
Chapter 3

Kinematics

Kinematics is a geometric approach to robot motion. It is the study of positions
and angles and their rates of change. In kinematics, we study abstractions that
simplify our analysis of the motion of billions of particles into a small number
of motions that we have designed into the system. The primary abstractions are
joints, which permit motion, and links, which are rigid bodies, thus unbendable. In
a classic mechanical system such as this, we call the joint angles freedoms, and we
count the number of degrees of freedom of the whole system such that a vector can
completely describe the configuration of the robot (and the positions and motions
of the billions of particles) at some moment in time.

We start with the basics of rigid body motion, namely translation and rotation.
Then we introduce the configuration space and define forward and inverse kine-
matic mappings, which address questions of where the robot is and where we want
it to be. Lastly, we turn to velocity kinematics, which relates the rates of different
parameterizations of a robot’s position.

It should be noted that kinematics is not concerned with why things move; that
question is addressed in mechanics by the introduction of forces, which induce
accelerations. In kinematics, we are only concerned with position and its first
derivative, velocity. When we talk about velocity kinematics, we may be describing
the rate of change of position of an object with respect to time or with respect to
that motion expressed by other coordinates.

3.1 The Rigid Body Assumption

A rigid body is a set of particles that move together because they are attached. The
distance between any two particles remains fixed, regardless of any motions of the
body or forces exerted upon it. When one particle in a rigid body is pushed, the
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20 CHAPTER 3. KINEMATICS

other particles will all follow in some coherent way. In other words, a rigid body is
an abstraction: an idealized, completely undeformable solid body. We use the rigid
body assumption in robotics to model a robot’s whole body or its components, such
as the links of a manipulator. Since no object is completely rigid, the rigid body
assumption holds only under a set of other reasonable assumptions: no unusually-
large forces or deformations are imparted on the object; the object is not broken,
cut, or otherwise disassembled.

The power of the rigid body abstraction is in its ease of description. Since the
particles do not move with respect to one another, knowing a single position and
orientation fully specifies the position of every particle in the rigid body.

Examples of objects that fit the rigid body assumption well include a brick, a
metal crowbar, and a lightbulb. Some objects that fit the rigid body assumption
poorly include a piece of paper (it bends too easily), a body of water (the parti-
cles freely rearrange and flow), and a Jenga tower (the blocks fall apart easily).
Some objects are in between these two extremes, and we may choose to apply the
rigid body assumption anyway, knowing that it is imperfect. For example, a beach
ball stays mostly spherical, but it is soft and deforms where it touches objects. A
building is rigid and largely fixed, but the doors can swing independently of the
building; we just neglect this detail due to the difference in scale.

When we talk about a robot, it is important to be clear what assumptions we
are making for the sake of a clean mathematical analysis. In order to describe a
rigid body mathematically, we need to introduce some formalisms.

A reference frame is a set of axes fixed to a point, or particle. The axes of the
reference frame form a linear basis by which to describe the positions of points.
The reference frame shown in Fig. 3.1, {G}, represents a global reference frame,
i.e. a coordinate frame fixed in a 3-dimensional Cartesian space R3 at a point OG
with axes defined by the unit vectors {x̂G, ŷG, ẑG}. OG is called the origin of frame
G. By convention, subscripts are names, such as the B-origin or the G-origin.

The kinematic state of a particle A can be fully specified by its position with
respect to {G}. We can write the position of A with respect to {G} as a 3-vector,

PGA =
[
px py pz

]T , (3.1)

which is called a position vector. Vectors are always columns, but we have written
the vector in transposed form for compactness. The components of the position
vector denote the projection of PGA onto each axis of {G} (see Fig. 3.1). In 2D, the
position vector would have two components, as PGA =

[
px py

]T . The superscript
and subscript of P have special meanings. The superscript denotes the reference
frame in which the position of this point is expressed, and the subscript provides
the name of the point whose position is being referred to.
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Figure 3.1: A position vector PGA , defined with respect to the reference frame {G}.

In Fig. 3.2, we see that the position of frame {B} is expressed with respect to
the global frame {G} as

PGOB
=
[
qGx qGy qGz

]T . (3.2)

We will often write PGB as a shorthand for PGOB
, but it is important to remember

that the position of a frame is the position of its origin. Here, the coordinates
(qGx , q

G
y , q

G
z ) describe the position of frame {B} in {G}-frame coordinates. Since

B is a rigid body that can move with respect to the global frame, these coordinates
can vary. To find the values of the coordinates, we can project the point OB onto
the {G}-frame axes x̂G, ŷG, and ẑG. Our assumption that B is a rigid body means
that a motion ofOB causes a motion of the whole frame. Furthermore, we can pick
any arbitrary point A on the rigid body B and express its coordinates in the frame
{B} as a constant position vector

PBA =
[
pBx pBy pBz

]T . (3.3)

This expression says that the position of the point A in the reference frame {B}
is defined by the coordinates (pBx , p

B
y , p

B
z ), as a linear combination of the axes

of the B frame. We can always express a point in a different basis by using a
different reference frame; for example, the position vectors PBA and PGA both refer
to the position of the same point named A but are defined with respect to different
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Figure 3.2: The body-fixed reference frame {B} and the global-fixed reference frame {G}.
A point A is defined with respect to the body frame. Since it is a rigid body, the position
of A in the {B} frame, expressed as PBA , is fixed. However, the position of the {B} frame
in the {G} frame, expressed as PGB , can change if the rigid body moves. Note that such
motion does not change the value of PBA .

frames. As a result, unless {B} and {G} are coincident, PBA and PGA have different
values. Note that PBA 6= PGA implies {B} 6= {G}, but the converse is not true.

The motion of a rigid body in space can be fully described by its position
with respect to a coordinate frame at every instant in time. A rigid motion of
a body is a continuous movement of its particles under the constraint that that
the distance between any two particles remains invariant. The instantaneous net
movement of a body via rigid motion is called a rigid displacement, which may
result from translation (linear displacement, i.e. a change in position), rotation
(angular displacement, i.e. a change in orientation), or both at the same time.

For example, if the rigid body B starts at the global origin OG and then moves
to a new position, we say that it was translated to the new position by a motion
of PGB . The terms position and translation are often used interchangeably when
we are only concerned about the current position of B rather than the history of
motions that were applied to B; its current position is the sum of all the translation
operations that were applied to it. Similarly, the terms rotation and orientation are
sometimes used synonymously because you can combine rotations to define a rigid
body’s current orientation. The key concept here is that any arbitrary sequence of
translation and rotation operations can be combined and expressed as a single
translation and a single rotation. Furthermore, if we do not restrict to rotating
about the origin of the reference frame, then any arbitrary combined rotation and
translation can be expressed as a pure rotation about some point. Fig. 3.3 illustrates
these concepts.

Note that a particle can only translate; it cannot rotate because it has no orien-
tation. However, when we define a rigid body’s translation and rotation, we define
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Figure 3.3: The body frame {B} of the robot is displaced from the global frame {G} by
both a translation of (3, 1) meters and a rotation of π

2 radians about the origin of {B}.
Note that PBA = PGA . In other words, when the robot moved from {G} to {B}, the point
A appeared to stay fixed from its perspective at PGA = PBA = (1, 2). Every rigid body
displacement has exactly one such fixed point (possibly located at infinity). Therefore, we
can re-express the same rigid body displacement as a pure rotation about the point A by π

2
radians.

the position of every particle within the rigid body.
A translation has only one common representation, which is a vector that looks

just like a position vector. The vector PGB can be interpreted as either (1) a position
vector giving the location of the origin of the {B} frame with respect to the {G}
frame, or (2) a translation of a rigid body into the {B} frame from the {G} frame.
Translations are composed by vector addition.

Unlike translations, rotations are complex, and many different ways to repre-
sent them have been devised. Later on, we describe several of these representations
as well as their advantages and disadvantages. First, we discuss a common type of
robot for which the rigid body assumption is a good model: mobile robots.

3.2 Mobile Robot Kinematics

Many mobile robots can be modeled well as rigid bodies, like automated guided
vehicles (AGVs), drones (UAVs or unmanned aerial vehicles), and automated un-
derwater vehicles (AUVs). We focus here on the kinematics of ground vehicles,
which use wheels to locomote and steer.

Since we assume mobile robots are rigid bodies, we can define the configura-
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tion of the robot by its coordinate frame. In 2D, the position of the robot is given
by the position of the origin of its frame as PGB =

[
x y

]T . We need to mea-
sure the orientation as well. Although we have not addressed general rotations
in 3D yet, we can represent a 2D orientation as an angle θ in radians measured
between the x-axis of the global frame and the x-axis of the robot’s body frame.
By convention, a mobile robot’s body-frame x-axis points forwards in the normal
direction of travel. We may express a wheeled mobile robot’s configuration as a
vector q =

[
x y θ

]T .

3.2.1 Mobile Robot Constraints

Constraints are key to a proper understanding of the motion of wheeled mobile
robots. A kinematic model of a wheeled mobile robot allows us to determine how
the robot moves based on the geometry of constraints imposed by its wheels. To
find tractable equations for the model, we make several assumptions:

1. The robot is a single rigid body.

2. The robot moves on a smooth, flat surface.

3. No translational slip occurs between the robot’s wheels and the floor; that is,
the torque applied to the wheels does not exceed the available traction.

4. Wheels only spin about their central axis and – if they are steering wheels –
about the ẑ-axis, which is perpendicular to the floor.

The three dimensions of the configuration vector q are position variables ex-
pressing the three degrees of freedom of a rigid body. Having three degrees of free-
dom, however, does not mean that a rigid body can always move instantaneously
in all three directions. Nor does it mean that a robot can even reach points in all
three directions eventually given infinite time.

Position constraints reduce reachable degrees of freedom, whereas instanta-
neous degrees of freedom are reduced by velocity constraints. That is, velocity
constraints describe directions of unallowed motion. We will see that some veloc-
ity constraints are also position constraints, but others are not. For now, we will
analyze only instantaneous motions. The motions (or lack thereof) expressed by
instantaneous freedoms and velocity constraints are described as velocities that are
non-zero or zero, respectively. A mobile robot’s velocity is expressed as the vector

q̇ =

ẋẏ
θ̇

 . (3.4)
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We first introduce the equations for modeling the velocity constraints and instanta-
neous freedoms of arbitrary wheeled mobile robots, and then we will consider how
they apply to several robot designs.

Let the number of degrees of freedom be d and the number of instantaneous
freedoms bem ≤ d. We express the instantaneous freedoms as a set ofm equations
with 1 ≤ i ≤ m,

q̇ =
∑
i

gi(q)ui, (3.5)

where the vectors gi(q) ∈ R3 define the possible motions, and the ui terms are
the scalar control inputs. Thus, for each i, when the control ui is applied to the
mobile robot, it moves with velocity gi(q)ui. Furthermore, any linear combination
of control inputs is possible.

Let the number of velocity constraints be n ≤ d. Since constraints forbid
motion, they are written as

∀i, wi(q) · q̇ = 0. (3.6)

wi(q) is a velocity vector in which motion is prohibited. Examples of both gi(q)
and wi(q) are given below.

Unicycle Model
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Figure 3.4: A unicycle rolling on a plane, shown from the side (a) and overhead (b).

The most basic mobile robot is a unicycle (see Fig. 3.4), which illustrates the
basic instantaneous freedoms and velocity constraints of the wheel. The point of
contact between the unicycle and the ground is (x, y), and its heading (positive
x-axis) direction is θ. These are expressed in some global coordinate frame.

There are two control inputs to the unicycle:
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1. u1 is the forward-backward driving speed, and
2. u2 is the heading direction turning speed.

A control input is a degree of freedom in which the robot is not only able to move
instantaneously but can do so under its own power. The instantaneous freedoms
associated with these controls are

g1(q) =

cos θ
sin θ

0

 and g2(q) =

0
0
1

 . (3.7)

Note that the robot’s x-axis is the unit vector (1, 0) in its own body frame. That
vector expressed in the global frame is (cos θ, sin θ) for any orientation θ. The
combined instantaneous freedoms achievable from these two control inputs are
written as

q̇ =

ẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[u1

u2

]
=

u1 cos θ
u1 sin θ
u2

 . (3.8)

Any values of the control inputs u1 and u2 produce a velocity that is kinematically
allowed because it obeys the unicycle’s (single) motion constraint. That constraint
is

w1(q) =

− sin θ
cos θ

0

 , (3.9)

meaning that the unicycle cannot move sideways. Note that since the unicycle is
prohibited to move instantaneously in the direction along its body-frame y-axis,
we can derive the above constrained by rotating the mobile robot’s body y-axis
unit vector (0, 1) into the global frame. Written out, this constraint is

ẏ cos θ − ẋ sin θ = 0. (3.10)

Unsteered Cart

The cart shown in Fig. 3.5 has four wheels, all of which are fixed to the body of
the cart. It therefore has no ability to steer.

Since the cart cannot turn, its only control input is the forward-backward driv-
ing speed. Hence, its instantaneous freedom can be expressed with respect to this
lone control input as

q̇ =

ẋẏ
θ̇

 =

cos θ
sin θ

0

u1 =

u1 cos θ
u1 sin θ

0

 , (3.11)
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Figure 3.5: An unsteered cart cannot change its heading direction.

and its two velocity constraints are

w1(q) =

− sin θ
cos θ

0

 and w2(q) =

0
0
1

 . (3.12)

Thus, the constraint expressions are

ẏ cos θ − ẋ sin θ = 0 (3.13)

θ̇ = 0, (3.14)

Nonholonomic Constraints

Note that the instantaneous freedoms of a mobile robot are collective, meaning that
any linear combination of the ui terms is an allowable motion, whereas the con-
straints are separate. A constraint is called holonomic (or integrable) if it depends
only on the configuration q and not its derivative q̇; that is, a holonomic constraint
must be expressible as a function

f(q) = 0. (3.15)

A constraint that does not meet the above criteria is called nonholonomic. If all
of the constraints of a system are holonomic, it is considered a holonomic system;
any other system is a nonholonomic system. Let us revisit the two models above.

Unicycle Model Constraints

Consider the single constraint against sideways motion in Equation 3.10, which we
repeat here for clarity:

ẏ cos θ − ẋ sin θ = 0.
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Since this constraint cannot be integrated (it has no expression in terms of only q’s
variables x, y, and θ), it is nonholonomic, and therefore the unicycle is a nonholo-
nomic system.

Another way to check whether a system is holonomic or nonholonomic is to
compare the number of instantaneous degrees of freedom to the reachable degrees
of freedom. If the number of instantaneous degrees of freedom is less than the
reachable degrees of freedom, the system is nonholonomic. If the number of in-
stantaneous degrees of freedom is equal to the reachable degrees of freedom, the
system is holonomic.

In the case of the unicycle, it can reach anywhere in the plane with any ori-
entation. Thus, it has two controls but three reachable degrees of freedom (its
x-position, its y-position, and its heading direction) and thus is nonholonomic.

Unsteered Cart Constraints

Recall Equation 3.13–3.14:

ẏ cos θ − ẋ sin θ = 0

θ̇ = 0,

Compared to the unicycle, there is one additional constraint. The pair of these
constraints can be integrated to a derivative-free form:

(y − y0) cos θ0 − (x− x0) sin θ0 = 0 (3.16)

θ = θ0. (3.17)

Since these constraints can be integrated, they are both holonomic, and thus the
unsteered cart is a holonomic system. Each holonomic constraint reduces the sys-
tem’s reachable degrees of freedom by one, so although the cart has an x-position,
a y-position, and a heading direction θ, it only has one effective degree of freedom.
Intuitively, we can see that the cart must always remain on a single line in the plane
because it cannot turn, therefore restricting its motion to a single reachable degree
of freedom. Finally, note that the number of controls (one) is equal to the reach-
able degrees of freedom (one), which confirms that unsteered cart is a holonomic
system.

