new point = max(entropy change / cost change)
18 sample points = sample points ∪ new point
19 points = points \ new point
20 current cost = cost(sample points)
21 current entropy = entropy(sample points,

covariance matrix)

22 return sample points

IV. FALL FOLIAGE MAPPING PROBLEM

A. Data

We evaluate our methods on a fall foliage dataset, con-
taining 186 satellite images of the northeast region of North
America collected from the fall months over the course
of three years collected using NASA Worldview.1 More
specifically there is one 1629× 1076 pixel image for every
day between September 15 and November 15 for the years
2014, 2015 and 2016. Over the course of the three months,
the hue of portions of the land in the images changes
from green to orange, yellow and brown, as a result of the
foliage changes. The original satellite images contain large
areas of clouds which obfuscate the hue of the land below.
As a result, we model pixels containing clouds as missing
data. A support vector machine was used to identify pixels

1worldview.earthdata.nasa.gov

containing clouds. In addition, due to the length of time it
takes to capture a satellite image, many of the images have
obvious hue differences due to lighting changes. We negate
the effects of these inconsistencies by splitting affected
images into two images on the line of hue shift, where one
portion of the image was the section of the original image
and the remainder is black representing missing data. The
splitting line was identified using Hough transform on the
edges of the image. The edges were identified using Canny
edge detection. After this processing we have 298 processed
images, all containing missing data.

For use in the planning methods, the sampling set of
this data set are the set of all pixels in an image. Due to
space constraints, we only consider about 100 by 100 pixel
subsets of the image. With the path lengths we have chosen
to evaluate, this does not limit the planners.

B. Cost Function

For our particular dataset we approximate the shortest path
using the nearest neighbor algorithm, which is a known-
greedy approximation for shortest path problems [3]. Starting
with a given point, the algorithm adds points to the path
based on proximity to the current point. That is, at each
timestep the point to be traveled to is the one that is closest
to the current point. Given a set of points {v1, . . . , vn}, the
nearest neighbor algorithm returns a travel ordering of these
points, starting at v1, the ordering is notated {v′1, . . . , v′n}.
The cost of the path is:

n−1∑
i=1

d(v′i, v
′
i+1) (1)

where d(a, b) is the Euclidean distance between the points
a and b. This cost function is a v(x)-approximation and α-
submodular by [3].

C. Generalized Low Rank Model

The planned path returned by the algorithm in Section III
is designed to gain as much information as possible about
the overall map within a limited budget. Having collected
those observations, we need a technique to complete the
map through extrapolation. We construct a low-rank model
to predict the full map. In order to compute the model we
first form a data matrix D of t rows corresponding to the
time snapshots and p columns containing the observed values
at each location at the specified time. A corresponding mask
matrix identifies entries in D that were not observed. The
problem of constructing a low-rank model is to find two
matrices X and Y that minimize the quadratic loss function,
(XTY −D)2, subject to a non-negative constraint.

We use a Julia implementation of the generalized low rank
model of Udell et al. [19] to factor the data matrix while
ignoring the missing data generated by in the processing
stage. More specifically, the model takes the form of two
matrices, the X matrix has a column for each image and
the number of rows is equal to the rank of the model. The
Y matrix has a column for each pixel and the number of
rows is again the rank of the model. The columns of the



Y matrix are the principal components of the data set. A
set of principal components for a rank three model can be
seen in Fig. 2. The product XTY is an approximation of the
original data matrix and provides an approximate value for
each missing data point.

D. Map Completion

Given a vector dpath containing the values of the observed
pixels in an image, the Y matrix can be used to estimate the
values of the pixels not observed. To do so, we take the set
of observed pixels situated in a row vector of length p that
includes unobserved pixels. We compute an “image digest”
vector xpath of dimension equal to the model rank by

xpath = (Y T)+dpath,

where (Y T)+ represents the pseudoinverse of Y T. We then
reconstruct a dense image by

d̃dense = Y Txpath.

E. Rank Selection

There is no straightforward method for determining the op-
timal rank for a given data set, so we considered a number of
ranks and choose the one that minimized the reconstruction
error for known images. That is, for the approximated data
matrix, the product XY T, we computed the reconstruction
error by summing the difference in the original data and the
corresponding values in the approximated data matrix. The
graph in Fig. 1 shows the reconstruction error per pixel for
six different models computed of ranks 3, 5 and 11. These
three ranks were chosen after a preliminary study found that
these ranks resulted in the lowest reconstruction error out of
models from ranks 1 to 13. From this study we found that
one of the rank 5 models minimized the reconstruction error,
this model is used in the evaluation section. We note that the
function used to compute these models is non-deterministic,
as the model is initialized with random matrices.
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Fig. 1: A graph of the error per pixel of the computed
generalized low rank models for ranks 3, 5, and 11. Each
unit on the horizontal axis represents one trial of factorizing
the D matrix with the chosen rank. The trials are sorted from
lowest to highest.

V. EVALUATION

In this section, we detail our preliminary simulated exper-
imental results.

A. Baselines

In this subsection we introduce three baseline planners that
will be compared with our planner.

