
Usability Squared: Principles for doing good
systems research in robotics

Soham Sankaran
Cornell University

Email: soham@soh.am

Ross A. Knepper
Cornell University

Email: rak@cs.cornell.edu

Abstract—Despite recent major advances in robotics research,
massive injections of capital into robotics startups, and significant
market appetite for robotic solutions, large-scale real-world
deployments of robotic systems remain relatively scarce outside of
heavy industry and (recently) warehouse logistics. In this paper,
we posit that this scarcity comes from the difficulty of building
even merely functional, first-pass robotic applications without
a dizzying breadth and depth of expertise, in contrast to the
relative ease with which non-experts in cloud computing can
build complex distributed applications that function reasonably
well. We trace this difficulty in application building to the
paucity of good systems research in robotics, and lay out a path
toward enabling application building by centering usability in
systems research in two different ways: privileging the usability
of the abstractions defined in systems research, and ensuring
that the research itself is usable by application developers in
the context of evaluating it for its applicability to their target
domain by following principles of realism, empiricism, and
exhaustive explication. In addition, we make some suggestions
for community-level changes, incentives, and initiatives to create
a better environment for systems work in robotics.

I. INTRODUCTION

A. The deployment gap in robotics

Robotics is a fast-growing, multidisciplinary field with
applications that are quickly leaping off the pages of science
fiction into present day reality. The rapid spread of cheap,
powerful mobile phones and their attendant sensor hardware,
as well as the meteoric rise in the efficacy of machine learning
techniques for perception, planning, control, and related prob-
lems, have left us on the cusp of an unprecedented golden age
in robotics work, both in academia and industry.

We remain, however, just on the cusp of that golden age.
Self-driving cars are being tested all over the US but remain
controversial and continually delayed, major equipment manu-
facturers and startups alike make loud noises about agricultural
robots coming any day now, and people expectantly wait
for their next package to be delivered by drone. Meanwhile,
nothing much has really changed out in the field. The suc-
cessful robots of the past three decades — the industrial arms,
the KIVA/Amazon Robotics warehouse robots, the iRobot
vacuum cleaners — continue to chug along, but successful
new deployments, in particular those that create inarguable
value, have been elusive [6].

To some degree, this slow growth is to be expected. Robotics
is hard. The physical world is riddled with inherent com-
plexities, and many disparate strands of knowledge must be

woven together to form a robotic system that does anything
interesting, to say nothing of the exponential complexity of
settings involving multiple robots coordinating with each other.

Despite the difficulty, the last decade has seen an unprece-
dented boom in both the founding and funding [18, 50] of
companies intending to bring robotics into wider use across a
dizzying array of industries. Heartbreakingly, the vast majority
of these companies have failed, including a number of high-
profile examples run by luminaries from the robotics research
community [47]. In particular, most of these companies appear
to have failed not due to an inability to build the technology,
but due to a failure to achieve product-market fit [15, 41] —
they were selling something that people didn’t want.

The founders of these companies were, by and large, roboti-
cists rather than experts in the domains their companies were
targeting. Their mode of failure suggests that the people who
are best equipped to drive innovative new use cases for robotic
technology are domain experts (in application domains like
agriculture, healthcare, or construction, for example), since
they are most able to anticipate the needs of their particular
market.

B. Application building

In order to allow experts in application domains to drive
the real-world adoption of robotics, we must enable fast
application building. An application here is a working end-
to-end robot system artifact that can perform a task reliably
and repeatedly in a real-world domain. The application does
not have to be optimal or even very performant: it merely
needs to work well enough to function as practical evidence
for the utility of a robotic solution in the target domain.

Currently, application developers in robotics need to be
deeply steeped in some mishmash of kinematics, dynamics,
path planning, distributed systems, queuing theory, electrical
engineering, and more. While one can certainly attempt to
distribute the burden of knowledge across a team, at least one
individual must have a working background in enough of the
pieces to keep the whole thing together. Indeed, without such
an individual it is nigh-impossible to figure out what kinds of
problems are even tractable with current robotic technology.

There are very few of these full-stack roboticists, and their
scarcity limits the total number of attempts at building real-
world robotic applications per unit time to a very small
number. More attempts in a diverse set of application domains

ar
X

iv
:1

90
6.

06
77

5v
1 

 [
cs

.R
O

] 
 1

6 
Ju

n 
20

19



using distinct approaches, especially led by domain experts,
would likely lead to more successes in real-world deployment.
As such, it is incumbent on us as a field to prioritize enabling
application building by technically sophisticated engineers
who are not full-stack roboticists. This is where systems
research comes in.

C. The role of systems research

The purpose of systems research, broadly defined, is to wrap
complex machinery in human-usable abstractions that enable
non-experts to build performant applications without having
to understand every detail of the implementations underneath
the interfaces they build on top of.

This is accomplished in a two-step process: first, the design
and specification of usable abstractions that provide easy to
reason about interfaces and guarantees for specific tasks, and
second, the iterative refinement of implementations underneath
these abstractions that provide better and better performance
on whatever metrics the user cares about without breaking
the abstraction’s contract (though in practice these steps can
be ordered in the opposite way, and they usually bleed into
each other). Good systems work bridges the gap between
abstract insight and real-world use cases by presenting just-
right “Goldilocks” abstractions that are simultaneously simple
enough to understand and use, powerful enough that real world
applications can be built on top of them, and only loosely (if
at all) tied to the vagaries of a specific implementation such
that different implementations can be swapped in and swapped
out under the abstraction layer.