Thus, we see that in a holonomic system, velocity constraints on the robot’s
motion are also constraints on its position, meaning that the reachable degrees of
freedom are less than the full degrees of freedom of the rigid body. In contrast, the
velocity constraints in a nolholonomic system do not constrain its position, so the
full degrees of freedom are reachable.
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3.2.2 Mobile Robot Steering Kinematics

We can analyze the motion of a wheel in the plane by observing the pattern of
freedoms and constraints. A wheel can move forward or backward, but it resists
side-to-side motion. If all the wheels on a robot are parallel, as is the case with both
the unicycle and the unsteered cart, then all the constraints of the individual wheels
are consistent. Note, however, that in the unsteered cart each wheel’s constraint
against sideways translation forbids rotation of the other wheels. If the wheels are
not parallel, such as in a bicycle, then we know from experience that the result is
a controlled turn. However, we desire a formal approach to the analysis of these
multi-wheel configurations.

It is illuminating to look at the situation in terms of possible instantaneous
rotation centers of a wheel, as in Fig. 3.6. Since a rigid body displacement can be
described as a point to rotate about, then the instantaneous rigid body motion can
be expressed as a pure rotation about some point1, as shown in Fig. 3.3.

The instantaneous rotation center for a wheel depends on the values of the two
ui parameters in Equation 3.8. We will often refer to u1 and u2 by the names linear
velocity (v) and angular velocity (ω), respectively. When the controls u1 and u2

are mixed, we get a combination of constant linear and angular velocities, causing
the vehicle to follow a circular arc. If the controls are varied over time, then the
vehicle can be made to follow arbitrary curves. However, in these notes, we focus
our analysis on the instantaneous case, so we consider only constant linear and
angular velocities. The ratio of linear and angular velocities control the curvature
(κ) of the arc, according to the following relation:

κ =
1

r
=
ω

v
. (3.18)

Note that curvature of an arc is the reciprocal of the radius of curvature of that
arc about the instantaneous center of rotation. The center of rotation is therefore
defined by the interplay between linear and angular velocity. The set of arcs con-
sistent with the nonholonomic constraint are those tangential to the wheel’s x-axis
at its origin. The locus of centers of such arcs is the set of points belonging to the
line collinear with the y-axis. That is, the nonholonomic constraint of the wheel
permits an instantaneous rotation center at any point along a line perpendicular to
the direction of travel (see Fig. 3.6a) passing through the wheel’s axle. A rota-
tion center at the center of the wheel would correspond to turning in place (pure
u2). Any other point along the line would result in a curved path (some mix of u1

and u2). Rotation about the point at infinity (in either direction) corresponds to a
straight motion of the wheel with no turning (pure u1).

1Driving straight is a rotation about a point infinitely far away.
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(a) A single wheel is capable of rotating
about the vertical axis and rolling forward
or back. It is constrained against sliding
sideways by friction. The set of instanta-
neous rotation centers consistent with the
two wheel freedoms is a line perpendicular
to the direction of rolling through its center.

x̂

ŷ

C

(b) A bicycle is two connected wheels, one
of which is fixed whereas the other can
steer. They are rigidly joined together (red
line). The bicycle steers by controlling the
instantaneous rotation center that is consis-
tent with both wheels; the two perpendicu-
lars intersect at exactly one point.

x̂

ŷ

(c) The perpendiculars of the unsteered
four-wheeled cart form parallel lines that
meet at infinity. Thus, the four-wheeled cart
can only move in a straight line (a transla-
tion can be regarded as a rotation about a
point at infinity).

x̂

ŷ

C

(d) The two-wheeled cart permits steering
by turning the wheels at different rates.
Thus, it is generally referred to as differ-
ential drive.

Figure 3.6: Instantaneous rotation centers of wheels can be any point along the perpendic-
ular.
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In a bicycle (Fig. 3.6b), the wheels’ two perpendicular axes always meet at
exactly one point that kinematically defines the steering direction of the bicycle.
Thus, when the wheels are parallel, the bicycle travels straight. Otherwise, it curves
in an arc.

The analysis by instantaneous rotation centers gives us new insight into why
the unsteered cart in Fig. 3.5 can only move in a straight line, since the four lines
of instantaneous rotation centers meet only at infinity (Fig. 3.6c). Note that a trans-
lation is equivalent to a rotation about a point at infinity. There is a class of mobile
robots called skid-steered vehicles that are built with four fixed wheels, like the un-
steered cart, for ruggedness. They steer by violating the nonholonomic constraint
of two or more wheels by sliping sideways. Such vehicles generally traverse rough
terrain like mud and rocks where there is not always good frictional contact with
the ground.

Systems of Wheel Constraints

Having considered several layouts of mobile robot wheels, one might wonder how
in general to identify whether a given layout would result in motion. Suppose we
are given a set of n wheels fixed in the frame of the rigid body mobile robot. For
each wheel 1 ≤ i ≤ n, we have a coordinate frame’s origin (pxi , pyi) as well as
the directions of the unit vector x-axis (xxi , xyi) and y-axis (yxi , yyi).

We have noted that any two lines meet at a point (possibly at infinity). However,
for greater than two lines, the intersections may not be coincident. To find out,
we can set up a system of equations. A pair of equations constrains the x- and
y-coordinates of one intersection point. Given n constraints, one per wheel, we
define a parameter vector t =

[
t1 t2 . . . tn

]T .
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Now we set up and solve the system of linear equations At = b, where

A =



yx1 −yx2 0 . . . 0
yy1 −yy2 0 . . . 0
yx1 0 −yx3 . . . 0
yy1 0 −yy3 . . . 0

...
...

...
...

yx1 0 0 . . . −yxn
yy1 0 0 . . . −yyn


(3.19)

b =



px1 − px2
py1 − py2
px1 − px3
py1 − py3

...
px1 − pxn
py1 − pyn


(3.20)

Thus, we have 2(n − 1) constraints and n unknowns. For n > 2, the system
appears overconstrained; however, coincident rotation centers are redundant con-
straints. Therefore, we can attempt to solve the system of equations and then check
if we got an exact solution. SinceA is not in general invertible, we must instead use
the left pseudoinverse to find a least-squared-error solution to an overconstrained
system. The left pseudoinverse is A+ = (ATA)−1AT . Therefore,

At = b (3.21)

A+At = A+b (3.22)

(ATA)−1ATAt = (ATA)−1AT b (3.23)

t = (ATA)−1AT b (3.24)

The solution value ofAt = b can be obtained in Matlab or Octave using the left
pseudoinverse with the notation t = A\b. Having found an approximate solution t,
we can now check if it perfectly solves the problem by computingAt−b. An exact
solution will be indicated by a vector of all zeros. Thus, a single instantaneous
center of rotation exists that is consistent with all wheel constraints. If the resulting
vector is non-zero, then the wheel constraints are entirely contradictory and this
configuration of wheels is immobilized due to constraints.

We consider two examples of tricycles, shown in Fig. 3.7. In Fig. 3.7a, all three
wheel constraints are consistent. To show that, consider the table of values:
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x̂G

ŷG

ŷ3

ŷ1

ŷ2
x̂2x̂1

x̂3

(1,-1)
(-1,-1)

(0,1)

(a) This tricycle can spin in place because
all three lines coincident with the y-axes,
representing the three wheel constraints,
meet at the origin.

x̂G

ŷG

ŷ3

ŷ1

ŷ2
x̂2x̂1

x̂3

(1,-1)(-1,-1)

(0,1)

(b) This tricycle cannot move because there
is no single point where all the y-axes meet.
Each pair of wheels wants to rotate about a
distinct point.

Figure 3.7: One can analyze sets of wheel velocity constraints by drawing the lines coinci-
dent with the y-axes of the wheels and solving for a point where all lines meet; this is the
instantaneous center of rotation.

Wheel Position y-axis
1 (−1,−1) (−1,−1)
2 (1,−1) (−1, 1)
3 (0, 1) (0,−1)

From the table, we can find

A =


yx1 −yx2 0
yy1 −yy2 0
yx1 0 −yx3
yy1 0 −yy3

 =


−1 1 0
−1 −1 0
−1 0 0
−1 0 1

 (3.25)

b =


px1 − px2
py1 − py2
px1 − px3
py1 − py3

 =


−2
0
−1
−2

 (3.26)
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Solving for t via the left pseudoinverse, we get,

At = b (3.27)

t = (ATA)−1AT b (3.28)

=

 1.3333
−0.5
−0.6667

 . (3.29)

Now, to check that this answer works, we compute

At− b =
[
0 0 0 0

]T .

Therefore, the wheel constraints are consistent and the robot can turn about the
origin.

If we slightly modify this example as shown in Fig. 3.7b, we can see that the
y-axis lines no longer meet at a single point, and therefore the wheel constraints
contradict one another. Consider the table of values:

Wheel Position y-axis
1 (−1,−1) (−1,−1)
2 (1,−1) (−1, 1)
3 (0, 1) (-1,0)

From the table, we can find

A =


yx1 −yx2 0
yy1 −yy2 0
yx1 0 −yx3
yy1 0 −yy3

 =


−1 1 0
−1 −1 0
−1 0 −1
−1 0 0

 (3.30)

b =


px1 − px2
py1 − py2
px1 − px3
py1 − py3

 =


−2
0
−1
−2

 (3.31)

Once again solving for t via the left pseudoinverse, we get,

At = b (3.32)

t = (ATA)−1AT b (3.33)

=

 1.3333
−1

−0.3333

 . (3.34)
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To check that this answer works, we compute

At− b =
[
−0.3333 −0.3333 0 0.6667

]T .

Since there was no solution consistent with all the constraints, the vehicle is im-
mobilized by its wheel layout.

Having seen how to compute the motion of abstract, fixed-wheel vehicle lay-
outs, we now turn to a couple of common steering mechanisms that are used to vary
the linear and angular velocity of the mobile robot for the purpose of controlling
its motion. These steering mechanisms are exactly constrained, so that they will
always admit one unique solution.

Differential Drive Steering

One can imagine that a two-wheeled variant of the cart would be steerable without
slip provided that the two wheels share a common perpendicular axis (Fig. 3.6d).
This layout is the differential drive robot steering design. By controlling the ve-
locities of the two wheels (called v` and vr), a differential drive mobile robot can
achieve an arbitrary linear and angular velocity. The distance between the wheels
b must be known. The setup is shown in Fig. 3.8a.

If the individual wheel velocities are known, we can compute the linear and an-
gular velocity of the robot. Noting that the origin of the mobile robot’s coordinate
frame is located at the center of the two wheels and that x̂B is parallel to the two
wheels’ x-axes, the linear velocity of the robot is simply the mean of the wheels’
velocities,

v =
vr + v`

2
(3.35)

To compute the angular velocity, we note that whereas linear velocity can vary
across particles in a rigid body due to rotation, the angular velocity of the rigid
body is the same when measured at any point. Recalling that ωr = v (a form of
Equation 3.18), if we know the velocity at two points, we can use them to find
the angular velocity and the radius of curvature. When the robot instantaneously
follows a positive radius of curvature r, then it is curving to the left, and so the left
wheel (which is on the inside of the curve) follows a radius of curvature of r − b

2 ,
whereas the radius of the right wheel (which is on the outside of the curve) is r+ b

2 .
Applying the relation,
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x̂B

ŷB

 

b

vℓ vr

r

(a) Differential drive involves a pair of
wheels sharing a common orthogonal axis.
These robots control their motion by vary-
ing the two wheel speeds v` and vr individ-
ually. The wheels are separated by a dis-
tance b, which is assumed known. r is the
radius of curvature, measured from the ori-
gin of the body frame to the instantaneous
center of rotation.

x̂B

ŷB

 hb

r
α

(b) Ackermann steering, or car-like steer-
ing, can be approximated by two simple
bicycles rigidly affixed. A bicycle is two
connected wheels, one of which is fixed
whereas the other can steer. They are
rigidly joined together and separated by the
length of the wheelbase b (red line), as-
sumed known. These robots control their
motion by varying the speed of the rear
wheel v and the steering angle α of the front
wheel.

Figure 3.8: Differential drive and bicycle steering kinematics are shown. The linear ve-
locity v and angular velocity ω are given with respect to the body frame. Both drive
mechanisms pictured above have a pair of control inputs that can exactly determine v and
ω.

ω

(
r − b

2

)
= v` (3.36)

ω

(
r +

b

2

)
= vr. (3.37)

Now we can solve for angular velocity:

v`
ω

+
b

2
= r =

vr
ω
− b

2
(3.38)

v` + ωb = vr (3.39)

ω =
vr − v`
b

. (3.40)

Finally, we can compute the effective curvature of the differential drive robot’s
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motion,

κ =
2(vr − v`)
b(vr + v`)

. (3.41)

If the desired linear and angular velocites are known, then we can use those to
compute desired wheel velocities. By rearranging terms above and then adding or
subtracting the equations, we get

v` = v − bω

2
(3.42)

vr = v +
bω

2
. (3.43)

Ackermann Steering

Ackermann steering, also known as car-like steering, invlves two steerable front
wheels and two fixed rear wheels that provide propulsion. Fig. 3.8b illustrates
half of an Ackermann steering mechanism for simplicity. A bicycle is controlled
through the same principle as a car.

Since the coordinate frame for the bicycle is placed at the rear drive wheel,
the velocity of the bicycle is exactly the velocity of the drive wheel. If the linear
velocity and steering angle are known, then we can compute the angular velocity by
the following reasoning. Recognizing the right triangle formed by the two wheels
and the instantaneous rotation center,

b = h sinα (3.44)

r = h cosα (3.45)

ω =
v

r
=
v tanα

b
. (3.46)

Supose now that we are given a desired linear and angular velocity. The corre-
sponding steering angle is computed as

α = atan2(bω, v). (3.47)

The operator atan2(y, x) is an arctangent that returns angles in the full range from
−π to π. Note that atan(y/x) only returns angles between −π

2 and π
2 .

The nonlinearity of (3.47) explains why cars use Ackermann steering rather
than differential drive. At high speeds, a car needs to be robust against oversteer-
ing, but when maneuvering in a parking lot, a car should be highly responsive to
steering input. The variable sensitivity of Ackermann steering to control inputs
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(a) Ackermann steering: angular velocity
as a function of steering angle. Note the
nonlinearities near the steering limits.
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(b) Ackermann steering: rate of change of
angular velocity with respect to changes in
steering angle.
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(c) Differential drive: angular velocity as
a function of right wheel velocity (for left
wheel velocity, multiply by -1).
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(d) Differential drive: rate of change of an-
gular velocity with respect to changes in
right wheel velocity.

Figure 3.9: The qualitative curves of this figure illustrate why Ackermann steering is used
in cars and differential drive is not. Steering inputs to an Ackermann vehicle are highly
sensitive to current steering angle, whereas the steering response of a differential drive
vehicle is constant.
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as a function of current steering angle is key to achieving this high-speed stability
and low-speed maneuverability. Fig. 3.9a and Fig. 3.9b illustrate these properties.
The relationship shown in Fig. 3.9b is called the steering response of the vehicle,
which is the rate of change of angular velocity with respect to the control inputs.
When the steering wheels of an Ackermann vehicle are near straight, the steering
response is minimal. As the steering angle increases at a constant linear velocity,
the steering response increases super-linearly.

In contrast, differential drive gives a constant steering across the range of cur-
rent wheel velocities (see Fig. 3.9c and Fig. 3.9d). Consequently, differential drive
tends to make a poor choice of steering model for a car because it is unstable at high
speed and frustrating to control in tight spaces because it responds too slowly to
changes in the control input. In spite of this, differential drive is often an adequate
steering model for a robot, and it has the advantage of being easy to implement.

Regardless of which steering model a vehicle uses, sometimes we lose control
of the vehicle — a car might roll, a bicycle might topple over, a wheeled robot
might fall off the curb — and our assumption that the vehicle always moves on
a smooth, flat surface is violated. When this happens, a 2D description of rigid
motion is no longer sufficient. We learned in Section 3.1 that there is one common
representation of a 3D translation (a vector that looks just like a position vector).
But how do we represent the rotation of a rigid body in three dimensions? The
answer is much longer and more complex, and is the subject of the next section.

3.3 Rotation Representations

Many robotics applications require us to describe the rotation of a body in three-
dimensional space. For example, suppose that the position of a robot’s two-finger
end-effector is given by PGA . If the robot rotates the revolute joint in its wrist, the
position of the end-effector does not change, but the orientation does. Knowing
this orientation is key to the robot being able to grasp an object with its fingers
rather than knocking the object over or pushing it off the table.