1) Random Baseline: Given a budget of n, the random
baseline planner randomly selects n points from the sample
point set to visit. This baseline has no path constraint, that
is the cost to visit all of the sample points is not considered.

2) Straight-Path Baseline: The straight-path planner as-
sumes that the sampling points have a location-based order-
ing. For the fall foliage dataset the sampling points are pixels
and are in raster-scan order starting at the top left corner of
the image. Given a starting point with ordering index s and a
budget of n, the straight-path planner selects the points with
indices s to s+ n− 1 to visit.

3) Sampling-based Baseline: The sampling-based planner
is an any-time rapidly exploring tree based planner, called
rapidly exploring information gathering tree (RIG-tree) intro-
duced by Hollinger and Sukhatme [4]. The RIG-tree planner
builds a tree from a start node through sampling the sampling
point space, adding nodes and edges that are within some
distance of each other. More precisely, after a sample is
taken, the point that are closest to it and within some delta
of the nearest existing vertex is found. This point is then
used as a center point of a circle of some fixed radius. All
vertices within the circle are extended with an edge to a new
vertex that is as close to the point as possible, while being
at most delta away from the vertex. Since this is an anytime
method, it can be run for any amount of time with results
improving with diminishing returns as the time increases.

For our evaluation, the sampling-based baseline method
will be run with a delta value of 5 and a radius of 10 for
100 iterations.

B. Memory Limitations

A primary limitation of our method is the memory cost
associated with the covariance matrices necessary to compute
the joint entropy of a set of points. Given a cost budget of
n, both our offline planner and the sampling-based baseline
planner need the covariance matrix associated with all the
sampling points within an n radius of the starting point.
That is, O(n2) points will be considered, and the covariance
matrix of the set of points is O(n4). Thus, for both planners
the theoretical upper bound on memory is O(n4). In the
following subsection we show that, on our dataset, the perfor-
mance of our planner reaches a near optimal reconstruction
before the memory needs of the planner become intractable.

C. Results

To evaluate our method we consider both the joint entropy
of the samples selected and reconstruction error. We note that
for our specific dataset, our planner is tractable for budgets
up to 100.



Fig. 2: Principal components of a rank 3 model.

To compare the joint entropy of the sample sets pro-
duced by each method we plan paths with a budget of
50 starting from eight different locations and the planning
space is limited to a 100 by 100 pixel subregion. For the
random planner, no starting point is given, and 50 points are
randomly selected from the full image. The average joint
entropy values are shown in Table I.

TABLE I: Joint entropy results for paths of length 50.

Method Average
Joint
Entropy

Random 379.77
Straight 182.32
Ours 200.52
RIG-Tree 72.81

The random planner has the highest joint entropy value,
this is likely due to the lack of path constraints and that it
is sampling from the complete image, instead of a subre-
gion. Our method performs the best out of the three path-
constrained methods. We note that the paths produced by our
planner and the straight-baseline planner are sample dense,
that is the number of samples is close to the cost budget.
The path produced by the RIG-tree is not sample dense, so
there are fewer samples used in the joint entropy calculations
which may be contributing to its low value.

To evaluate the planners’ performance in terms of re-
construction error, we plan paths of a variety of lengths
starting at eight different starting points dispersed throughout
the region. Then, for nine different training images that
were not used to build the model, we sample the points
chosen by the planner and reconstruct the full image. We
compute the reconstruction error for a given cost budget and
planner by averaging the reconstruction errors for each start
point and test image combination. Fig. 3 shows the average
reconstruction error associated with three different planners
for budgets that are multiples of between 10 and 100. The
lower bound shown in the graph is the average reconstruction
error per pixel when all of the data points in the test images
are used to reconstruct.

We note that there is no formal relationship between joint
entropy and reconstruction error, which explains the non-
monotonality of our planner’s performance. The random
baseline planner reaches the same average reconstruction
error at budget 70 as sampling every pixel in the test images
would produce. We observe that even though our planner
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Fig. 3: The relationship between path length and the average
reconstruction error per known pixel.

does not reach this minimum reconstruction error, it does
come fairly close by budget 100.

While it is not feasible to compute the reconstruction error
for the baseline planner beyond path length 100, we found
that the reconstruction error for the straight path baseline did
not reach the minimum reconstruction error until the budget
reached 10,000.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the problem of sampling
regions of a space to learn about the global state of the
space by exploiting its structure. To this end, we have
introduced a planner for planning cost-constrained paths
through a space such that the entropy of the sampled points
is bounded suboptimal. In addition we have proposed the
use of generalized low-rank models for predicting the global
state of a space after observations along a path have been
collected.

A main limitation of our planner are memory costs asso-
ciated with computing the joint entropy using a covariance
matrix. We plan to explore online planning algorithms that
can more efficiently exploit structure that is discovered in
the space during exploration.

Currently, our evaluation is limited to a single dataset,
which has a high amount of structure. When we assume
Euclidean-distance path lengths and uniformly-dispersed
sampling points, it has few limitations. Future work will
include evaluation on some other, more challenging datasets.
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