An exemplar of a field where this is done right is distributed
systems, which forms the academic foundation for cloud
computing. Despite the dizzying array of hardware, software,
and even fundamental physics concepts involved, anyone with
basic computer science background can quickly learn to build
and deploy a fairly complex distributed web application that
scales to hundreds of thousands of users out of the box.
It’s as simple as writing an HTTP application on top of
your favourite backend framework (Flask, Express, Revel) in
your favourite language (Python, NodeJS, Go), interfacing
it with a newly spun-up instance of the appropriate type of
(relational, key-value) datastore (PostgreSQL, Redis), placing
it behind a server (NGINX, Apache), and then just letting
it run on a virtual machine. If you want to scale, you can
replicate and/or shard your database, stick it behind a cache,
automate the spinning up of more VMs for the application,
stick that behind a load balancer, and so on. Every choice
mentioned here turns on a small set of important tradeoffs,
for example consistency vs. availability in the presence of
network partitions and the richness of the query model vs
latency for datastores, and can be made based on desired
properties and workload assumptions for the system. What
if you get it wrong? You need only to measure where you’re
deviating from your assumptions, revisit your tradeoffs, make
some different choices, and redeploy.

This process is not trivial, though the proliferation of battle-
tested hosted versions of all of the pieces involved by Google,

Amazon, et al. has taken a lot of the pain out of it, but it isn’t
rocket science. Is it going to produce the optimal solution?
No. Is it going to produce something usable? Very likely yes.
Does it enable the creation of real-world applications that, but
for the existence of systems that can compose in this usable
way, would never have existed? Unquestionably yes. Done and
working is better than vacuously perfect.

Aside from some reasonably healthy pieces of the ROS
ecosystem (primarily authored and maintained outside of
academia at places like Willow Garage, Clearpath, and OSRF)
this sort of application building is very, very difficult, if not
nearly impossible, in robotics today. Someone who wants to
build their own serviceable (not even close to optimal or state-
of-the-art) Amazon-style warehouse logistics application, for
example, would likely not be able to do so without expert
advice up and down the stack, despite the individual pieces of
technology to do so being broadly within reach.

D. A way forward: Usability Squared

We believe that in order to enable application building,
we must center usability in robotics research in two different
ways:

1) Usable abstractions: Systems research in robotics must
prioritize designing abstractions that are intuitive for non-
expert application developers to reason about and straightfor-
ward to use in building applications.

2) Usable research papers: While providing usable ab-
stractions is essential, the research paper itself must also
be usable in the sense of being accurately evaluable for its
utility in a given target domain by a non-expert application
developer. This involves using research methodology that
privileges realism, empiricism, and exhaustive explication to
demonstrate that the design choices made in the work and the
tradeoffs exposed by the abstractions specified are the right
ones for the domain or domains the paper is aimed at.

In other words, we believe that the job of good systems re-
search is to design and specify usable abstractions that are both
intuitive and powerful, and the job of a good systems research
paper is to validate the design choices made in specifying the
abstraction and building its underlying implementation, thus
making the research itself usable to an application developer.
Both kinds of usability are essential in good systems work
— without either, the utility of the work in the real world is
compromised.

In the next two sections, we justify and elaborate on these
two forms of usability.

II. USABLE ABSTRACTIONS

If forced to choose, privilege the usability of the abstraction,
in particular the intuitiveness of the interface to application
developers and compositionality with other systems, over
squeezing out the last drops of performance from the system or
proving optimality. While it is often possible to squeeze greater
performance out of less simple and intuitive abstractions, the
increased complexity and resultant cognitive load generated
often massively reduces the ability of application developers to



easily make use of and compose them, thus preventing building
applications that work correctly or, indeed, exist at all.

For an example of this phenomenon in action, we turn to
distributed datastores, an area which recently witnessed the
rise [4, 26] and decline [33, 36] of eventual consistency. Even-
tual consistency [48] promises better performance in the form
of lower query latency and higher availability for distributed
datastores via the mechanism of reducing the coordination
required for each query. The tradeoff here is that the global
state of the datastore is not guaranteed to be consistent —
this roughly means that if you write something to it, it will
eventually be visible globally, but that is only guaranteed to
happen as time goes to infinity. In the meantime, you may see
inconsistent state in the system, with different reads returning
conflicting values. This model is a significant departure from
the strongly-consistent ACID (Atomicity, Consistency, Isola-
tion, and Durability) semantics [24] of classical databases.

ACID semantics and strong consistency roughly align with
what human programmers intuitively expect from a datastore,
and they simplify writing correct applications on top of sys-
tems that guarantee them [19]. Eventual consistency sacrifices
that abstraction simplicity for performance. While eventual
consistency datastores became quite popular in the late 2000s
and early 2010s, they fell from grace because the tradeoff
eventually came to be seen as not worth it [54]. Here’s a
representative quote from Google’s paper about F1 [42], their
strongly-consistent high performance datastore for ads:

“We [also] have a lot of experience with eventual
consistency systems at Google. In all such systems,
we find developers spend a significant fraction of
their time building extremely complex and error-
prone mechanisms to cope with eventual consistency
and handle data that may be out of date. We think
this is an unacceptable burden to place on developers
and that consistency problems should be solved at
the database level.”

Robotics is still a young field. When there are many more
real-world deployments and application developers experi-
enced in the basics of building robotic applications, we can
start profitably experimenting with increasing the complexity
of our abstractions, but until people are able to reliably use
the simple stuff, this will be actively harmful. Indeed, without
first optimizing for usability, we may never have enough data
from application domains to even know what the quantitative
metrics and use cases we should optimize for even are.

III. USABLE SYSTEMS RESEARCH PAPERS

An abstraction specified in new research work, no matter
how usable in design and performant in implementation, can
only be used by an application developer if they can confirm
its applicability to their target domain by validating that the
assumptions and design choices made correspond with the
ground realities of a real-world deployment in their target
domain, and that the tradeoffs exposed are the appropriate
ones for said domain.