We saw in Section 3.2 that we can describe a 2D rotation by computing the
angle between the x-axis of the global frame and the x-axis of the robot’s body
frame. Suppose that, as in Fig. 3.10, a point A is located on rigid body B. If we
say that B’s frame {B} is rotated by angle θ with respect to global frame {G},
then we can use this information to compute the global coordinates (position) of
A. Remember that the point A does not have an innate orientation, but the act of
applying a pure rotation to B causes all points in B to rotate about B’s origin, OB .
The operation of rotating A about OB causes A to translate to a new position.

If we want to compute the new position of A after applying the rotation oper-
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OB=OG x̂B=x̂G

ŷB=ŷG

A
PA

OB=OG x̂G

ŷG

ŷB
A

PA

θ

x̂B

Figure 3.10: At left, a rigid body B before rotation. At right, the same body after being
rotated by angle θ. We see that rotating B by θ causes the point A to move to a new
position in the global reference frame {G}, although it is still in the same position in the
body frame {B}.

ation to B, then we need to use some trigonometry. If we know the unchanging
coordinates of A in the B frame as PBA = (pBx , p

B
y ), then the transformed coordi-

nates following the rotation are PGA = (pBx cos θ − pBy sin θ, pBx sin θ + pBy cos θ).
This result can be derived from inspection, but it may not seem intuitively obvious
yet. In the next section, we generalize this result to three dimensions as we begin
our study of rotation representations.

3.3.1 The Rotation Matrix

If we take the axes of a body frame {B} expressed relative to the global frame
{G} and use them as the columns of a matrix, the result is a 3×3 matrix called the
rotation matrix:

RGB =
[
x̂GB ŷGB ẑGB

]
. (3.48)

Since the columns ofRGB are the axes of {B}, they are orthogonal unit vectors, and
the rotation matrix is therefore an orthogonal matrix.

As noted in Section 3.1, the components of a position vector denote the vector’s
projection onto each axis of a selected reference frame. As a result, each column in
the rotation matrix contains the projection of the corresponding axis of {B} onto
each axis of {G}. Since the axes are unit vectors, the projection of an axis of {B}
onto an axis of {G} is the cosine of the angle between those two axes (often called
a direction cosine). Thus,

RGB =

cos(x̂B, x̂G) cos(ŷB, x̂G) cos(ẑB, x̂G)
cos(x̂B, ŷG) cos(ŷB, ŷG) cos(ẑB, ŷG)
cos(x̂B, ẑG) cos(ŷB, ẑG) cos(ẑB, ẑG)

 . (3.49)
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Alternatively, we can write the direction cosines as dot products, yielding

RGB =

x̂B · x̂G ŷB · x̂G ẑB · x̂G
x̂B · ŷG ŷB · ŷG ẑB · ŷG
x̂B · ẑG ŷB · ẑG ẑB · ẑG

 . (3.50)

We can use the fact that the dot product is commutative to derive an interesting
property of the rotation matrix. If we transpose RGB and then use commutativity to
change the order of the vectors in each dot product, we see that

(RGB)T =

x̂G · x̂B ŷG · x̂B ẑG · x̂B
x̂G · ŷB ŷG · ŷB ẑG · ŷB
x̂G · ẑB ŷG · ẑB ẑG · ẑB

 = RBG. (3.51)

The transpose of a rotation matrix also has an important relationship with its
inverse. If we multiply RGB by (RGB)T , we see that

RGB(RGB)T =
[
x̂GB ŷGB ẑGB

] (x̂GB)T

(ŷGB)T

(ẑGB)T

 = I3 (3.52)

since the columns of RGB are mutually orthogonal. Thus,

(RGB)T = (RGB)−1. (3.53)

Another notable property of a rotation matrix RGB is that

det(RGB) = 1 (3.54)

under the assumption of right-handed coordinates. (In general, it can be ±1.)

Interpretations of the Rotation Matrix

Depending on the application, we may wish to interpret and use the rotation matrix
in different ways. Namely, we may use it to

• describe the orientation of a coordinate frame with respect to another frame,

• map the coordinates of a point located in one frame to another frame, and

• rotate a vector to a new orientation in the same coordinate frame.

We provide an example for each of these interpretations below.
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Example 3.1 Describing the orientation of a frame
Consider a planar rotation in which a frame is rotated about its z-axis for an

angle θ to transition from an initial orientation {0} to a final orientation {1} (see
Fig. 3.11). We would like to describe {1} relative to {0}, so we use (3.49) to derive
the expression

Rz(θ) = R0
1 =

[
x̂0

1 ŷ0
1 ẑ0

1

]
=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (3.55)

where the notation Rz(θ) is used to denote rotation about the z-axis for an angle θ.
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cos𝜃

sin 𝜃

Figure 3.11: Example of a planar rotation about the z-axis from a side (left) and top view.

Similar computations yield the expressions for the rotation matrix describing a
rotation about the y-axis,

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (3.56)

and the x-axis,

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (3.57)

Example 3.2 Mapping the coordinates of a point
Assume we are given two frames {1} and {2} as well as the coordinates

of a point A with respect to frame {2} in the form of a position vector P 2
A =[

u v w
]T (see Fig. 3.12). Our goal is to determine the coordinates of A with

respect to frame {1}; that is, we wish to find the position vector P 1
A.
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Figure 3.12: The rotation matrix can be used to express a point A with respect to different
coordinate frames.

Since the elements of P 2
A are its projections onto the axes of frame {2}, we can

rewrite P 2
A as

P 2
A = ux̂2 + vŷ2 + wẑ2. (3.58)

We can write a similar expression for P 1
A,

P 1
A =

P 2
A · x̂1

P 2
A · ŷ1

P 2
A · ẑ1

 . (3.59)

From equations (3.59) and (3.58), we have

P 1
A =

(ux̂2 + vŷ2 + wẑ2) · x̂1

(ux̂2 + vŷ2 + wẑ2) · ŷ1

(ux̂2 + vŷ2 + wẑ2) · ẑ1


=

ux̂2 · x̂1 + vŷ2 · x̂1 + wẑ2 · x̂1

ux̂2 · ŷ1 + vŷ2 · ŷ1 + wẑ2 · ŷ1

ux̂2 · ẑ1 + vŷ2 · ẑ1 + wẑ2 · ẑ1


=

x̂2 · x̂1 ŷ2 · x̂1 ẑ2 · x̂1

x̂2 · ŷ1 ŷ2 · ŷ1 ẑ2 · ŷ1

x̂2 · ẑ1 ŷ2 · ẑ1 ẑ2 · ẑ1

uv
w

 .

(3.60)

The matrix in the final step of (3.60) is the rotation matrix R1
2. Thus,

P 1
A = R1

2P
2
A. (3.61)
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Figure 3.13: A rectangular block starts in the configuration given by (a). After the block is
rotated by π radians about ẑG, the new configuration of the block is given by (b).

Equation (3.61) is a useful expression that allows us to map the coordinates of a
point from one frame to another.

Example 3.3 Rotating a position vector
Consider the block of Fig. 3.13a in which one corner of the block is located

at point C in space. After rotating the block about the axis ẑG for π radians, the
block is configured as shown in Fig. 3.13b, and the same corner of the block is
now located at point D. We would like to describe the change in the position of the
corner as the rotation of a position vector with respect to the global frame.

To do this, we attach a body frame {B} to the block such that {B} is coincident
with {G} before rotation, as shown in Fig. 3.13a. UsingRz(θ) from (3.55), we can
derive the rotation matrix representing the final orientation of {B} with respect to
the global frame {G}, as

RGB = Rz(π) =

−1 0 0
0 −1 0
0 0 1

 . (3.62)

Now we can use (3.61) from the previous example to relate the coordinates of D
within the body frame to the coordinates of D within the global frame, as

PGD = RGBP
B
D . (3.63)

But since the position of the corner never changes with resepct to {B}, it must be
the case that PBD = PGC when {B} and {G} are aligned as in Fig. 3.13a. We can
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therefore substitute PGC into (3.63) to obtain

PGD = RGBP
G
C . (3.64)

Equation (3.64) thus allows us to express the rotational motion of a vector within
the same coordinate frame.

Composition of Rotations

Articulated robotic mechanisms are composed of several rigid bodies attached to
each other by joints of various kinds. As a result, to describe their kinematics, it is
often necessary to compose the motions of their components. The typical approach
to this problem is to attach a frame to each rigid body, determine the relative dis-
placements between successive bodies, and combine those displacements into a
net displacement. Importantly, when composing a sequence of rotational displace-
ments, the method of composition depends on whether the rotations were made
with respect to the current frame or to the fixed frame. To understand the differ-
ence between these types of rotations, we will consider the following example.

Suppose that a manipulator arm has three links and two revolute joints rotating
about orthogonal axes. We label the links incrementally starting with the link at-
tached to the base, which we call link 0. We then attach a frame to each link, again
starting from the base, and call the frames {0}, {1}, and {2}. For the moment, let
us assume that the displacement from one link to the next is a pure rotation about a
common origin. Suppose that the position of point A in frame {2} is given by P 2

A.
To determine the position of A relative to frame {0}, we can use the following two
relationships:

P 0
A = R0

1P
1
A, (3.65)

P 1
A = R1

2P
2
A. (3.66)

Substituting (3.66) into (3.65) yields

P 0
A = R0

1R
1
2P

2
A. (3.67)

What this equation says is that in order to transform the coordinates of a point A
from frame {2} to frame {0}, we may first transform P 2

A to P 1
A using R1

2 and then
transform P 1

A to P 0
A using R0

1. Furthermore, since we know that

P 0
A = R0

2P
2
A, (3.68)

we can infer from (3.68) and (3.67) that

R0
2 = R0

1R
1
2. (3.69)
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We can interpret (3.69) in the context of our three-link, two-joint arm. As we move
up the arm from the base, each joint applies a rotation matrix (which is a function of
the joint angle) to the previous frame in the chain to compute the new frame. Thus,
to compute the orientation of {2} with respect to {0}, we first applyR0

1 to move up
the chain from {0} to {1}, and then we apply R1

2 to move up the chain from {1} to
{2}. Note that the frame to which the rotation matrix is relative changes from {0}
to {1} during this process. We call the frame that is relative to the rotation we are
currently performing the current frame.

Sometimes we may wish to perform rotations with respect to a single, non-
changing frame rather than the current frame. When we do this, we refer to the
single frame as the fixed frame. Suppose that we select {0} to be the fixed frame.
In this case, R0

1 is a rotation with respect to the fixed frame, but R1
2 is not. We

therefore define another rotation matrix R that has the same value as R1
2 but is

named differently to reflect that it is a rotation with respect to the fixed frame
rather than the current frame. The interpretation is not as nice as just moving up
the chain, but we can try to visualize it in the following way:

1. First, we apply R0
1 to move up the chain from {0} to {1}. When applying

the first rotation, it is simultaneously in the current and fixed frames.

2. Since we are at the current frame rather than the fixed frame, we need to
apply another transformation before we can use R. We therefore apply
(R0

1)−1 = R1
0 in the current frame to move back to the fixed frame.

3. Now that we are at the fixed frame, we apply R in the current frame (which
is also the fixed frame).

4. Finally, we need to undo the transformation we applied in the second step,
so we apply the transformation (R1

0)−1 = R0
1 in the current frame.

Putting these steps together yields

R0
2 = R0

1R
1
0RR

0
1. (3.70)

You may have noticed that the first two steps seem redundant: we move from the
fixed frame to {1} and then right back to the fixed frame. Indeed, since R1

0 is the
inverse of R0

1, we have R0
1R

1
0 = I3. Thus, our equation is reduced to

R0
2 = RR0

1. (3.71)

It is illuminating to compare (3.71) side-by-side with (3.69). To obtain R0
2 by

performing a rotation R with respect to the current frame, we postmultiplied R0
1

by R = R1
2 to obtain

R0
2 = R0

1R
1
2. (3.72)
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In contrast, when we performed the second rotation with respect to the fixed frame,
we premultiplied R0

1 by R to obtain

R0
2 = RR0

1. (3.73)

Why do we draw the distinction between fixed frame and current frame? It matters
when and how new rotations are applied. For example, given a robot arm in a
known configuration, bending the shoulder joint incurs a rotation in the fixed frame
because the shoulder occurs earlier in the arm than the other joints. Similarly, a
bending of the wrist creates a rotation in the current frame because it is later in the
arm than the other joints. Note that in general, theR0

2 in (3.72) and theR0
2 in (3.73)

will not be the same because matrix multiplication does not commute.
It should be noted that, given a product of arbitrary rotations RaRbRcRd, one

can always achieve the same mathematical result by applying rotations in either the
current frame or fixed frame, or any mix of the two. For example, these are both
valid ways to achieve the same net rotational displacement of the final frame with
respect to the unrotated frame:

• Rotate by Rb in the current frame: IRb = Rb
• Rotate by Rc in the current frame: RbRc
• Rotate by Ra in the fixed frame: RaRbRc
• Rotate by Rd in the current frame: RaRbRcRd

or

• Rotate by Rc in the fixed frame: RcI = Rc
• Rotate by Rd in the current frame: RcRd
• Rotate by Rb in the fixed frame: RbRcRd
• Rotate by Ra in the fixed frame: RaRbRcRd

To avoid ambiguity when composing rotations, one must always specify whether
each rotation is being applied in the current or fixed frames.

Beyond the Rotation Matrix

We previously alluded to the fact that there are many ways to represent rotations
in three dimensions. What might a representation other than the rotation matrix
look like? One might wonder whether we can represent a 3D rotation with fewer
elements than the nine elements of the rotation matrix. The answer is that we can,
and we can actually use the rotation matrix itself to determine the minimum number
of elements required. Recall that we originally introduced the rotation matrix as

RGB =
[
x̂GB ŷGB ẑGB

]
(3.74)
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where the columns of RGB are orthogonal unit vectors. The fact that they are unit
vectors gives us the dependencies∥∥x̂GB∥∥ = 1,

∥∥ŷGB∥∥ = 1,
∥∥ẑGB∥∥ = 1, (3.75)

and the fact that they are mutually orthogonal gives us the dependencies

x̂GB · ŷGB = 0, x̂GB · ẑGB = 0, ŷGB · ẑGB = 0. (3.76)

Thus we have six equations that constrain the nine elements of the rotation matrix.
As a result, only three of those nine elements are independent quantities, which
implies that a rigid body possesses at most three rotational degrees of freedom. It
follows that any 3D rotation can be expressed with just three parameters. Several
rotation representations make use of this fact, and in the following sections we
present several notable ones: Euler angles, the axis-angle pair, and quaternions.

3.3.2 Euler Angles

Since a rigid body has up to three rotational degrees of freedom, any orientation can
be achieved by three rotations about the axes of a frame. The Euler angles rotation
representation describes three such rotations. Whenever Euler angles are used, it is
crucial to specify (1) the order in which the rotations are applied, (2) whether they
are applied in the fixed frame or the current frame, and (3) which axes are being
rotated about. We will denote Euler angles as α, β, and γ, but different authors use
different names for the angles, so the names chosen for the angles should not be
read into too much. What is most important is the sequence in which they occur.

The axes that we choose to rotate about and the order in which the rotations are
applied define an Euler angle convention, each with a specific name. For example,
if the first rotation is about the x-axis, the second is about the y-axis, and the third
is about the z-axis, then we call our angles X-Y-Z Euler angles. With some thought
we can conclude that there are twelve possible sequences. Six of these sequences
result from all possible permutations of X, Y, and Z:

X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y, Z-Y-X.

The other six are all possible sequences where the first and third rotation axes are
the same and the second is different:

X-Y-X, X-Z-X, Y-X-Y, Y-Z-Y, Z-X-Z, Z-Y-Z.

Note that the convention names, when written this way, still do not tell us whether
the rotations are about the fixed frame or the current frame. For this reason, some
authors will use the names written above to denote rotations about the fixed frame,
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(a) (b) (c)

Figure 3.14: These Z-Y′-X′′ Euler angles, denoted (α, β, γ), represent the orientation of
the frame given by the axes x̂′′′, ŷ′′′, ẑ′′′ with respect to the frame given by the axes x̂, ŷ, ẑ.
Note that all the rotations were applied in the current frame.

and use names such as Z-Y′-X′′ to denote rotations about the current frame (see
Fig. 3.14 for an illustration of this convention).

The rotations shown in Fig. 3.14 can be represented as rotation matricesRz(α),
Ry′(β), Rx′′(γ). They can be composed into a rotation matrix RZY ′X′′ as follows:

RZY ′X′′ = Rz(α)Ry′(β)Rx′′(γ) (3.77)

=

cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0

−sβ 0 cβ

1 0 0
0 cγ −sγ
0 sγ cγ

 (3.78)

=

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 (3.79)

where cangle and sangle denote cos(angle) and sin(angle) respectively. The rotation
matrix RZY ′X′′ is equivalent to the ZY ′X ′′ Euler angles.

Since we are calling these representations “equivalent”, one might wonder why
we would ever prefer the more complicated rotation matrix representation over
the Euler angle representation. It turns out that using only three parameters to
represent a 3D rotation has its drawbacks, and these drawbacks can make Euler
angles unsuitable for some practical applications. Let us suppose that we have a
set of ZY ′X ′′ Euler angles given by (α = π/4, β = π/2, γ = π/4). After the
second rotation (90 degrees about ŷ′) is applied, x̂′ is aligned with ẑ′′. The fact that
these axes are aligned causes our 3D representation to lose a degree of freedom.
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What does this mean mathematically? Let’s plug β = π/2 into (3.79) and find out:

RZY ′X′′ =

cα · 0 cα · 1 · sγ − sαcγ cα · 1 · cγ + sαsγ
sα · 0 sα · 1 · sγ + cαcγ sα · 1 · cγ − cαsγ
−1 0 · sγ 0 · cγ

 (3.80)

=

 0 cαsγ − sαcγ cαcγ + sαsγ
0 sαsγ + cαcγ sαcγ − cαsγ
−1 0 0

 (3.81)

=

 0 −sα−γ cα−γ
0 cα−γ sα−γ
−1 0 0

 (3.82)

What we can conclude is that when β = π/2, changing the values of α and γ will
change the rotation angle α−γ, but the rotation axis, which is ẑ, will never change
because the first column and last row of the rotation matrix will never change.
Thus, α and γ have the same role, and as a result have lost a degree of freedom.
The only way to recover all three degrees of freedom is to change β. In practical
applications, this effect is often called gimbal lock. We call a point at which gimbal
lock occurs a singularity. Every Euler angle convention has two singularities. For
the six conventions that are a permutation of X, Y, and Z, the singularities occur
at β = π/2 and β = 3π/2 (assuming β is the rotation that is applied second).
For the six conventions in which the first and third rotation axes are the same, the
singularities occur at β = 0 and β = π, again assuming β is the second rotation.

Thus, although Euler angles are very intuitive, they suffer from the gimbal
lock problem no matter what convention you use. We will now turn our attention
to other rotation representations that avoid this problem.

3.3.3 Axis-Angle Representation

In addition to giving us Euler angles, Leonhard Euler also gave us the axis-angle
representation by proving that any two coordinate frames with a common origin
are related by a single rotation about some fixed axis. As a result, we can represent
any 3D rotation with one unit vector x̂ and one angle θ (see Fig. 3.15).

You may recall that we have already seen some axis-angle pairs. If k̂ is selected
to be one of the principle axes, then we have one of the following basic rotations:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (3.83)
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Figure 3.15: Axis-angle representation is given by an axis of rotation k̂ and an angle θ.

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (3.84)

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.85)

Where things become more interesting is when k̂ is an arbitrary axis. In this case,
the rotation matrix corresponding to the axis-angle pairRk(θ) is more complicated:

Rk(θ) =

 k2
x(1− cθ) + cθ kxky(1− cθ)− kzsθ kxkz(1− cθ) + kysθ

kykx(1− cθ) + kzsθ k2
y(1− cθ) + cθ kykz(1− cθ)− kxsθ

kzkx(1− cθ)− kysθ kzky(1− cθ) + kxsθ k2
z(1− cθ) + cθ

 .

(3.86)
We can also consider the inverse problem: given an arbitrary rotation matrix,

can we derive the corresponding axis-angle pair? There is also a straightforward
way to do this. Given some rotation matrix

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.87)
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the angle θ of the equivalent axis-angle pair is given by

θ = cos−1

(
r11 + r22 + r33 − 1

2

)
. (3.88)

and the axis k̂ is given by

k̂ =
1

2 sin θ

r32 − r23

r13 − r31

r21 − r12

 , (3.89)

Since the computation of the angle θ requires an arccosine, the value of θ is
always between 0 and π radians. What this suggests is that there is not one unique
axis-angle pair that corresponds to any given rotation matrix. Indeed, a rotation of
θ radians about k̂ is equivalent to a rotation of −θ radians about −k̂. We therefore
need to choose between these two solutions when converting a rotation matrix to
an axis-angle pair. In addition, we need to be careful that we do not try to plug in
θ = 0 or θ = π to our formula for the axis since that will result in division by zero.
If θ = 0, then there is no rotation, and so the axis of rotation is undefined. On the
other hand, if θ = π, then there is an axis of rotation, but the sign is ambiguous.

As we have described it, the axis-angle representation requires four real num-
bers: a three-vector axis and a scalar angle. However, since the axis is of unit
length, only two of its components are independent. We can therefore compress
the axis-angle representation into a single three-vector, as v =

[
θkx θky θkz

]T .
Then the length of v is the angle θ and the direction of v is the axis k̂. It is important
to note that although we can represent an axis-angle pair with a single vector, we
cannot use the standard rules of vector algebra to compose rotations. If we could,
it would imply that rotations are commutative, which in general is false.

3.3.4 Quaternions

We have seen that the axis-angle rotation allows us to express a 3D rotation with
four real numbers, but when we express those four numbers as a single vector, we
cannot use standard vector algebra to work with them. One might ask: is there
another kind of algebra we can use? Asking this question leads us to the final 3D
rotation representation we will study: quaternions. A quaternion can be thought
of as a complex number with three imaginary parts, a scalar and a three-vector, or a
four-vector. These three different ways of thinking about quaternions lead to three
common notations:

Q = q0 + q1i + q2j + q3k, (3.90)
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where q0, q1, q2, q3 ∈ R and i, j and k are the fundamental unit quaternions,

Q = (q0, ~q), (3.91)

where q0 is the scalar component and ~q ∈ R3 is the vector component, and

Q =
[
q0 q1 q2 q3

]T . (3.92)

The class of quaternions that allows us to represent rotations are the unit quater-
nions, which is the set of quaternions such that ‖Q‖ = 1. As stated above, i, j and
k are the fundamental unit quaternions and can be thought of as unit vectors point-
ing along the spacial axes (akin to x̂, ŷ, and ẑ). In general, a rotation of θ radians
about a unit vector k̂ can be represented by the unit quaternion

Q =
[
cos θ2 kx sin θ

2 ky sin θ
2 kz sin θ

2

]T . (3.93)

We may also recover the axis-angle pair given the unit quaternion, as

θ = 2 cos−1 q0 and k̂ =
~q√

1− q2
0

. (3.94)

Note that if q0 = 1, then θ = 0, and our formula for computing k̂ breaks because
the axis of rotation is undefined.

In addition to converting between quaternions and axis-angle representation,
we can convert between quaternions and rotation matrices. Given a rotation matrix
R, the scalar and vector components of the corresponding quaternion are given by

q0 =
1

2
(1 + r11 + r22 + r33)1/2, (3.95)

~q =
1

4q0

r32 − r23

r13 − r31

r21 − r12

 . (3.96)

Conversely, given a unit quaternion, the corresponding rotation matrix is

R =

2(q2
0 + q2

1)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2

0 + q2
2)− 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3)− 1

 . (3.97)

We do not need to convert quaternions to rotation matrices before we can use them,
however; we can use quaternion multiplication directly. Importantly, quaternion
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multiplication is distributive and associative but not commutative. For any two
quaternions Q and N , the product Q ·N is given by

Q ·N =


q0n0 − q1n1 − q2n2 − q3n3

q0n1 + q1n0 + q2n3 − q3n2

q0n2 + q2n0 + q3n1 − q1n3

q0n3 + q3n0 + q1n2 − q2n1

 . (3.98)

To compose consecutive rotations, we can multiply their corresponding quater-
nions like we did with rotation matrices. Suppose we have two quaternions Q0

1

and Q1
2 which represent the orientation of frame {1} relative to frame {0} and the

orientation of frame {2} relative to frame {1} respectively. Using quaternion mul-
tiplication, we may derive the quaternion expressing the orientation of frame {2}
with respect to frame {0} as

Q0
2 = Q0

1 ·Q1
2. (3.99)

We also may wish to apply a rotation to a position vector using quaternions.
To do this, we first need to define the conjugate of a quaternion Q = (q0, ~q). The
conjugate of Q is given by Q∗ = (q0,−~q) and satisfies the following equation:

‖Q‖2 = Q ·Q∗ = q2
0 + q2

1 + q2
2 + q2

3 . (3.100)

We can now define the inverse of a quaternion, as

Q−1 =
Q∗

‖Q‖2
. (3.101)

Now suppose that we have some position vector PA =
[
x y z

]T . To rotate PA
using the quaternion Q, we perform quaternion multiplication like so:

x′

y′

z′

1

 = Q ·


x
y
z
1

 ·Q−1. (3.102)

Then all we need to do is use x′, y′, and z′ to form the newly-rotated position
vector, as P ′A =

[
x′ y′ z′

]T .

3.4 Properties of Rotations

Now that we have seen several ways to represent a 3D rotation, one may wonder:
when do we select one parameterization over another, and why? In this section, we
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discuss some of the properties that we need from any representation of rotations,
and we consider the properties of various representations that may be useful or
problematic in an implementation.

Some of the most important properties when writing software that computes
rotations for a robot are as follows:

• Dimensional generality. We prefer that representations support rotations in
both two and three dimensions.
• Compactness. As a rule, we like data structures to be no larger than they

need to be. If a representation takes more than the minimal amount of space
required to store information, we say that it has redundancy. Algorithms
compute faster on smaller data structures because more of them fit into mem-
ory cache. They also transmit more quickly over networks than larger data
structures. With modern computers, we can afford to pay less attention to
this property. However, it is related to another similar property: uniqueness.
• Uniqueness. We prefer that for each possible rotation we might want to

express, there should be one unique representational form of that rotation.
Having redundant representations of the same rotation suggests that the data
structure could be made more compact, and also that comparisons for equal-
ity are more difficult.
• Numerical stability. Computations with floating point numbers are subject

to numerical error. For example, with repeated multiplications, numbers may
lose precision in subtle ways. If a representation has redundancy, then some
possible values in the representation may not correspond to any physical ro-
tation. A good representation should be numerically stable; that is, it should
degrade gracefully in the face of accumulating numerical error.
• Interpolability. We may wish to interpolate from one orientation to another,

with each orientation given by some parameterization of a rotation. The
naive approach to interpolation with a scalar, vector, or matrix is to linearly
interpolate each value based on a parameter t ∈ [0, 1]. Interpolation is not
trivial, however, when a representation has redundancy since intermediate
values under a linear interpolation do not in general correspond to physi-
cally meaningful orientations. Even with representations for which linear
interpolation produces valid rotations, the result of linear interpolation may
be counterintuitive.
• Differentiability. Besides composing discrete rotations, we may wish to de-

scribe rotational rates, in which case we would like to have the property that
for any orientation, a given rate of change of that orientation should corre-
spond at least roughly to a constant rate of change in the parameterization.

The properties above are the metrics by which we should judge each representation
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for use in robotics applications. The table below shows how the various represen-
tations defined in Section 3.3 compare to each other according to these metrics.

Representation

G
enerality

C
om

pactness

U
niqueness

N
um

erical Stability

Interpolability

D
ifferentiability

angle 2D Y N Y Y Y*
rotation matrix Y N Y N N Y
Euler angles 3D Y Y* Y N N
axis-angle 3D Y Y Y N† N†
quaternion 3D N N‡ N Y Y

* true in general, but fails at a finite number of discrete parameter values.
† except when the interpolation or differentiation is about the axis of rotation.
‡ the set of unit quaternions is a double-cover of SO(3); that is, for each orientation,
there is a corresponding quaternion with both positive and negative real value.

3.4.1 Algebraic Properties of Rotations

An algebraic group is a set of mathematical objects that all share an operator. Ro-
tations define a group under the composition operator, where composition means
performing one rotation followed by another rotation. In two dimensions, the com-
position operator for angles is addition modulo 2π, whereas for rotation matrices
the composition operator is multiplication.

The rotation group under composition is called SO(2) in two dimensions and
SO(3) in three dimensions. “SO” stands for the special orthogonal group. As with
all groups, SO(2) and SO(3) have four properties:

• Closure. The composition of any two rotations is itself a valid rotation.
• Identity. There exists an element of the set of rotations, I , that when com-

posed with any other rotation R yields R. Thus, IR = RI = R.
• Inverse. For every element R in the set of rotations, there exists an inverse

element R−1 such that when composed with R, the result is the identity.
Thus, RR−1 = R−1R = I .
• Associativity. When composing three rotations, we can simplify either pair

first and get the same result. Thus, ABC = (AB)C = A(BC).
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One property that SO(2) and SO(3) do not share is commutativity (i.e. for all
A,B in the group, AB = BA). We call a group in which commutativity holds for
the group operator an Abelian group. As a general rule, rotation does not commute,
and so SO(3) is not Abelian. In other words, the order in which you apply rotations
in 3D generally gives a different result.

In contrast, SO(2) is Abelian because real numbers (angles) commute over
addition modulo 2π. As a sanity check, we can confirm that 2D rotation matrices
should also commute under multiplication. This is somewhat surprising because in
general matrix multiplication does not commute, but interestingly the structure of
2D rotation matrices is special in a way that causes them to commute. We can see
that this is true as follows:

R(α)R(β) =

[
cosα − sinα
sinα cosα

] [
cosβ − sinβ
sinβ cosβ

]
(3.103)

=

[
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
cosα sinβ + sinα cosβ cosα cosβ − sinα sinβ

]
(3.104)

R(β)R(α) =

[
cosβ − sinβ
sinβ cosβ

] [
cosα − sinα
sinα cosα

]
(3.105)

=

[
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
cosα sinβ + sinα cosβ cosα cosβ − sinα sinβ

]
(3.106)

Although SO(3) is not Abelian, commutativity does apply to rotation matrices
if they rotate about the same axis. For example, RX(α)RX(θ) = RX(θ)RX(α).

3.4.2 Long-Form Example

Example 3.4 Fixed Frame vs. Current Frame Euler Angles
Concepts reviewed: expressing coordinates in a new frame, coordinate transfor-
mation, composing rotations, Euler angles, body frame vs. global frame, current
frame vs. fixed frame.
Problem: Suppose you want to open the treasure chest in Fig. 3.16a lying on its
back with the latch at point A identified by coordinates PBA or PGA . You know the
coordinates PGL of a point L which corresponds to the latch on the unrotated chest
in Fig. 3.16b. You want to open the latch and reveal its treasure, but your robot
is in the global frame {G}, and it cannot directly reach to the point A without
transforming it into the {G} frame first. You are given the orientation of the box
with Euler angles α = π

2 , β = π
2 , γ = π

2 using the Euler angle convention RXY Z ,
but you do not know whether it is current or fixed frame. Determine which one is
correct and find PGA .
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A p
A

{B} {G}

G

G

(a) Rotated body frame

L
p
A{G}={B}
B

(b) Unrotated global frame

Figure 3.16: Problem statement: a treasure chest is configured as shown in (a), but the
position of the latch at point A is only known in the global frame as in (b). Find PBA . The
red, green, and blue axes represent the coordinate frame {B} of the body of the treasure
chest, and they are fixed to its three straight edges. The global frame {G} is on the paper.
In (b), the two frames are aligned.