Fig. 1: xkcd: New Robot by Randall Munroe (li-
cense: CC BY-NC 2.5) [34]

In the spirit of Butler Lampson’s classic Hints for Computer
System Design [30], we propose a few methodological prin-
ciples in service of ensuring this second kind of usability in
systems research.

A. Principle 1: Target at least one specific real-world domain

Good systems work comes from real-world problems. There
is a great deal of work in robotics that seems to tack on an
application domain as an afterthought, as the classic XKCD
comic in Figure 1 [35] illustrates.

Having at least one real-world application domain ensures
that at least application developers targeting that domain
can use the work. In addition, having a concrete domain to
compare against allows application developers targeting other
domains to more easily evaluate the utility of the work for
their domain.

B. Principle 2: Make realistic assumptions and avoid unnec-
essary, unrealistic, and fanciful assumptions

Good systems work is informed by real-world constraints.
The assumptions that underlie systems research must align
with the circumstances of (realized or hypothetical) real de-
ployments of the application domain or domains the research
is targeted at.

1) Necessary, realistic assumptions: In order for research
work to be applicable to a real-world domain, it must make
assumptions that are fundamental to the operation of that
domain, without which the work would be unrealistic and
inapplicable.

An important example of a necessary realistic assumption
is that real robotic applications are always on and never stop.
A substantial portion of the power of robotic autonomy comes
from its ability to facilitate the smooth, uninterrupted running



of processes 24x7, and many existing and potential robotic
applications don’t (or won’t) have a neatly-defined end state —
they would ideally just keep going, moving packages, building
cars, and tending to fields until the end of time. Stopping,
even for a few seconds, can be disastrously expensive. As
such, it would behoove systems research that targets always-
on domains to optimize for this assumption when possible.

Consider path planning. Classical path planning algorithms
like A* do single-query one-shot planning of the whole path.
In practice, real robots in always-on domains perform an
iterative process of planning and replanning toward as they
are given new goals within a somewhat but not maximally
dynamic environment. Performing planning from scratch at
every update cycle discards potentially useful state from the
computation of prior plans. In the mid-to-late 2000s, there was
a burst of research work on iterative multi-query path planning
and “anytime” planning [43, 46] that sought to exploit this
potentially useful state for faster and more optimal planning.
It would make sense for systems that do path planning in
quasi-dynamic environments to use these algorithms to, say,
harness redundancies between the iterations to reduce average-
case plan-update latency, which is the more important metric
than worst-case cold-start plan-creation latency for always-on
domains. For whatever reason, systems research in robotics
tends to ignore this work, instead sticking with one-shot path
planning techniques.

Perhaps in part due to this lack of uptake in systems research
and real deployments, there is disproportionately little new
work in this area relative to offline planning.

2) Fanciful assumptions: Fanciful assumptions are assump-
tions about the target domain, usually taking the form of
very specific constraints, that are not supported by the ground
realities of that domain.

In multirobot systems work, there are a huge number
of papers that focus on coordination given some specific,
often unique unreliable communication model [11, 20, 53].
In almost all domains we care about, it is either possible to
get quite reliable communication, for example by combining
services from two consumer mobile broadband providers to
get 99.999% connection availability [5], or it is not possible
to get communication at all, for example in RF-denied nuclear
disaster zones or in the deep sea. Non-military use cases
requiring the use of some kind of ad-hoc mesh networking
are largely limited to the exploration of caves and space,
which collectively comprise a relatively small proportion of
the domains that exist today. There is still a lot of work to do
be done in domains where communication is reliable — we
have by no means solved multirobot coordination under those
models — but these much more realistic problems are often
ignored. Assumptions like these should be strongly avoided.

3) Beguiling assumptions that seem necessary but aren’t:
There is a class of beguiling assumptions that are simple,
intuitive, and seemingly useful, but in practice, at best,
unnecessary and, at worst, actively harmful. Consider the
assumption of deadlock-freedom in multi-agent path planning
for warehouse domains. While it may seem entirely reasonable

to want to guarantee that agents never deadlock, this guarantee
is almost impossible without using totally centralized global
planning, which severely limits scalability, and, crucially,
is almost never a problem in practice — companies using
systems with no deadlock freedom guarantee see deadlock on
the order of a few times a year even in very large deployments
[40], and at that rate of occurrence it is better to simply have
humans reset one of the robots after a timeout.

C. Principle 3: Avoid irrelevant proofs and guarantees that
are useless in practice

Roboticists have a distinct affinity for theoretical proofs,
even within systems work. While proofs of useful properties
can certainly be beneficial in providing guarantees that make
systems abstractions more usable, this fixation on proofs can
be harmful in two ways:

1) If it slows down or prevents the publication of a practical
contribution that can be empirically validated

2) If a provable guarantee that is actually irrelevant clouds
understanding of what metrics really matter and thus
prevents the exploration of potentially profitable research
directions

A good example of the second phenomenon can be found
in the literature around probabilistic, sampling-based plan-
ners such as the Probabilistic Roadmap (PRM) [28] and the
Rapidly-exploring Random Tree (RRT) [31] planning algo-
rithms. These motion planners rely on proofs of eventual
probabilistic completeness that guarantee that some solution
will be found as time goes to infinity. In practice, no robot
has infinite time to wait, so it is common tradecraft to run
RRT, for example, with a series of timeout-based restarts with
the hope that different samples will produce a plan quicker.
These restarts are seldom included in evaluations of systems
using RRT, as noted by Wedge and Branicky [51] in their
excellent analysis of plan time distributions and restarts, and
if they’re mentioned at all it’s perfunctory and not particularly
well-explained, such as in this quote from the Forage-RRT
paper [29]:

“Moreover, any RRT reaching 10,000 nodes was
restarted to improve the average planning time of
all planners (empirically when an RRT grows too
large, it will have trouble connecting to the goal, so
it is better to restart).”