Solution: We compute the Euler angle twice, as both fixed-frame and current-
frame, and check which one fits the final orientation.

Note that this problem can be interpreted in two ways. First, we could interpret
the problem as expressing coordinates in a new frame. We note that PBA = PBL
because the chest is a rigid body and points L and A both correspond to the same
latch. Furthermore, PBL = PGL because L is defined when the body’s coordinate
frame is aligned with the global one. Thus, we know PBA and merely need to
express it in the global coordinate frame as PGA = RGBP

B
A .

Alternatively, we could interpret the problem as a coordinate transformation by
recognizing that at some point in the past, the chest was rotated from its canonical
configuration to the way we found it. At that time, the latch moved from the point
L to the point A. Therefore, PGA = RGBP

G
L .

Fixed Frame. To perform a rotation in the fixed frame (which in our case is
the global frame), we premultiply. Thus,

RGB =RXY Z = RZ(γ)RY (β)RX(α) (3.107)

=

cγ −sγ 0
sγ cγ 0
0 0 1

 cβ 0 sβ
0 1 0
−sβ 0 cβ

1 0 0
0 cα −sα
0 sα cα

 . (3.108)

Let us consider these steps one at a time.

1. Premultiply

RX(α) =

1 0 0
0 cα −sα
0 sα cα

 (3.109)
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This rotates about the global +X axis, which is also the body +X axis.

=⇒
G

2. Premultiply

RY (β) =

 cβ 0 sβ
0 1 0
−sβ 0 cβ

 (3.110)

This rotates about the global +Y axis, which is also the body −Z axis.

G

=⇒

YG

ZG

3. Premultiply

RZ(γ) =

cγ −sγ 0
sγ cγ 0
0 0 1

 (3.111)

This rotates about the global +Z axis, which is also the body −X axis.
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YG

ZG

=⇒

ZG

PGA =RGBP
B
A = RXY ZP

B
A (3.112)

=

cγ −sγ 0
sγ cγ 0
0 0 1

 cβ 0 sβ
0 1 0
−sβ 0 cβ

1 0 0
0 cα −sα
0 sα cα

PBA (3.113)

=

0 −1 0
1 0 0
0 0 1

 0 0 1
0 1 0
−1 0 0

1 0 0
0 0 −1
0 1 0

PBA (3.114)

=

 0 0 1
0 1 0
−1 0 0

PBA . (3.115)

One can visually verify the computed rotation matrix by noting that its three
column vectors match the three body-frame coordinate axes when expressed in the
global frame. This configuration does not match the desired final configuration.

Current Frame. Rotations in the current frame are accomplished by postmul-
tiplying. Thus,

RGB =RXY Z = RX(α)RY (β)RZ(γ) (3.116)

=

1 0 0
0 cα −sα
0 sα cα

 cβ 0 sβ
0 1 0
−sβ 0 cβ

cγ −sγ 0
sγ cγ 0
0 0 1

 . (3.117)

Let us again consider these steps one at a time.

1. Postmultiply

RX(α) =

1 0 0
0 cα −sα
0 sα cα

 (3.118)
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This rotates about the body +X axis, which is also the global +X axis.

=⇒
G

2. Postmultiply

RY (β) =

 cβ 0 sβ
0 1 0
−sβ 0 cβ

 (3.119)

This rotates about the body +Y axis, which is also the global +Z axis.

G

=⇒

3. Postmultiply

RZ(γ) =

cγ −sγ 0
sγ cγ 0
0 0 1

 (3.120)

This rotates about the body +Z axis, which is also the global +X axis.
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=⇒ {B} {G}

This time, we have arrived in the correct configuration, so we can conclude that
this rotation is expressed in the current frame as

PGA =RGBP
B
A = RXY ZP

B
A (3.121)

=

1 0 0
0 cα −sα
0 sα cα

 cβ 0 sβ
0 1 0
−sβ 0 cβ

cγ −sγ 0
sγ cγ 0
0 0 1

PBA (3.122)

=

1 0 0
0 0 −1
0 1 0

 0 0 1
0 1 0
−1 0 0

0 −1 0
1 0 0
0 0 1

PBA (3.123)

=

0 0 1
0 −1 0
1 0 0

PBA . (3.124)

3.5 Rigid Motions and Homogeneous Transforms

Throughout Section 3.3 and Section 3.4 we have discussed only pure rotations;
that is, a rotation without any translation. But as you may recall from Section 3.1,
a rigid motion can result from a rotation, a translation, or both. To simplify our
calculations, it is desirable to have a single representation for a rigid motion rather
than a separate representation for a rotation and a translation. We discuss this single
representation in this section.

To begin, we will express a rigid motion using the tools we have so far. Let
RGB be the rotation matrix that describes the orientation of a body frame {B} with
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respect to the global frame {G}, and let PGB be the vector from the origin of {G}
to the origin of {B} (recall that PGB is shorthand for PGOB

, where OB is the origin
of {B}). Let PBA be the position vector denoting the position of point A, which is
rigidly affixed to body B, in frame {B}. Then the coordinates of A with respect to
{G} are given by

PGA = RGBP
B
A + PGB . (3.125)

Now suppose that we have three frames {0}, {1}, and {2}. To express a point
A fixed in frame {2} with respect to frame {0}, we can use (3.125) to write the
two equations

P 1
A = R1

2P
2
A + P 1

2 , (3.126)

P 0
A = R0

1P
1
A + P 0

1 , (3.127)

and then we substitute the expression for P 1
A from (3.126) into (3.127) to get

P 0
A = R0

1(R1
2P

2
A + P 1

2 ) + P 0
1 (3.128)

= R0
1R

1
2P

2
A +R0

1P
1
2 + P 0

1 . (3.129)

Since we also could have written the relationship between P 0
A and P 2

A as

P 0
A = R0

2P
2
A + P 0

2 , (3.130)

it follows that we have the relationships

R0
2 = R0

1R
1
2, (3.131)

P 0
2 = R0

1P
1
2 + P 0

1 . (3.132)

Already we can see that if we have an articulated manipulator arm with many
joints, expressing the rigid motion of the end-effector relative to the fixed frame
{0} will require a long chain of calculations both for the angular displacement and
again for the linear displacement, using the same rotation matrices multiple times.
What we would like to do instead is reduce the computation entirely to matrix
multiplications. We are able to do just this with a matrix representation of a rigid
motion called the homogeneous transformation.

In three dimensions, the homogeneous transformation is a 4 × 4 matrix with
the following form:

H =

[
R P
0 1

]
, (3.133)

where R ∈ SO(3), P ∈ R3, and 0 is a zero row vector.
To provide some intuition about why the homogeneous transformation matrix

has this form, we will briefly describe the homogeneous coordinate system from
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which the homogeneous transformation derives its name. We can take any point
in a Cartesian coordinate system (x, y, z) and describe it in homogeneous coordi-
nates as (xk, yk, zk, k), where k is some scalar. To convert from homogeneous
coordinates to Cartesian coordinates, we compute (x/k, y/k, z/k). Two cases are
of interest here:

• If k = 1, then the homogeneous coordinates are called normalized since
we can read the Cartesian coordinates directly from the homogeneous ones.
(Note that in this context, normalization does not mean the same thing as
normalizing a vector. It only means that k = 1.)

• If k = 0, then we cannot express the homogeneous coordinates as Cartesian
coordinates because they represent a point at infinity. An easier way to think
about this is that they represent a direction. For example, the homogeneous
coordinates (1, 0, 0, 0) represent the direction of the positive x-axis.

If we look back at (3.133) and think about it in terms of its column vectors, the
choice of

[
0 0 0 1

]
as the final row vector starts to make sense. The first three

columns are the axes of a frame, not points, so we set k = 0 accordingly. On the
other hand, the final column is a position vector, so we set k = 1, which allows us
to express the position vector in homogeneous coordinates without changing the
x-, y-, and z-components of the vector.

Now let us return to the two rigid motions described by (3.126) and (3.127).
If we represent these rigid motions as homogeneous transformations and multiply
them together, the result is[

R0
1 P 0

1

0 1

] [
R1

2 P 1
2

0 1

]
=

[
R0

1R
1
2 R0

1P
1
2 + P 0

1

0 1

]
=

[
R0

2 P 0
2

0 1

]
. (3.134)

Thus, we were able to compute R0
2 and P 0

2 like we did before, but all we had to do
was multiply matrices, which is much more computationally efficient.

To apply a homogeneous transformation to a position vector such as P 2
A, all we

need to do is write the vector in its normalized homogeneous form,
[
P 2
A 1

]T , and
then carry out the multiplication, as[

P 0
A

1

]
=

[
R0

2 P 0
2

0 1

] [
P 2
A

1

]
. (3.135)

Then we can read the Cartesian coordinates directly from the result since it is in
normalized homogeneous form.
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Just as it was easy to compute the inverse of a rotation matrix, it is easy to
compute the inverse transformation H−1 from a homogeneous transformation H:

H−1 =

[
RT −RTP
0 1

]
. (3.136)

Finally, it is important to note that the current and fixed frame interpretations
that we derived for rotation matrices also hold for homogeneous transformations.
Given a homogeneous transformation H0

1 relating two frames, if a second rigid
motion H is applied in the current frame, we postmultiply to get

H0
2 = H0

1H , (3.137)

whereas if H is applied in the fixed frame, we premultiply to get

H0
2 = HH0

1 . (3.138)

3.5.1 Long-Form Example

Example 3.5 Document Viewer
Concepts reviewed: homogeneous transforms, expressing coordinates in a new
frame, composing transforms, inverse of a transform.
Problem: Consider the diagram in Fig. 3.17. A document camera is centered one
meter above a small object of negligible size that is centered on a square table. Find
H0

1 , H
1
2 , H

1
3 . Using only these matrices, find H2

3 , i.e. the position and orientation
of the small object in the camera’s coordinate frame.
Solution: For the first homogeneous transformation matrix, we note that coordi-
nate frames {0} and {1} are aligned, allowing us to construct a pure translation:

H0
1 =


1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 1

 (3.139)

The remaining two matrices have non-trivial rotation and translation components.
We can infer the rotation component from the diagram in two ways:

1. By inspection. Inspection works well only in special cases such as this,
where the axes are aligned. Recall that the column vectors of a rotation
matrix R1

2 are the three coordinate frame axes of the frame {2} expressed
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Figure 3.17: A document viewer is looking down at a small object centered on a table.

relative to the frame {1}. Then we have

x̂1
2 =

[
0 −1 0

]T (3.140)

ŷ1
2 =

[
−1 0 0

]T (3.141)

ẑ1
2 =

[
0 0 −1

]T (3.142)

R1
2 =

 0 −1 0
−1 0 0
0 0 −1

 (3.143)

2. From the definition. Using the general approach,

R1
2 =

x̂1 · x̂2 x̂1 · ŷ2 x̂1 · ẑ2

ŷ1 · x̂2 ŷ1 · ŷ2 ŷ1 · ẑ2

ẑ1 · x̂2 ẑ1 · ŷ2 ẑ1 · ẑ2

 =

 0 −1 0
−1 0 0
0 0 −1

 . (3.144)

One may confuse this matrix of dot products with its transpose. Recall that(
RGB
)T

=
(
RGB
)−1

= RBG, so one must be careful. To resolve the confusion,
observe that the column that defines the ŷ2 axis contains ŷ2 at each element.
This vector is the projection of ŷ2 onto each of the three axes of frame {1}.

Having found the orientation of frame {2} in frame {1}, we can now combine
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it with the translation component
[

1
2

1
2 1

]T to get

H1
2 =


0 −1 0 1

2
−1 0 0 1

2
0 0 −1 1
0 0 0 1

 . (3.145)

We follow the same procedure to find H1
3 . Using the dot product method,

R1
3 =

x̂1 · x̂3 x̂1 · ŷ3 x̂1 · ẑ3

ŷ1 · x̂3 ŷ1 · ŷ3 ŷ1 · ẑ3

ẑ1 · x̂3 ẑ1 · ŷ3 ẑ1 · ẑ3

 =

 0 1 0
−1 0 0
0 0 1

 . (3.146)

We can again construct the translation vector
[

1
2

1
2 0

]T by inspection. Thus,

H1
3 =


0 1 0 1

2
−1 0 0 1

2
0 0 1 0
0 0 0 1

 . (3.147)

Finally, we wish to construct an expression for H2
3 using only H0

1 , H
1
2 , H

1
3 .

One way to write H2
3 is as a composition of matrices,

H2
3 = H2

1H
1
3 , (3.148)

but since we do not know H2
1 , we must invert the matrix we do have, yielding

H2
3 =

(
H1

2

)−1
H1

3 . (3.149)

Recall that the definition of the inverse of a homogeneous transformation is

H−1 =

[
RT −RTP
0 1

]
. (3.150)

Since −IT3 = −I3 and −(−I3) = I3, it turns out that
(
H1

2

)−1
= H1

2 . Thus,

H2
3 =

(
H1

2

)−1
H1

3 =


0 −1 0 1

2
−1 0 0 1

2
0 0 −1 1
0 0 0 1




0 1 0 1
2

−1 0 0 1
2

0 0 1 0
0 0 0 1

 (3.151)

=


1 0 0 0
0 −1 0 0
0 0 −1 1
0 0 0 1

 . (3.152)

This result confirms the result we get by inspection from Fig. 3.17.
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3.6 Configuration Spaces

If we wish to completely describe the configuration of a robot, we must express the
position of every particle that makes up the robot. We previously introduced the
rigid body assumption, which allows us to define the position of every particle in a
rigid body based on knowing the pose (position and orientation) of its coordinate
frame alone. This pose could be given by a homogeneous transformation matrix,
for example. The pose of a rigid body has six degrees of freedom in 3D or three
degrees of freedom in 2D.

An articulated robot has one or more joints, which violate the rigid body as-
sumption since joints permit internal motion within the robot. Even though the
rigid body abstraction does not apply to an articulated robot as a whole, it still
applies to each of the individual links. We could therefore define the pose of the
whole robot of n links by using 6n variables (or 3n in 2D).

However, treating each link as a completely independent rigid body is inef-
ficient because it neglects the fact that the links are joined together at the joints,
which constrain the ways in which the links may move with respect to one another.
Just as we previously observed for mobile robots, constraints produce interesting
and useful motions that we can describe mathematically. The nature of these con-
straints and the resulting motions is the subject of Sections 3.7–3.9.

For now, we only need to know that each joint has a single degree of freedom2

(and therefore five constraints in 3D or two constraints in 2D). We can describe the
internal configuration of the robot as a simple list of the joint values for all of the
joints in the robot. From these joint values, we will be able to reconstruct the full
pose of each link in the kinematic chain of the robot.

The configuration of a robot is the vector of all the degrees of freedom required
to completely specify the position of every particle. Each degree of freedom may
have upper and lower bounds due to the physical mechanism having a hard stop,
or it may be unconstrained. The set of possible values of the configuration vector
defines the configuration space of a robot.

3.6.1 Spaces

A space is a continuous, connected set with a dimension. Since the configuration
is defined by a list of variables, the configuration space is the set of all permissible
configurations. The variables in the list are independent of one another, meaning
that the set of permissible configurations is the combination of all possible values
of each variable. We express this concept via the Cartesian product operator ×.

2More complex joints can be decomposed into multiple joints, each with one degree of freedom.
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For example, we can describe the space of two real-valued variables as R×R. We
can also abbreviate R2 = R× R and R3 = R× R× R.

Although a real number can be used to hold the value of an angle, it is neither
necessary nor desirable to do so. Because an angle wraps around, it can only
take values between −π and +π radians. We use the symbol S to describe an
angle, and we can similarly compose S × S if we have two angle variables in our
configuration. However, rotations in 3D are special because consecutive rotations
of the same rigid body about different axes affect one another. To describe a 3D
rotation of a rigid body, we write S3, but this is not the same as S × S × S. The
latter expression describes three single rotations of different rigid bodies (such as
different links in a kinematic chain). We can express an element of S3 by a rotation
matrix, Euler angles, axis-angle, or a unit quaternion. On the other hand, to express
an element of S×S×S we use a three-element vector. The distinction between S3

and S× S× S is further explained in Section 3.6.5.