For an application developer attempting to evaluate planners
and planning systems, this sort of opacity around a crucial
aspect of real-world deployment confounds their ability to
make reasonable choices for their domain.

In addition, this sort of obfuscation may well harm future
research in this area. There might be a motion planner that,
for example, does not guarantee probabilistic completeness,
but for all the domains we care about produces results faster
than RRT (when tested empirically). In the current research
paradigm, this planner’s real-world superiority to RRT might
not ever come to light.



In general, the existence of some pervasive tradecraft secret
like planner restarts that goes mostly unmentioned or unevalu-
ated in the literature is a good heuristic for detecting that some
guarantee being provided is unrealistic or useless — there is
usually an opening for good systems work to be found in these
situations.

D. Principle 4: Explicitly justify design choices with reference
to counterfactual designs

Given that the point of a systems paper is to justify the
design choices made in the research described, it is essential
to explicitly consider counterfactual options, the roads not
taken, to justify why the choices made were the correct ones.
This not only helps evaluate work in comparison with related
work in the area, and in general better validate the reasoning
behind design choices, but also helps the application developer
distinguish design choices that are essential to ensure the
proper functioning of the system from design choices that can
be safely modified depending on the specifics of a particular
domain or implementation. This can be the difference between
an application developer incorrectly seeing some research
as incompatible with their domain and that same developer
profitably using the core ideas of the work while modifying
things on the periphery to achieve compatibility with their
domain.

Computer architecture papers often do a very good job of
this kind of design space exploration and justification. Here’s a
quote from the abstract of the Q100 paper, which proposes an
architecture for a specialized Database Processing Unit (DPU)
(Wu et al. [52]):

“This work explores a Q100 design space of 150
configurations, selecting three for further analysis:
a small, power-conscious implementation, a high
performance implementation, and a balanced design
that maximizes performance per Watt. We then
demonstrate that the power-conscious Q100 handles
the TPC-H queries with three orders of magnitude
less energy than a state of the art software DBMS,
while the performance-oriented design outperforms
the same DBMS by 70X.”

The graphs in Figure 2, which are Figures 3, 4, and 5 from
Wu et al. [52], detail some of the analyses they ran as part of
their design space exploration in which they vary the number
and connectivity of various component types.

The graph in Figure 3, which is Figure 6 from Wu et al.
[52], charts the performance relative to power consumption of
their 150 different configurations, highlighting the three they
chose for further study.

E. Principle 5: Make your tradeoffs explicit and empirically
explore the tradeoff space

The design choices made by systems will fix some set of
parameters and expose other sets of parameters as tunable
tradeoffs. These tradeoffs, which act as knobs that application
developers can twiddle, need to be explicitly highlighted,
motivated, and empirically explored in order to allow for

evaluation with respect to real-world conditions in a target
domain.

An example of a tradeoff exposed in robotics is discretiza-
tion granularity. Discretizing space is a common strategy for
path planning, especially in the multirobot domain [2, 27,
49]. Discretization represents a set of tradeoffs against plan-
optimality in the real (continuous) world, including speed of
computation, simplicity of algorithm, and ease of implement-
ing occupancy-based safety guarantees. These tradeoffs are
rarely explicated in direct ways, and the tradeoff space is
almost never empirically explored in order to justify the design
decisions made and parameters selected. How does finer and
finer discretization affect compute time in various realistic
settings? How close to optimal do you get with reasonably
granular discretization? Is there some optimal point on the
tradeoff graph where the computation is quick enough for
use on real robots and the solutions generated are close to
optimal, with diminishing returns for finer granularity? These
questions are incredibly relevant for both real-world use and
future research directions, but are almost never answered.

An example of this in action in database systems is the fun-
damental tradeoff between strength of consistency guarantees
and query latency, as explicated by Dan Abadi in his PACELC
principle [1], which is an extension of Eric Brewer’s CAP the-
orem [9, 10] that famously limits a distributed datastore to two
out of the three of strong Consistency, constant Availability,
and Partition tolerance. Database systems such as Cassandra
allow you to choose different levels of consistency [38], with
higher levels resulting in higher latency, and these systems
have been subject to comprehensive of studies of performance
along the tradeoff axis [25].

F. Principle 6: Test till you break, scale till you fail

Don’t just publish a graph demonstrating linear performance
scaling for, say, a multirobot path planning system from 1 to
20 robots — graph your results past the point where you stop
being able to scale. This is incredibly important for pointing to
where future work needs to improve, and it helps people using
your system bracket the range of reasonable performance for
their needs. Database papers often do this particularly well,
with Figure 4, which is Figure 7 from the SOSP 2013 Silo
paper [45], serving as a good example.

The graph demonstrates that latency performance is roughly
unchanged as you scale the number of worker threads until a
massive spike past 28 threads. This result allows an application
developer working in, for example, a target domain with a
requirement for latency lower than 200ms to decide whether
Silo is appropriate for them based on whether they need
greater or fewer than 28 threads to satisfy their throughput
requirements.

G. Principle 7: Use or make open, public benchmarks and
baselines, ideally based on real-world workloads.

The machine learning, computer systems, and databases
communities make rapid progress due to the existence of
open datasets (ImageNet [17]), load generation tools (YCSB



Fig. 2: Design space exploration graphs from Wu et al. [52]

Fig. 3: Performance relative to power consumption
of 150 different configurations from Wu et al. [52]

[12]), and benchmarks (TPC-C [32]). In addition, in the latter
two communities, it is common to try and model real-world
workloads or replicate them exactly using traces sourced from
industry [14, 39].

Systems work in robotics often relies on either proof by
video, where a cherry-picked short sample of footage of the
system in action is used as evidence of efficacy, at worst,
or homespun ill-defined metrics at best. This is insufficient.
Without common benchmarks and baselines, it is impossible
to evaluate work relative to other work in a principled manner,
and for systems work, this means that it is effectively impossi-

Fig. 4: Transaction latency graph from Tu et al. [45]

ble to divine the correctness of the design choices made in any
specific paper. Aside from overlap with the machine learning
and computer vision communities (from which datasets like
KITTI [23] have emerged), robotics largely does not produce
or utilize such benchmarks [16], with the exception of some-
what infrequent and inconsistently targeted competitions [3].
This is true even for problems where there should be strong
incentives to make apples-to-apples comparisons, including
path planning (single and multirobot) and task allocation for
multirobot systems. There is some evidence that this state
of affairs is changing, with the help of work like Nathan
Sturtevant’s planning benchmarks [44], but it is not changing
quickly enough.

In particular, the use of end-to-end benchmarks based on
simulated workloads that model real-world deployments, for
example the Asprilo warehouse logistics problem generator



[21] developed by Gebser et al [22], would greatly improve
the ability of application developers to judge the relevance of
research to their target domain.

H. Principle 8: Exhaustive explication — no tricks up your
sleeve — to enable replication

As noted above, robotics research is plagued by the problem
of proofs by video. It is often impossible to replicate these
videos in academic settings, where some system flakiness is
tolerable, much less in the high-reliability low-error-tolerance
world of industry. This lack of replicability stems from the
many undocumented patches, hacks, and simplifying assump-
tions used to get a robotic system to run that are passed down
only via intra-lab oral tradition, if at all, and it fatally destroys
the value of the research by preventing both further academic
exploration and validation by independent groups as well as
any kind of real-world deployment. It is thus incumbent on
systems researchers to ensure that any work they produce is
reproducible. There has been much recent discussion of the
reproducibility crisis in robotics and methodological principles
for conducting reproducible research in our field [7, 8], and the
first (though by no means the last) step towards reproducibility
is to document every detail of how the system was made
to work, from physical specifications to operating system
versions to lighting conditions. While conference papers have
space constraints, it is easy to put a supplementary document
on arXiv or a similar archival service.

This principle very much does not supplant or subsume
all the work being done on reproducibility in the sciences
and engineering in general, and in robotics in particular. We
recommend anyone working on robotic systems keep abreast
of the latest best practices in this area.

IV. COMMUNITY-LEVEL SUGGESTIONS FOR PROMOTING
GOOD SYSTEMS WORK

While we certainly hope that individual research papers fol-
lowing the principles outlined will lead to better work overall,
the overall paucity of good systems research in robotics can
only be rectified by consistent community-level acceptance
and encouragement of this work. While the major robotics
conferences pay lip service to wanting more systems work,
explicitly welcoming and endowing awards for submissions
of this type, word on the street is that the work is often not
seen as core research, and the standards for inclusion are often
inconsistent. People have very different and often conflicting
opinions of what a systems research project or a systems paper
even is. If we want to enable application building, we must
make space within the community for the systems work that
forms the foundation for it.

In the hope of beginning that process, we present a set of
community-level suggestions for creating a better environment
for good systems work.

A. Suggestion 1: Recognize that finding a useful new way of
structuring a problem is a first-class research contribution

The bread and butter of systems work is reorganizing a
problem around some key insight or set of insights such that it

becomes more tractable. Once this is accomplished, the actual
solution may seem easy to conceptualize and implement. This
should not serve to diminish the validity of the research
contribution of the work — indeed, one hallmark of great
systems work is that it repurposes preexisting abstractions
and components to solve new problems, reducing redundant
work and exposing fundamental shared structure. It is easy to
dismiss the value of restructuring a problem domain, and this
impulse must be fought vigorously.

B. Suggestion 2: Value “incremental” systems work

Work that builds on pre-existing research in ways that are
not revolutionary but still substantive, improving performance
on the same benchmarks and baselines or providing some new
useful feature, is necessary and important, both for ensuring
that exciting work from academia reaches the threshold of real-
world acceptable performance and for ensuring that new work
that purports to be a revolutionary is not worse than previous
generation work with incremental modifications. If the latter
situation is not detected because no one ever bothered to build
the optimizations, then researchers might go down suboptimal
research paths due to the incorrect belief that the prior pathway
could never reach the performance that the new one does.

In computer systems and databases, there is a strong tra-
dition of work that preserves the same programmer-facing
abstraction (or very close to it) while changing the implemen-
tation in intelligent ways to significantly improve performance.
The methods behind these sorts of improvements must be
recognized as first-class research contributions to ensure that
work like this can exist in robotics.

C. Suggestion 3: Incentivize the creation of open, public
benchmarks and workload datasets

As noted in the principles, it is essential that researchers
test their systems on public benchmarks. As a community, we
should incentivize the creation of such benchmarks and the
publication of workload datasets with guaranteed publication
slots, special awards, and cold, hard cash via the creation
of some kind of benchmark fund or prize. These carrots
should be complemented by the stick of subjecting to strict
scrutiny and possible publication denial papers that either don’t
use appropriate common benchmarks, don’t release their own
benchmarks, or both.