3.6.2 External Configuration Variables

If we pick one link of the robot to be the base, then we can use its coordinate frame
to be the reference frame for the whole robot. Often, this will be the link that is
fixed to the ground or on wheels touching the ground. It is usually also the largest
rigid body in the robot. The base link represents the pose of the robot as a whole in
space, and therefore its degrees of freedom are the three or six degrees of freedom
needed to express the pose of the base in 2D or 3D, respectively.

External configuration variables are the position and orientation of the robot.
In the plane (such as for a ground robot), there are two degrees of translational free-
dom and one degree of rotational freedom. In 3D, there are three translational and
three rotational degrees of freedom. An element and the set of such configuration
in 2D and 3D are described as

{x, y, θ} ∈ R2 × S, (3.153)

x
y
z
α
β
γ

 ∈ R3 × S3. (3.154)

In Equation 3.154, we use Euler angles to express an element of S3.
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3.6.3 Internal Configuration Variables

The internal degrees of freedom are defined by the angles of the joints (or positions,
if they are prismatic joints). Given a robot with n revolute joints and m prismatic
joints, the internal configuration is an element of a set:

θ1

θ2
...
θn
d1

d2
...
dm


∈

n∏
i=1

S×
m∏
j=i

R, (3.155)

where the notation Πn
i=1X means the Cartesian product of n copies of the set X .

3.6.4 Configuration Space

Suppose we have a robot in 3D with an (n + m)-link arm, with n revolute joints
and m prismatic joints. A point in the robot’s configuration space is an element of
the set

R3 × S3 ×
n∏
i=1

S×
m∏
j=i

R (3.156)

that specifies a valid position for every particle in the entire articulated robot.
The configuration vector includes both internal and external degrees of freedom

as applicable. For example, the KUKA youBot mobile manipulator robot has a
mobile base that moves on the floor with three degrees of freedom as well as an
arm with five joints for five internal degrees of freedom. Thus, the KUKA youBot
has a total of eight degrees of freedom in its configuration. This model deliberately
neglects the orientation of each wheel on its axle since that does not affect the
performance of the robot.

3.6.5 The Topology of Configuration Spaces

Topology is the field of math that studies the connectivity of shapes under stretch-
ing but not cutting. We can use concepts from topology to build intuition about the
differences in the structure of configuration spaces induced by differences in their
physical mechanisms. This idea is useful to us here because of the structure of the
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θ1
d2

(a) A 2-joint manipulator with a
fixed base, a revolute joint, and a
prismatic joint.

(b) The gluing diagram for
one revolute and one pris-
matic joint shows horizontal
wraparound but not vertical
wraparound.

(c) Match-
ing identi-
fied edges.

Figure 3.18: The gluing diagram for an arm with one revolute and one prismatic joint is a
cylinder. The identical arrows are identified, which means that the square is folded until
the edges overlap. The result is a cylinder. This shape represents the space R× S.

set S, which is properly rendered like a circle: you can start from the orientation 0
and move in the positive direction, and you will keep passing 0 every 2π that you
move.

A gluing diagram is a method of describing non-flat shapes on the flat page.
We can use a gluing diagram to help visualize the structure of two-joint robots in
a 2D drawing. It is a square with arrows on some or all sides, annotating the way
that edges are identified with each other. When two points are identified, it means
that we regard them as the same point. Consequently, two edges with the same
marking are regarded as the same edge, and the points on one side of the edge are
in the neighborhood of the points on the other side. One could therefore draw a
continuous path beginning on one side of the edge and continuing onto the other
side without there being a discontinuity in the path.

We begin with a plain square, which represents the set R2. The square repre-
sents the configuration space of an arm with two prismatic joints. The x-coordinate
corresponds to one joint value, and the y-coordinate corresponds to the other joint
value. Thus, a point in the square represents a configuration of the robot arm.
Motion of the arm can instantaneously be in any linear combination of the x- and
y-axes, corresponding to any combination of motion of the two joints. The square
is a representation of the plane since motion never wraps around in any direction.
Now we consider what happens if one or both prismatic joints are replaced with a
revolute joint.
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θ1

θ2

(a) This mechanism has
two independent revolute
joints.

(b) The gluing diagram
for the two-link arm
shows that both pairs
of opposing edges are
identified.

(c) The resulting figure is a torus.
From any point, you can move along
two distinct axes, resulting in cir-
cumnavigating two distinct holes
(the donut hole and the interior of
the torus).

Figure 3.19: The gluing diagram for an arm with two revolute joints is a torus. The corre-
sponding space is S× S.

If a two-joint arm has one revolute joint, then the square does not adequately
represent its topology, since the circular motion of the revolute joint must be cut to
get a flat square, and cutting is forbidden. We can restore the circular motion of the
revolute joint by gluing the edges back together where they were cut (Fig. 3.18).
To indicate gluing, we add arrows in pairs to the edges of the square. A pair of
arrows indicate that the corresponding edges are identified, meaning they are the
same edge for the purpose of folding the square into 3D. There is a smooth, one-to-
one correspondence between every point on one edge and every point on the other
edge. After assigning arrows to edges, the gluing diagram gets folded into a shape
in 3D so that the arrows all match up. When doing this, remember that topology
permits stretching and bending a shape. After folding into 3D, the two-joint arm
with one revolute and one prismatic joint results in a cylinder.

Arrows in the gluing diagram are assigned according to the physical mech-
anism, and the assignments of those arrows in turn determine the form of the 3D
shape. Recalling that revolute joints cause edges to be identified, whereas prismatic
joints do not, we can see how different shapes emerge. For an arm with one revo-
lute and one prismatic joint, only one pair of opposite edges are identified, and the
result is a cylinder (Fig. 3.18). For an arm with two links and two revolute joints,
both pairs of opposite edges are identified, and the result is a torus (Fig. 3.19).
For an arm with a spherical joint — that is, two one-degree-of-freedom revolute
joints whose axes meet at a point — the gluing diagram shows the identified edges
adjacent, and the resulting shape is a sphere (Fig. 3.20).

The mechanisms differ in the number and type of holes present in the 3D
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θ1
θ2

(a) This spherical joint
rotates in two axes at a
single point. We write
it as two distinct revo-
lute joints.

(b) These two revolute
joints are coupled. We
place the identified edges
adjacent instead of oppo-
site like in Fig. 3.19b.

(c) Identifying the adjacent
edges causes the gluing dia-
gram to fold differently from
the torus such that motion
from a point in any direction
will circumnavigate around the
same hole (the sphere’s inte-
rior).

Figure 3.20: The gluing diagram for a spherical joint with two degrees of freedom is a
sphere. The corresponding space is S2.

shape resulting from their gluing diagrams. These holes tell us something about
the mechanism. For example, in a spherical joint, the rotations are coupled in the
manner we have seen for 3D rotations: a rotation in one axis affects the amount of
rotation in the other axis. Consequently, the shape that results is a sphere, which
surrounds a single hole. In contrast, when we have two distinct revolute joints with
parallel axes, the resulting shape is a torus, which has two independent holes. One
hole is the donut hole we are used to, and the second hole is the interior of the donut
where the dough would be. Moving around one hole does not affect the position
with respect to the other hole, which tells us that these two joints are uncoupled.

Gluing diagrams serve to give us intuition, but they only work for two-joint
mechanisms. However, the intuition we have gained about numbers of holes and
the corresponding coupling of joint values extends into arbitrary dimensional con-
figuration spaces. In addition, we would like to add some geometry to these con-
cepts, so that we can measure the positions of links and especially the end-effector
of the arm. In the following section, we formalize the case of arbitrary numbers of
joints in an arm, and we study how to parameterize the corresponding links.
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3.7 Forward Kinematics for Manipulator Arms

Now that we have all the tools we need to represent rigid displacements, we turn to
the first of two crucial problems in kinematics which we will study in the context
of manipulator arms. In this section, we will examine the forward kinematics
problem, in which we need to determine the position and orientation of the end-
effector of an arm given the configuration of its joints. If we were to solve this
problem for our own human arms, we would ask, “Given the current configuration
of my shoulder, elbow, and wrist, what is the position and orientation of my hand?”

In these notes, we will only consider joints with one degree of freedom (like
the human elbow). Recall from Section 1.1.2 that there are two basic forms of
joints with one degree of freedom: revolute joints, which allow rotation about a
single axis, and prismatic joints, which allow linear motion along a single axis. It
is possible to construct more complex joints with more degrees of freedom (like the
human shoulder and wrist) from these basic joints, so our choice to only consider
joints with one degree of freedom does not give rise to any loss of generality.

Since a joint connects two links, a manipulator arm with n joints will have
n+ 1 links. We will adopt the convention of numbering the joints from 1 to n and
the links from 0 to n, starting from the base of the arm. As a result, joint i connects
link i− 1 to link i, and when joint i is actuated, link i moves. Note that since there
is no joint 0, link 0 cannot be actuated; it is fixed to the base of the arm.

Given that the joints we are considering possess one degree of freedom, we
only need one variable per joint to describe the configuration. We therefore asso-
ciate a single joint variable qi with each joint i. What the joint variable represents
depends on the type of joint in question. If joint i is revolute, then qi is the angle
of displacement, which we call θi. Otherwise, if joint i is prismatic, then qi is the
linear displacement, which we call di.

Since our goal is to determine the position and orientation of the end-effector,
we need to attach a frame to each link, which we do by attaching frame {i} to link
{i}. Having done that, we can consider the homogeneous transformation matrices
that relate the links to each other. These matrices are not constant because as the
links move, the attached frames move with them. Rather, each matrix is a function
of a single joint variable. If we let Hi be the homogeneous transform that gives
the position and orientation of frame {i} relative to frame {i − 1}, then Hi is a
function of qi. We can express this concisely as

Hi = Hi(qi). (3.157)

The homogeneous transform that allows us to solve the forward kinematics
problem is H0

n, which gives the position and orientation of {n} (the frame of the
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end-effector) relative to frame {0} (the frame of the link fixed to the base). H0
n is

a function of all the joint variables in the manipulator arm. In other words,

H0
n = H0

n(q1, q2, . . . , qn). (3.158)

As we saw in Section 3.5, we can compose homogeneous transforms to relate
different frames to each other. Knowing this, we can compute H0

n as

H0
n = H1H2 · · ·Hn, (3.159)

where each homogeneous transform Hi has the form

Hi =

[
Ri−1
i P i−1

i

0 1

]
(3.160)

and the homogeneous transform H0
n has the form

H0
n =

[
R0
n P 0

n

0 1

]
. (3.161)

Of course, this is not the end of the story; we still need to figure out how to de-
termine each homogeneous transform Hi that is required to do the computation. It
is important to realize that there is not one correct set of homogeneous transforms.
After all, all we said with regard to frame placement is that we attach frame {i} to
link {i}. But where on the link do we attach it? At what orientation do we attach it?
The way in which we attach the frames completely changes which homogeneous
transforms are correct for a given manipulator arm.

Rather than attaching the frames in whatever way we choose and leaving other
roboticists to guess how we did it, we will instead attach the frames according
to the Denavit-Hartenberg convention. The purpose of this convention is to stan-
dardize how the frames are attached and streamline the process of attaching them.
As a word of caution, although the Denavit-Hartenberg convention is intended to
standardize, some authors use slightly different versions of the convention. Thus,
depending on which version is used, the frames will be attached slightly differently.
We will only use one version of the convention in these notes.

3.7.1 The Denavit-Hartenberg Convention

As previously stated, attaching frames in accordance with the Denavit-Hartenberg
convention is wise because it is a standard among roboticists. It turns out that
there is another important benefit to using this convention that will simplify our
kinematic analysis. Consider the fact that an arbitrary homogeneous transform
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Hi(qi) needs six parameters to characterize it: three for the rotation component,
and three for the translation component. Since Hi(qi) is a function of a single
variable, five of these parameters are constant whereas the sixth is variable.

The power of using the the Denavit-Hartenberg convention is that we only need
four parameters, not six, to derive the homogeneous transform for a given link. The
reason we are able to reduce the number of parameters required is that the Denavit-
Hartenberg convention restricts how we attach a frame to a link. Intuitively, if the
origin of a frame is always going to be attached at the same place on a link, and
the axes are always going to be oriented in a certain manner, then we should need
fewer parameters than we would if we had complete freedom in those choices.

Before we describe how the frames need to be assigned, we will first discuss
the four parameters that we need to derive the homogeneous transforms for the
arm. These parameters are referred to as the Denavit-Hartenberg parameters and
are often called DH parameters for short. To define them, we must first define a
joint axis, which for a revolute joint is the axis of rotation and for a prismatic joint
is the direction of motion, and the common normal of a link, which is the shortest
line segment orthogonal to the two joint axes that the link connects. Now we can
define the DH parameters as follows (see Fig. 3.21 for a visualization of each one):

1. θi, the joint angle, is the angle between the common normals of links i − 1
and i.

2. di, the link offset, is the distance between where the common normals of
links i− 1 and i intersect the axis of joint i,

3. ai, the link length, is the length of the common normal of link i,

4. αi, the link twist, is the angle between the axes of joints i and i+1 measured
about link i’s common normal3,

The next step is to attach a frame to each link according to the Denavit-Hartenberg
convention. There are two requirements for how we attach the frames:

1. The axis x̂i must be perpendicular to the axis ẑi−1.

2. The axis x̂i must intersect the axis ẑi−1.

As we mentioned previously, there are slightly different versions of the Denavit-
Hartenberg convention; this is because there are multiple ways to attach frames

3To help envision how this angle is measured, imagine that you are holding a pair of nunchucks
with the sticks parallel and the chain taut and perpendicular to the sticks. Now imagine twisting
one of the sticks such that the chain is the axis of rotation and the stick you are twisting remains
perpendicular to the chain. The amount you twisted the stick is the link twist.
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Figure 3.21: Denavit-Hartenberg parameters. The joint axes are shown in blue, and the
common normals are the line segments perpendicular to the joint axes.

while satisfying the two constraints given above. In these notes we will use the
following procedure to attach the frames:

1. For axes ẑ0, . . . , ẑn−1, we assign ẑi to be the axis of actuation for joint i+ 1.

2. Next, we attach the base frame {0} by selecting any point on ẑ0 to be its
origin and then choosing x̂0 and ŷ0 in accordance with the right-hand rule.

3. Now we use the following iterative procedure to finish setting up frames {1}
through {n− 1}, in which we use frame {i− 1} to establish frame {i}:

(a) If axes ẑi and ẑi−1 are not coplanar, attach the origin of frame {i} to
the point where the common normal of link i intersects ẑi. Conversely,
if axes ẑi and ẑi−1 are coplanar, then we have two cases. If ẑi and ẑi−1

intersect, we attach the origin of frame {i} at the point of intersection.
Otherwise, if ẑi and ẑi−1 are parallel, then we attach the origin of frame
{i} at the point along ẑi such that di = 0.

(b) Assign x̂i to be the common normal through the origin of frame {i}
and pointing away from ẑi−1. In the case where ẑi and ẑi−1 intersect,
assign x̂i to be normal to the plane formed by ẑi and ẑi−1. In this case,
there is an arbitrary choice of the direction of x̂i between two directions
both orthogonal to that plane.
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(c) Assign ŷi in accordance with the right-hand rule.

4. Finally, we need to attach frame {n}, which is the frame of the end-effector.
Typically we choose the origin of {n} to be a point symmetric between the
fingers of the gripper, but we might have reason to choose a different point
(for example, we might do this if the manipulator arm can swap out its end-
effector for a different one). There are also multiple ways we might choose
the axes for the frame, but we will describe the approach for a standard two-
finger gripper. We choose ẑn to be the approach axis, which is the direction
that the gripper moves when preparing to grasp an object. We choose ŷn to
be the sliding axis, which is the axis along which the fingers of the gripper
slide when opening and closing. Lastly, we choose x̂n to be the normal axis,
which is the direction normal to the plane formed by ẑn and ŷn.

Now that we have finished attaching frames, we can derive each homogeneous
transform Hi by composing the following four steps:

1. Rotate about the current ẑ-axis (ẑi−1) by θi radians.

2. Translate along the current ẑ-axis (ẑi−1) by di units.

3. Translate along the current x̂-axis (x̂i) by ai units.

4. Rotate about the current x̂-axis (x̂i) by αi radians.

Note that since each transform is applied in the current frame, we are technically
applying steps 2–4 in intermediate frames that do not have names. However, the
intermediate frames’ ẑ-axes coincide with ẑi−1, and after step 2, the remaining
frames’ x̂-axes coincide with x̂i. This is why we do not need to write the names of
the intermediate frames explicitly.

Applying the four steps in order is equivalent to composing the transforms as

Hi =


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1



=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 . (3.162)

And with that, we have everything we need to compute the forward kinematics of
a manipulator arm. Although it took some work to get here, once we have all the
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homogeneous transforms we need, all we need to do is plug in joint variables and
multiply matrices. In the next section, we will see that the inverse problem is not
nearly as straightforward.

3.8 Inverse Kinematics for Manipulator Arms

In the previous section, we discussed how to solve for the position and orientation
of a manipulator’s end-effector given the values of its joint variables. We will now
consider the inverse of this problem, which is to find values of the joint variables
that place the end-effector at a desired position and orientation in space. In general,
this problem of inverse kinematics is more difficult than forward kinematics since
the equations we must solve are often complicated and nonlinear, and there may
exist many solutions or no solutions.

3.8.1 Solution Existence and Workspace

In order for at least one solution to exist, the desired goal point must lie within the
manipulator’s (reachable) workspace, which is the volume of space that the robot
can reach in at least one orientation. Depending on the manipulator, there may also
be a subset of this space called the dexterous workspace, which is all the points
that the robot can reach from any arbitrary orientation of its end-effector.

Consider the manipulator arm depicted in Fig. 3.22. The manipulator has two
revolute joints and three links (note that the fixed link, link 0, has length zero).
Assuming that the manipulator can rotate its joints a full 360 degrees, the reachable
workspace of this manipulator is a disk where the outer radius is the sum of its two
nonzero link lengths and the inner radius is the difference between its two nonzero
link lengths. Does this manipulator have any dexterous workspace? As shown
in Fig. 3.22a, the manipulator can reach a point on the boundary of its workspace
from only one orientation, so the boundaries of the disk cannot constitute dexterous
workspace. Fig. 3.22b shows that a point inside of the manipulator’s workspace
can be reached from exactly two orientations. Thus, no point in this manipulator’s
workspace can be reached from any arbitrary orientation of the end-effector, so the
manipulator has no dexterous workspace. Note, however, that if the two nonzero
links were the same length, the workspace would be a circle, and there would be a
single point of dexterous workspace: the origin of the circle.

3.8.2 Multiple Solutions

Although the manipulator shown in Fig. 3.22 can reach points on the interior of its
workspace from two orientations, there is no point it can reach from multiple joint
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configurations with the same position and orientation of its end-effector. Adding
another joint and link would allow for multiple solutions of this type (see Fig. 3.23).

The number of solutions to an inverse kinematics problem is a function of the
manipulator’s DH parameters and the range of motion of each joint. In general,
the more nonzero DH parameters, the more solutions there will be. While having
multiple solutions (and thus multiple ways to reach a goal) may be beneficial to the
task at hand, it may also be problematic since the system must be able to choose
one solution. The selection criteria vary, but reasonable factors to take into account
include potential obstacle collision and how far each joint will need to move.

3.8.3 Solution Methods

Whereas we can always solve the forward kinematics problem by using our straight-
forward algorithm of multiplying homogeneous transformation matrices, there are
no general algorithms we can use for the inverse kinematics problem that guarantee
a solution if one exists. The strategies for solving the inverse kinematics problem
can be divided into closed-form solutions, which are exact and return all solutions,
and numerical solutions, which are approximate and usually return just one solu-
tion. Closed-form solutions are typically preferred since they are often much faster
than iterative numerical searches, and they also ease the process of developing of
rules to choose among multiple solutions. We therefore focus our attention on two
classes of closed-form solutions: algebraic solutions and geometric solutions.

Example 3.6 Solving the inverse kinematics problem algebraically
Consider the planar manipulator in Fig. 3.24 and its associated DH parameters.

We can use our method for solving the forward kinematics problem to obtain the
homogeneous transforms

H0
1 =


c1 −s1 0 a1c1

s1 c1 0 a1s1

0 0 1 0
0 0 0 1

 , H1
2 =


c2 −s2 0 a2c2

s2 c2 0 a2s2

0 0 1 0
0 0 0 1

 ,

which we then multiply together to get the kinematic equations

H0
1H

1
2 = H0

2 =


c12 −s12 0 a1c1 + a2c12

s12 c12 0 a1s1 + a2s12

0 0 1 0
0 0 0 1

 , (3.163)

where c1 = cos(θ1), s12 = sin(θ1 + θ2), and so forth.
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(a) (b)

Figure 3.22: On the boundary of its reachable workspace, this manipulator can reach a
point from only one orientation, as shown in (a). Inside of its reachable workspace, two
orientations per point are possible: one with the manipulator’s elbow up, the other with its
elbow down, as shown in (b). The “elbow down” orientation is given in dashed lines.

Figure 3.23: A manipulator with three revolute joints that has multiple joint configurations
corresponding to the same position and orientation of its end-effector. An alternate solution
is shown in dashed lines.
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Figure 3.24: A planar manipulator with two revolute joints. The nonzero DH parameters
are labeled.

Since the manipulator is planar, goal points for the end-effector can most easily
be specified with an (x, y)-position and an orientation angle φ. Thus, all attainable
goals must lie within the subspace implied by the homogeneous transformation

H0
2 =


cφ −sφ 0 x
sφ cφ 0 y
0 0 1 0
0 0 0 1

 . (3.164)

Equating (3.163) and (3.164) gives us the nonlinear equations which must be
solved for the joint parameters θ1 and θ2:

cφ = c12, (3.165)

sφ = s12, (3.166)

x = a1c1 + a2c12, (3.167)

y = a1s1 + a2s12. (3.168)
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To solve these equations, we first square (3.167) and (3.168) and add them to get

x2 + y2 = (a1c1 + a2c12)2 + (a1s1 + a2s12)2

= a2
1(c2

1 + s2
2) + a2

2(c2
12 + s2

12) + 2a1a2(c1c12 + s1s12)

= a2
1(1) + a2

2(1) + 2a1a2(c1(c1c2 − s1s2) + s1(c1s2 + s1c2))

= a2
1 + a2

2 + 2a1a2(c2
1c2 + s2

1c2)

= a2
1 + a2

2 + 2a1a2(c2(c2
1 + s2

1))

= a2
1 + a2

2 + 2a1a2(c2(1))

= a2
1 + a2

2 + 2a1a2c2 (3.169)

using the trigonometric Pythagorean identity and angle sum identities.
Next, we solve (3.169) for c2, which yields

c2 =
x2 + y2 − a2

1 − a2
2

2a1a2
. (3.170)

The right-hand side of this equation must have a value between −1 and 1 in order
for a solution to exist; otherwise, the goal point is out of the manipulator’s reach.
Assuming that the goal falls within the workspace, we use the Pythagorean identity
to write an expression for s2,

s2 = ±
√

1− c2
2, (3.171)

where the choice of sign corresponds to the elbow-up and elbow-down solutions.
Lastly, we use the two-argument arctangent to write an expression for θ2,

θ2 = atan2(s2, c2). (3.172)

Now that we have obtained θ2, we can solve (3.167) and (3.168) for θ1. Since
c1 and c2 are the only unknowns, we rewrite the equations to isolate them, as

x = a1c1 + a2(c1c2 − s1s2)

= c1(a1 + a2c2)− s1(a2s2)

= k1c1 − k2s1, (3.173)

y = a1s1 + a2(c1s2 + s1c2)

= s1(a1 + a2c2) + c1(a2s2)

= k1s1 + k2c1, (3.174)
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where

k1 = a1 + a2c2,

k2 = a2s2, (3.175)

are constants. If we then define

r =
√
k2

1 + k2
2 (3.176)

and
γ = atan2(k2, k1), (3.177)

we can rewrite the constants as

k1 = r cos γ,

k2 = r sin γ, (3.178)

which allows us to write (3.173) and (3.174) as

x

r
= cos γ cos θ1 − sin γ sin θ1, (3.179)

y

r
= cos γ sin θ1 + sin γ cos θ1, (3.180)

or, using the angle sum identities,

cos(γ + θ1) =
x

r
, (3.181)

sin(γ + θ1) =
y

r
. (3.182)

Finally, we use the two-argument arctangent to write

γ + θ1 = atan2
(y
r
,
x

r

)
= atan2(y, x), (3.183)

and then subtract γ from both sides to get

θ1 = atan2(y, x)− atan2(k2, k1). (3.184)

If x and y are both zero, then (3.184) is undefined, which makes θ1 arbitrary.
Whenever θ1 is defined, its sign is determined by the choice of θ2 above since the
sign of θ2 impacts the sign of k2, therefore affecting the sign of θ1.
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Example 3.7 Solving the inverse kinematics problem geometrically
When we use a geometric approach to solve the inverse kinematics problem,

we decompose the spatial geometry of a manipulator arm into several geometric
problems in the plane. Fig. 3.25 shows the geometry of a planar manipulator with
the position of the wrist given as (x, y). Using the rules of planar geometry, we
will solve for the joint variables θ1 and θ2 given this wrist position. Note that this
problem is different than our typical inverse kinematics problem, which is to solve
for all of the joint variables given the position and orientation of the end-effector,
but it is still an inverse kinematics problem just the same.4

ŷ0

ℓ1

ℓ2

x̂0

(x, y)

β
ψ

Figure 3.25: The geometry of a planar manipulator with wrist position (x, y). An alternate
solution is shown in dashed lines.

To begin, observe that we know all three side lengths of the triangle formed
by the solid line and the arm: `1, `2, and

√
x2 + y2 by the Pythagorean theorem.

Planar geometry tells us that in order for this triangle to exist,
√
x2 + y2 must be

less than or equal to `1 + `2, the sum of the lengths of link 1 and link 2. If this
constraint is not met, then the goal position for the wrist, (x, y), is not within the
manipulator’s workspace, and there are no solutions.

Assuming that the goal position is reachable, we use the law of cosines to
determine the angle opposite the solid diagonal and solve for θ2. Recall that joint
angle θi is defined as the angle between the common normals of links i− 1 and i;
thus, θ2 is the angle between the common normals of links 1 and 2. If θ2 were 0,
then the angle formed by links 1 and 2 would be 180◦ (see Fig. 3.26a). Hence, in
general, the angle formed by links 1 and 2 is 180◦ + θ2, as shown in Fig. 3.26b.

The law of cosines tells us that

x2 + y2 = `21 + `22 − 2`1`2 cos(180◦ + θ2), (3.185)
4There are practical reason to solve inverse kinematics problems of this type. Once such reason is

bracing. When writing by hand, a human will typically rest the wrist of her writing hand on a table to
eliminate noise from proximal muscles (and therefore have better control of the writing implement).
We may choose to do something similar with an articulated arm for more precise control.
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ŷ0

x̂0

180◦

(a)

ŷ0

x̂0

θ2

180◦+θ2

(b)

Figure 3.26: If θ2 = 0, then the angle formed by links 1 and 2 is 180◦, as shown in (a). In
general, the angle is 180◦ + θ2, as shown in (b). Note that the θ2 shown in (b) is negative.

which we may rewrite as

cos(θ2) =
x2 + y2 − `21 − `22

2`1`2
(3.186)

using the fact that cos(180◦ + θ2) = − cos(θ2). We solve (3.186) only for values
of θ2 between 0 and −180◦ since the triangle would not exist otherwise. Note that
we may find the alternate solution of Fig. 3.25 by multiplying θ2 by −1.

Now we solve for θ1 by finding expressions for the angles β and ψ shown in
Fig. 3.25. Since β could be in any quadrant (depending on the signs of x and y),
we must use the two-argument arctangent:

β = atan2(y, x). (3.187)

Another application of the law of cosines gives us an expression for ψ,

cosψ =
x2 + y2 + `21 − `22

2`1
√
x2 + y2

, (3.188)

which we solve only for values of ψ between 0 and 180◦ to preserve the given
geometry. Then we have

θ1 =


β + ψ if θ2 < 0,
β − ψ if θ2 > 0,
β otherwise.

(3.189)

Thus, we have solved for all required joint variables. The remaining joint variable,
θ3, is independent of the wrist position and therefore can be any valid value.
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3.9 Velocity Kinematics

In Sections 3.7 and 3.8, we discussed how to relate the position and orientation of
a manipulator’s end-effector to the values of its joint variables. We are still missing
a key piece of the puzzle, however. The frames we have studied thus far have
all been static, and when we have talked about moving a point, it was always an
instantaneous rigid body displacement. In this section, we introduce continuous
motion of one frame with respect to another. We begin by defining linear and
angular velocity and show how to study the velocity of a rigid body as the motion
of coordinate frames relative to each other. We then investigate the relationship of
the velocity of a manipulator’s end-effector to the velocities of its joints.

3.9.1 Linear and Angular Velocity

Recall that the position of a particle A with respect to a frame {B} is given by the
position vector PBA . We define the derivative of this vector relative to {B} as

V B
PB
A

=
d

dt
PBA = lim

∆t→0

PBA (t+ ∆t)− PBA (t)

∆t
, (3.190)

which can be thought of as the linear velocity of A. It is important to specify the
frame in which the differentiation is done since the position vector may vary in
time differently with respect to different frames. For example, if A is fixed to {B},
then V B

PB
A

will be zero since PBA never varies in time with respect to {B}.
Whereas linear velocity is the property of a single point, angular velocity is a

property of the attached coordinate frame. The angular velocity of a frame {B}
rotating with respect to frame {G} is denoted as

ΩG
B = u

dθ

dt
. (3.191)

Here, u is a unit vector in the direction of the axis of rotation, and θ is the angle
between u and a perpendicular from any point of the body. Thus, at any moment
in time, the direction of ΩG

B gives the instantaneous axis of rotation of {B} relative
to {G}, and the magnitude of ΩG

B gives the instantaneous speed of rotation.

3.9.2 Linear and Angular Velocity of Rigid Bodies

Through the analysis of moving coordinate frames, we will use our definitions from
above to study the motion of a rigid body induced by its velocity. We will first look
at linear velocity and angular velocity independently, and then we will combine
them to describe the simultaneous linear and angular velocity of a rigid body.
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Linear Velocity

Consider a frame {B} attached at point OB to a rigid body. The position of a point
A is given by the vector PBA . We would like to describe the motion of A with
respect to the global-fixed frame {G} (see Fig. 3.27).

{ G }

{ B }

POB

G

PA
B

A

Figure 3.27: Frame {B} is translating with respect to to frame {G}.

If we assume the relative orientation of {G} and {B} remains constant, then
all we need to do is take the derivatives of the two vectors in Fig. 3.27 with respect
to {G} and sum them. We carry out the differentiation as follows:

1. The first vector is PGOB
, which gives the position of the origin of {B} rel-

ative to {G}. Its derivative is therefore V G
PG
OB

, but to reduce the number of

subscripts we must write, we will use the simplified notation V G
B to describe

the velocity of the origin of frame {B} relative to frame {G}.

2. The second vector is PBA . Since this vector is expressed relative to {B}, we
need to include the rotation matrix that accomplishes the change to frame
{G}, yielding the derivative RGBV

B
PB
A

.

Hence, the linear velocity of A is

V G
PB
A

= V G
B +RGBV

B
PB
A

, (3.192)

under the assumption that RGB does not change with time.

Angular Velocity

Suppose we have a body-fixed frame {B} with origin coincident with the origin of
the global-fixed frame {G} and with zero linear velocity (so that its origin always
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stays coincident). Like before, the position of a point A is given by the vector PBA .
As Fig. 3.28 shows, {B} is rotating relative to {G} with angular velocity ΩG

B . We
wish to determine how point A moves with respect to {G}.