D. Suggestion 4: Incentivize frontier-illuminating papers —
systems papers that try to build some arbitrary application in
a principled way using state-of-the-art research

A combination of the fractal nature of robotics as a field and
the preponderance of work that doesn’t follow the principles
outlined above makes it hard to see the frontier of our ability
to build systems that solve any specific real-world problem.
Competitions [3] like the Amazon Picking Challenge [13] have
been the primary method of illuminating these frontiers, but
have the downside of being infrequent and industry-controlled.
As a result, we believe that we should build a program of
practical frontier papers where groups are funded to solve a



rotating set of real-world problems — for example clearing a
cluttered home or the monitoring and harvesting of a specific
crop in a greenhouse — using existing research, then report
on their methods and results on a set of predefined open
benchmarks. This sort of work will also serve to illuminate the
practical frontiers of the constituent subproblems of these real-
world problems, tying performance to real-world workloads.

The Integrated Intelligence for Human-Robot Teams paper
by Oh et al. [37] is a good model for this kind of work.

V. CONCLUSION

We believe that making space for more and better systems
research that follows the principles we’ve outlined will not just
help us make progress toward the goal of seeing robots widely
deployed in the real world, but also benefit academia im-
mensely by providing new problems motivated by experiences
that application developers have in their particular domains,
opening up a large pool of potential new sources for funding,
and motivating a larger and more diverse set of people to work
in robotics after seeing it in their daily lives. This has been the
experience of research communities in other computer science
and engineering fields, most prominently of late in machine
learning.

There are millions of potential application developers out
there waiting for us to unlock their ability to reimagine the
world we live in. We are in the pre-Apple II days of robotics,
tooling away with our expensive research toys with only
baroque industrial deployments to prove the worth of our field.
It is our duty to bring the power of robotics to the people, and
we can scarcely imagine the depth of the ingenuity that doing
so will reveal.

ACKNOWLEDGMENTS

Thanks to Wil Thomason and Dylan A. Shell for their
participation in initial discussions leading up to this paper,
as well as to Natacha Crooks, Adrian Sampson, Chris De
Sa, and A. Feder Cooper for suggesting systems papers worth
referencing.

In addition, we’d like to thank Christopher Leet for his
input on the structure of the paper, as well as Wil Thomason,
Tom Magrino, Sowmya Dharanipragada, Danny Adams, Alexa
VanHattum, Kate Donahue, Gregory Yauney, and A. Feder
Cooper for reading drafts of it.

This paper is based on work partly supported by the
National Science Foundation under Grant No. 1646417. We
are grateful for this support.

REFERENCES

[1] Daniel Abadi. Consistency tradeoffs in modern dis-
tributed database system design: Cap is only part of the
story. Computer, 45(2):37–42, 2012.

[2] Rachid Alami, Sara Fleury, Matthieu Herrb, Félix In-
grand, and Frédéric Robert. Multi-robot cooperation
in the martha project. IEEE Robotics & Automation
Magazine, 5(1):36–47, 1998.

[3] John Anderson, Jacky Baltes, and Chi tai Cheng. Review:
Robotics competitions as benchmarks for ai research.
Knowl. Eng. Rev., 26(1):11–17, February 2011. ISSN
0269-8889. doi: 10.1017/S0269888910000354. URL
http://dx.doi.org/10.1017/S0269888910000354.

[4] Peter Bailis, Shivaram Venkataraman, Michael J
Franklin, Joseph M Hellerstein, and Ion Stoica. Prob-
abilistically bounded staleness for practical partial quo-
rums. Proceedings of the VLDB Endowment, 5(8):776–
787, 2012.

[5] Dziugas Baltrunas, Ahmed Elmokashfi, and Amund
Kvalbein. Measuring the reliability of mobile broadband
networks. In Proceedings of the 2014 conference on
internet measurement conference, pages 45–58. ACM,
2014.

[6] Jason Bloomberg. Why you should think twice about
robotic process automation, Nov 2018. URL https:
//www.forbes.com/sites/jasonbloomberg/2018/11/06/
why-you-should-think-twice-about-robotic-process-automation/.

[7] F. Bonsignorio. A new kind of article for repro-
ducible research in intelligent robotics [from the field].
IEEE Robotics Automation Magazine, 24(3):178–182,
Sep. 2017. ISSN 1070-9932. doi: 10.1109/MRA.2017.
2722918.

[8] F. Bonsignorio and A. P. del Pobil. Toward replicable
and measurable robotics research [from the guest edi-
tors]. IEEE Robotics Automation Magazine, 22(3):32–
35, Sep. 2015. ISSN 1070-9932. doi: 10.1109/MRA.
2015.2452073.

[9] Eric Brewer. A certain freedom: thoughts on the cap the-
orem. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, pages
335–335. ACM, 2010.

[10] Eric A. Brewer. Towards robust distributed systems
(abstract). In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing,
PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.
ISBN 1-58113-183-6. doi: 10.1145/343477.343502.
URL http://doi.acm.org/10.1145/343477.343502.

[11] Kyle Cesare, Ryan Skeele, Soo-Hyun Yoo, Yawei Zhang,
and Geoffrey Hollinger. Multi-uav exploration with
limited communication and battery. In 2015 IEEE inter-
national conference on robotics and automation (ICRA),
pages 2230–2235. IEEE, 2015.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[13] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson,
Oliver Brock, Albert Causo, Kris Hauser, Kei Okada,
Alberto Rodriguez, Joseph M Romano, and Peter R Wur-
man. Analysis and observations from the first amazon
picking challenge. IEEE Transactions on Automation
Science and Engineering, 15(1):172–188, 2016.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russi-

http://dx.doi.org/10.1017/S0269888910000354
https://www.forbes.com/sites/jasonbloomberg/2018/11/06/why-you-should-think-twice-about-robotic-process-automation/
https://www.forbes.com/sites/jasonbloomberg/2018/11/06/why-you-should-think-twice-about-robotic-process-automation/
https://www.forbes.com/sites/jasonbloomberg/2018/11/06/why-you-should-think-twice-about-robotic-process-automation/
http://doi.acm.org/10.1145/343477.343502


novich, Marcus Fontoura, and Ricardo Bianchini. Re-
source central: Understanding and predicting workloads
for improved resource management in large cloud plat-
forms. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 153–
167, New York, NY, USA, 2017. ACM. ISBN 978-
1-4503-5085-3. doi: 10.1145/3132747.3132772. URL
http://doi.acm.org/10.1145/3132747.3132772.

[15] Steve Crowe. Inside the rethink robotics shut-
down, Nov 2018. URL https://www.therobotreport.com/
rethink-robotics-shutdown/.

[16] Angel P del Pobil, Rad Madhavan, and Elena Messina.
Benchmarks in robotics research. In IROS Workshop
Notes, 2006.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[18] Kevin Dowd. Automation takes flight: A look at vc’s
soaring interest in robotics & drones, Mar 2019.

[19] Emily Drevets. Why acid transactions
matter in an eventually consistent world, Aug
2016. URL https://www.oreilly.com/ideas/
why-acid-transactions-matter-in-an-eventually-consistent-world.

[20] Yuan Fan, Lu Liu, Gang Feng, Cheng Song, and Yong
Wang. Virtual neighbor based connectivity preserving of
multi-agent systems with bounded control inputs in the
presence of unreliable communication links. Automatica,
49(5):1261–1267, 2013.

[21] Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten
Schaub, Orkunt Sabuncu, Van Nguyen, and Tran Cao
Son. asprilo, 2018. URL https://asprilo.github.io/.

[22] Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten
Schaub, Orkunt Sabuncu, Van Nguyen, and Tran Cao
Son. Experimenting with robotic intra-logistics domains.
Theory and Practice of Logic Programming, 18(3-4):
502–519, 2018.

[23] Andreas Geiger, Philip Lenz, Christoph Stiller, and
Raquel Urtasun. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research, 32(11):
1231–1237, 2013.

[24] Theo Haerder and Andreas Reuter. Principles of
transaction-oriented database recovery. ACM computing
surveys (CSUR), 15(4):287–317, 1983.

[25] Gerard Haughian, Rasha Osman, and William J Knot-
tenbelt. Benchmarking replication in cassandra and
mongodb nosql datastores. In International Conference
on Database and Expert Systems Applications, pages
152–166. Springer, 2016.

[26] Pat Helland and David Campbell. Building on quicksand.
In CIDR 2009, Fourth Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 4-
7, 2009, Online Proceedings, 2009. URL http://www-db.
cs.wisc.edu/cidr/cidr2009/Paper 133.pdf.

[27] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W

Durham, and Nora Ayanian. Persistent and robust exe-
cution of mapf schedules in warehouses. IEEE Robotics
and Automation Letters, 4(2):1125–1131, 2019.

[28] Lydia E Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark H Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE
TRANSACTIONS ON ROBOTICS AND AUTOMATION,
12(4), 1996.

[29] Leo Keselman, Erik Verriest, and Patricio A Vela. Forage
rrtan efficient approach to task-space goal planning for
high dimensional systems. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages
1572–1577. IEEE, 2014.

[30] Butler W. Lampson. Hints for computer system de-
sign. In Proceedings of the Ninth ACM Symposium on
Operating Systems Principles, SOSP ’83, pages 33–48,
New York, NY, USA, 1983. ACM. ISBN 0-89791-115-
6. doi: 10.1145/800217.806614. URL http://doi.acm.org/
10.1145/800217.806614.

[31] Steven M. Lavalle. Rapidly-exploring random trees: A
new tool for path planning. Technical Report TR 98-11,
Computer Science Dept., Iowa State University, 1998.

[32] Scott T. Leutenegger and Daniel Dias. A modeling
study of the tpc-c benchmark. In Proceedings of the
1993 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’93, pages 22–31, New
York, NY, USA, 1993. ACM. ISBN 0-89791-592-5.
doi: 10.1145/170035.170042. URL http://doi.acm.org/10.
1145/170035.170042.

[33] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. Don’t settle for eventual consis-
tency. Communications of the ACM, 57(5):61–68, 2014.

[34] Randall Munroe. xkcd - a webcomic - license, 2012.
URL https://xkcd.com/license.html.

[35] Randall Munroe. xkcd: New robot, Mar 2019. URL
https://xkcd.com/2128/.

[36] Kannan Muthukkaruppan. The underlying
technology of messages, Nov 2010. URL
https://www.facebook.com/notes/facebook-engineering/
the-underlying-technology-of-messages/454991608919/.

[37] Jean Oh, Thomas M Howard, Matthew R Walter, Daniel
Barber, Menglong Zhu, Sangdon Park, Arne Suppe, Luis
Navarro-Serment, Felix Duvallet, Abdeslam Boularias,
et al. Integrated intelligence for human-robot teams.
In International Symposium on Experimental Robotics,
pages 309–322. Springer, 2016.

[38] Apache Cassandra Project. Apache cassandra 4.0
documentation: Tunable consistency, 2019. URL
http://cassandra.apache.org/doc/4.0/architecture/dynamo.
html#tunable-consistency.

[39] Alexander Pucher. Cloud traces and production
workloads for your research, Jun 2015.
URL https://alexpucher.com/blog/2015/06/29/
cloud-traces-and-production-workloads-for-your-research/.

[40] Soham Sankaran and Ross A. Knepper. Interviews with
engineers from two companies with large multirobot

http://doi.acm.org/10.1145/3132747.3132772
https://www.therobotreport.com/rethink-robotics-shutdown/
https://www.therobotreport.com/rethink-robotics-shutdown/
https://www.oreilly.com/ideas/why-acid-transactions-matter-in-an-eventually-consistent-world
https://www.oreilly.com/ideas/why-acid-transactions-matter-in-an-eventually-consistent-world
https://asprilo.github.io/
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
http://doi.acm.org/10.1145/800217.806614
http://doi.acm.org/10.1145/800217.806614
http://doi.acm.org/10.1145/170035.170042
http://doi.acm.org/10.1145/170035.170042
https://xkcd.com/license.html
https://xkcd.com/2128/
https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919/
https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919/
http://cassandra.apache.org/doc/4.0/architecture/dynamo.html#tunable-consistency
http://cassandra.apache.org/doc/4.0/architecture/dynamo.html#tunable-consistency
https://alexpucher.com/blog/2015/06/29/cloud-traces-and-production-workloads-for-your-research/
https://alexpucher.com/blog/2015/06/29/cloud-traces-and-production-workloads-for-your-research/


deployments, 2019.
[41] Ron Schmelzer. Why are robotics companies dying?, Oct

2018. URL https://www.forbes.com/sites/cognitiveworld/
2018/10/29/why-are-robotics-companies-dying/.

[42] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle Lit-
tlefield, David Menestrina, Stephan Ellner, et al. F1: A
distributed sql database that scales. Proceedings of the
VLDB Endowment, 6(11):1068–1079, 2013.

[43] Omar Souissi, Rabie Benatitallah, David Duvivier,
AbedlHakim Artiba, Nicolas Belanger, and Pierre
Feyzeau. Path planning: A 2013 survey. In Proceedings
of 2013 International Conference on Industrial Engineer-
ing and Systems Management (IESM), pages 1–8. IEEE,
2013.

[44] N. Sturtevant. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in
Games, 4(2):144 – 148, 2012. URL http://web.cs.du.edu/
∼sturtevant/papers/benchmarks.pdf.

[45] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32. ACM, 2013.

[46] Jur Van Den Berg, Dave Ferguson, and James Kuffner.
Anytime path planning and replanning in dynamic en-
vironments. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA
2006., pages 2366–2371. IEEE, 2006.

[47] Bram Vanderborght. Robotic dreams, robotic
realities: Why is it so hard to build profitable
robot companies?, Mar 2019. URL https:
//spectrum.ieee.org/automaton/robotics/industrial-robots/
robotic-dreams-robotic-realities.

[48] Werner Vogels. Eventually consistent. Queue, 6(6):14–
19, 2008.

[49] Glenn Wagner and Howie Choset. Subdimensional
expansion for multirobot path planning. Artificial Intel-
ligence, 219:1–24, 2015.

[50] Richard Waters. Rise of the robots is sparking an
investment boom, May 2016. URL https://www.ft.com/
content/5a352264-0e26-11e6-ad80-67655613c2d6.

[51] Nathan A Wedge and Michael S Branicky. On heavy-
tailed runtimes and restarts in rapidly-exploring random
trees. In Twenty-third AAAI conference on artificial
intelligence, pages 127–133, 2008.

[52] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A.
Kim, and Kenneth A. Ross. Q100: the architecture
and design of a database processing unit. In Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, Salt Lake City, UT,
USA, March 1-5, 2014, pages 255–268, 2014. doi:
10.1145/2541940.2541961. URL https://doi.org/10.1145/
2541940.2541961.

[53] Feng Xiao and Long Wang. Asynchronous consensus
in continuous-time multi-agent systems with switching

topology and time-varying delays. IEEE Transactions
on Automatic Control, 53(8):1804–1816, 2008.

[54] Robert Yokota. Don’t settle for eventual consis-
tency, Jul 2017. URL https://yokota.blog/2017/02/17/
dont-settle-for-eventual-consistency/.

https://www.forbes.com/sites/cognitiveworld/2018/10/29/why-are-robotics-companies-dying/
https://www.forbes.com/sites/cognitiveworld/2018/10/29/why-are-robotics-companies-dying/
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
https://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-dreams-robotic-realities
https://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-dreams-robotic-realities
https://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-dreams-robotic-realities
https://www.ft.com/content/5a352264-0e26-11e6-ad80-67655613c2d6
https://www.ft.com/content/5a352264-0e26-11e6-ad80-67655613c2d6
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/2541940.2541961
https://yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/
https://yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/

	I Introduction
	I-A The deployment gap in robotics
	I-B Application building
	I-C The role of systems research
	I-D A way forward: Usability Squared
	I-D1 Usable abstractions
	I-D2 Usable research papers


	II Usable abstractions
	III Usable systems research papers
	III-A Principle 1: Target at least one specific real-world domain
	III-B Principle 2: Make realistic assumptions and avoid unnecessary, unrealistic, and fanciful assumptions
	III-B1 Necessary, realistic assumptions
	III-B2 Fanciful assumptions
	III-B3 Beguiling assumptions that seem necessary but aren't

	III-C Principle 3: Avoid irrelevant proofs and guarantees that are useless in practice
	III-D Principle 4: Explicitly justify design choices with reference to counterfactual designs
	III-E Principle 5: Make your tradeoffs explicit and empirically explore the tradeoff space
	III-F Principle 6: Test till you break, scale till you fail
	III-G Principle 7: Use or make open, public benchmarks and baselines, ideally based on real-world workloads.
	III-H Principle 8: Exhaustive explication — no tricks up your sleeve — to enable replication

	IV Community-level suggestions for promoting good systems work
	IV-A Suggestion 1: Recognize that finding a useful new way of structuring a problem is a first-class research contribution
	IV-B Suggestion 2: Value ``incremental'' systems work
	IV-C Suggestion 3: Incentivize the creation of open, public benchmarks and workload datasets
	IV-D Suggestion 4: Incentivize frontier-illuminating papers — systems papers that try to build some arbitrary application in a principled way using state-of-the-art research

	V Conclusion