{ G } { B }

PA
B

A

ΩG
B

Figure 3.28: The orientation of frame {B} relative to frame {G} is varying over time.

To do this, we can make use of the fact that the linear velocity of A relative
to {G} is the cross product of the angular velocity ΩG

B and the position vector PGA
(see Fig. 3.29). That is,

V G
PG
A

= ΩG
B × PGA . (3.193)

Since we need a change in frame, we use the appropriate rotation matrix to write

V G
PB
A

= ΩG
B ×RGBPBA , (3.194)

which holds when we assume that PBA does not vary in time.

ΩG
B

PA
G

VG
PA

G

A

Figure 3.29: The linear velocity of point A relative to frame {G} is induced by the angular
velocity of frame {B} relative to {G} and is computed as a cross product.
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Simultaneous Linear and Angular Velocity

Now we will remove our previous assumptions to address simultaneous linear and
angular velocity. If frame {B} is both translating (as in Fig. 3.27) and rotating (as
in Fig. 3.28) with respect to frame {G}, then by adding (3.192) and (3.194) we can
derive the general formula for the velocity of a pointA located with respect to {B}
as seen from {G}:

V G
PB
A

= V G
B +RGBV

B
PB
A

+ ΩG
B ×RGBPBA . (3.195)

Another way to interpret (3.195) is that it is the derivative of a vector fixed in a
moving frame as seen from a stationary frame.

3.9.3 The Jacobian: Manipulator Arms in Motion

We have the basic tools we need to describe the continuous motion of rigid bodies,
so we will begin our study of velocity kinematics for manipulator arms, in which
our goal is to relate the linear velocity and angular velocity of the end-effector to
the velocities of the joints. In other words, we wish to relate V 0

n and Ω0
n to d

dtq,

where q =
[
q1 q2 . . . qn

]T is the vector of joint variables.
To determine how we might relate these quantities, let us work out an example

in two dimensions. Suppose that we have a planar arm with two revolute joints, as
shown in Fig. 3.30. We know from (3.190) that we can compute V 0

n as d
dtP

0
n , so let

Figure 3.30: A planar manipulator with the origin of the end-effector frame at (x, y).
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us work out the forward kinematics for the position of the end-effector, as[
x
y

]
= Rθ1(

[
`1 0

]T
) +Rθ1+θ2(

[
`2 0

]T
) (3.196)

=

[
`1 cos θ1

`1 sin θ1

]
+

[
`2 cos(θ1 + θ2)
`2 sin(θ1 + θ2)

]
(3.197)

=

[
`1 cos θ1 + `2 cos(θ1 + θ2)
`1 sin θ1 + `2 sin(θ1 + θ2)

]
. (3.198)

Now we need to differentiate this result with respect to time. Since θ1 and θ2 are
both functions of time, the forward kinematics equations have the form

x(θ1(t), θ2(t)), (3.199)

y(θ1(t), θ2(t)). (3.200)

We therefore need to use the chain rule when differentiating. The result is
dx

dt

dy

dt

 =


∂x

∂θ1

dθ1

dt
+
∂x

∂θ2

dθ2

dt

∂y

∂θ1

dθ1

dt
+
∂y

∂θ2

dθ2

dt

 . (3.201)

Our goal is to relate the end-effector velocity to the joint velocities, so we pull the
joint velocities out into a separate vector, yielding

dx

dt

dy

dt

 =


∂x

∂θ1

∂x

∂θ2

∂y

∂θ1

∂y

∂θ2



dθ1

dt

dθ2

dt

 . (3.202)

The 2×2 matrix in (3.202) is a very important matrix called the Jacobian matrix5.
We can think of the Jacobian matrix as a multidimensional form of the derivative.
In general, the form of the Jacobian matrix is as follows. Suppose that we have m
equations in n variables,

p1 = f1(q1, q2, . . . , qn),

p2 = f2(q1, q2, . . . , qn),
...

pm = fm(q1, q2, . . . , qn),

5The Jacobian matrix is often referred to as “the Jacobian,” which can also mean the determinant
of a square Jacobian matrix. In these notes, “the Jacobian” will always mean the Jacobian matrix.
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which we may write as a vector function,

p = f(q). (3.203)

Then the Jacobian matrix of p is the matrix of the partial derivatives of p:

J(q1, q2, . . . , qn) =


∂p1
∂q1

∂p1
∂q2

· · · ∂p1
∂qn

∂p2
∂q1

∂p2
∂q2

· · · ∂p2
∂qn

...
. . .

...
∂pm
∂q1

∂pm
∂q2

· · · ∂pm
∂qn

 . (3.204)

In the example we have been working through, we have two equations (x and y) in
two variables (θ1 and θ2). Hence, as we saw in (3.202), the Jacobian of

[
x y

]T is

J(θ1, θ2) =


∂x

∂θ1

∂x

∂θ2

∂y

∂θ1

∂y

∂θ2

 . (3.205)

To finish our example, we will differentiate with respect to each joint variable, as

∂

∂θ1

[
x
y

]
=

[
−`1 sin θ1 − `2 sin(θ1 + θ2)
`1 cos θ1 + `2 cos(θ1 + θ2)

]
(3.206)

∂

∂θ2

[
x
y

]
=

[
−`2 sin(θ1 + θ2)
`2 cos(θ1 + θ2)

]
. (3.207)

Now we can write the Jacobian as

JV (θ1, θ2) =

[
−`1 sin θ1 − `2 sin(θ1 + θ2) −`2 sin(θ1 + θ2)
`1 cos θ1 + `2 cos(θ1 + θ2) `2 cos(θ1 + θ2)

]
, (3.208)

You may have noticed in (3.208) that we added a subscript to our notation for
the Jacobian, as JV . We did this because (3.208) only gives us the linear velocity
of the end-effector as a function of the joint variables; it does not tell us anything
about the angular velocity. Indeed, throughout this example, we have neglected the
angular velocity of the end-effector entirely. Fortunately, it is very simple to com-
pute for planar manipulators, which only have one rotational degree of freedom.
The angle of the end-effector is given by the sum of the joint angles, as

φ = θ1 + θ2. (3.209)
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We therefore have one equation in two variables, and the Jacobian is

JΩ(θ1, θ2) =

[
∂φ

∂θ1

∂φ

∂θ2

]
=
[
1 1

]
. (3.210)

Thus, we have
dφ

dt
=
[
1 1

] [dθ1dt
dθ2
dt

]
=
dθ1

dt
+
dθ2

dt
, (3.211)

which tells us that the angular velocity of the end-effector frame is the sum of the
velocities of the joint angles.

Now we have two Jacobian matrices for the planar arm we have been studying:
one for the linear velocity of the end-effector, and one for the angular velocity.
Stacking these two matrices gives us the manipulator Jacobian of the arm, as

J =

[
JV
JΩ

]
=

−`1 sin θ1 − `2 sin(θ1 + θ2) −`2 sin(θ1 + θ2)
`1 cos θ1 + `2 cos(θ1 + θ2) `2 cos(θ1 + θ2)

1 1

 . (3.212)

Depending on the application, the manipulator Jacobian may be referred to as “the
Jacobian” for short. Therefore, one should pay attention to whether “the Jacobian”
is being used to mean J , JV , or JΩ.

Using the manipulator Jacobian, we can relate both the linear velocity and the
angular velocity of the end-effector to the velocities of the joints, as[

V 0
n

Ω0
n

]
=

ẋẏ
φ̇

 = J

[
θ̇1

θ̇2

]
,

where the overdot notation q̇ means dq
dt .

The dimensionality of the manipulator Jacobian is important. In this example,
J is a 3×2 matrix, which is representative of the fact that the arm has three degrees
of freedom (two linear, one angular) and two joints. In general, J will have as many
rows as there are degrees of freedom in the Cartesian space being considered and as
many columns as there are joints of the arm. We will discuss the importance of the
dimensionality more later. First, we will describe a general procedure for deriving
the manipulator Jacobian for an arbitrary manipulator in three dimensions.

Step 1: Determining the columns of JV

Recalling the form of (3.205), we see that the ith column of JV is given by

∂

∂qi
P 0
n . (3.213)



94 CHAPTER 3. KINEMATICS

Now suppose that qi = 1, meaning that joint i is being actuated at unit velocity, and
all of the other joints have zero velocity. Then (3.213) is the velocity of the end-
effector. We can use this observation to derive the ith column. We must consider
two cases: the case of a prismatic joint, and the case of a revolute joint.

Case 1: joint i is prismatic.

A prismatic joint i joint imparts a pure translation on the end-effector that is parallel
to the axis ẑ0

i−1. The rate of translation is ḋi, and thus:

V 0
n = Ṗ 0

n = ẑ0
i−1ḋi. (3.214)

Thus, column i of JV is z0
i−1 when joint i is prismatic.

Case 2: joint i is revolute.

Recalling (3.193), we can write the linear velocity of the origin of {n} relative to
{i− 1} induced by angular velocity Ωi−1

n as

V i−1
n = Ωi−1

n × P i−1
n . (3.215)

We wish to find V 0
n rather than V i−1

n , however, so we need to express P i−1
n in

frame {0}. We can achieve this through vector subtraction, as P 0
n − P 0

i−1. Thus,

V 0
n = Ωi−1

n × (P 0
n − P 0

i−1). (3.216)

Since Ωi−1
n = ẑ0

i−1θ̇i, we can conclude that column i of JV is

ẑ0
i−1 × (P 0

n − P 0
i−1) (3.217)

when joint i is revolute.

Step 2: Determining the columns of JΩ

Now that we have done the work to determine JV , it is straightforward to determine
each column of JΩ. We consider each case below.

Case 1: joint i is prismatic.

As previously mentioned, a prismatic joint i imparts a pure translation on the end-
effector. As a result, the actuation of joint i does not induce any angular velocity,
and therefore column i of JΩ is 0 when joint i is prismatic.

Case 2: joint i is revolute.

We saw previously that actuating a revolute joint i induces an angular velocity of
ẑ0
i−1θ̇i on the end-effector. Thus, the ith column of JΩ is ẑ0

i−1 for a revolute joint i.
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Putting it all together

Let us return to our example of the planar arm with two revolute joints. Using the
method described above, we have

J =

[
ẑ0

0 × (P 0
2 − P 0

0 ) ẑ0
0 × (P 0

2 − P 0
1 )

ẑ0
0 ẑ0

1

]
. (3.218)

Like before, we inspect Fig. 3.30 to determine that

P 0
0 =

0
0
0

 , P 0
1 =

`1 cos θ1

`1 sin θ1

0

 , P 0
2 =

`1 cos θ1 + `2 cos(θ1 + θ2)
`1 sin θ1 + `2 sin(θ1 + θ2)

0

 , (3.219)

and since the arm is planar, we have

ẑ0
0 = ẑ0

1 =
[
0 0 1

]T . (3.220)

Thus, we have

J =



−`1 sin θ1 − `2 sin(θ1 + θ2) −`2 sin(θ1 + θ2)
`1 cos θ1 + `2 cos(θ1 + θ2) `2 cos(θ1 + θ2)

0 0
0 0
0 0
1 1

 . (3.221)

Note that this 6×2 Jacobian has the same three rows as our previous 3×2 Jacobian
from (3.212) along with three rows that are all zeros. Intuitively, this makes sense
because our planar arm only has three degrees of freedom, but we are considering
Cartesian space with six degrees of freedom.

Inverse Velocity Kinematics

Now that we can compute the linear and angular velocity of the end-effector given
the manipulator Jacobian and the velocities of the joints, it is natural to ask: can we
go the other direction? In other words, given a desired linear and angular velocity
of the end-effector and a joint configuration q, can we determine the joint velocities
that will achieve the desired end-effector linear and angular velocity? As we will
later see, solving this problem of inverse velocity kinematics is a very useful tool
for numerically computing inverse kinematics.
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From an analytic standpoint, it is very easy to state this inverse relationship.
Suppose that we are interested in specifying a desired linear velocity for the end-
effector of our planar manipulator with two revolute joints. Recall that[

ẋ
ẏ

]
= JV

[
θ̇1

θ̇2

]
. (3.222)

The inverse of this relationship is given as[
θ̇1

θ̇2

]
= J−1

V

[
ẋ
ẏ

]
. (3.223)

Therefore, to carry out the computation, we need to invert JV , as

J−1
V = 1

`1`2 sin θ2

[
`2 cos(θ1+θ2) `2 sin(θ1+θ2)

−`1 cos θ1−`2 cos(θ1+θ2) −`1 sin θ1−`2 sin(θ1+θ2)

]
. (3.224)

Immediately we can see that a couple problems might arise with this computation.
If θ2 = 0 or θ2 = π, then the determinant goes to zero, and JV will not have an
inverse. These are the two joint angles that result in our planar manipulator being in
a singular configuration in which a degree of freedom is lost. Geometrically, these
are the cases where the arm is either fully extended or completely bent backward
on itself (see Fig. 3.31). Since there are infinitesimal motions that the end-effector
cannot achieve when in a singular configuration due to having fewer degrees of
freedom, we try to avoid these configurations when planning manipulator motions.

(a) (b)

Figure 3.31: Singular configurations of the planar manipulator with two revolute joints.

The problems do not end with singular configurations, however. Suppose that
we were interested in specifying both a linear velocity and angular velocity for the
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end-effector. In this case, we would need to invert either the 3 × 2 manipulator
Jacobian or the 6× 2 manipulator Jacobian that we derived, and as we know from
linear algebra, we cannot invert a matrix that is not square. When we are faced
with this problem, we need to choose some method of approximating the inverse.
One option is to approximate J−1 with a pseudoinverse J+. Another option is to
approximate J−1 with the transpose JT . At first, this latter option may seem quite
surprising and rather foolish because in general, JT is a very poor approximation
of J−1. However, the use of the transpose in place of the inverse will turn out to
be valuable in numerical methods that iteratively approximate J−1. In such cases,
what allows us to use the transpose in place of the inverse is the fact that through
the process of iterating, much of the error introduced by the transpose eventually
cancels out. The quality of the solution might not be as good as one computed
with a pseudoinverse, but determining the transpose is much less computationally
expensive than determining a pseudoinverse.

We will now describe an iterative algorithm for numerically computing inverse
kinematics through the use of inverse velocity kinematics. First, it is important to
understand why the algorithm needs to be iterative in the first place. The reason
is that the Jacobian is a linearization of the forward kinematics of a manipulator
arm, which are typically complex and very nonlinear. As a result, the relationship
that the Jacobian gives us is only instantaneous. Thus, to move the end-effector to
a goal pose, we need to use an iterative method, taking small steps toward the goal
and computing an approximation of J−1 with each step.

The process is as follows. Suppose that the pose of our end-effector is given by
the vector e, and the joint variables of the manipulator are given by the vector q.
We wish to compute the joint velocities required to move the end-effector to goal
pose g. To do this, we repeat the following steps until e is satisfactorily close to g:

1. Compute J(q).

2. Select an increment that will move e closer to g, as ∆e = β(g − e), where
0 < β ≤ 1.

3. Compute the change in the joints variables that will achieve the end-effector
increment selected in the previous step, as ∆q = J−1∆e, using our chosen
method of approximating J−1.

4. Apply this change to the joint variable vector, as q = q + ∆q.

5. Update e by computing the forward kinematics of the manipulator with the
updated q.

In addition to choosing a method for approximating J−1, we also need to decide
what constitutes e being “satisfactorily close” to g before we can implement this
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algorithm. In other words, how do we know when to stop iterating? In some cases,
the algorithm will find a solution, or it will find a solution that is “satisfactorily
close” as defined by some tolerance. In other cases, the algorithm might get stuck
in a local minimum, or it might take an unreasonably long time. Some methods
of addressing these latter cases include limiting the amount of times the algorithm
can iterate and starting over with a randomized pose vector.

Finally, it is worth noting that the dimensionality of the Jacobian tells us more
than just whether the matrix is invertible or not. In the case where there are more
columns than there are rows, we know that the robot must be redundant; that is,
it has more degrees of freedom than is necessary for performing a specified task.
The human arm is an example of a redundant manipulator: while only six degrees
of freedom are required to position and orient the hand in any arbitrary way, the
human arm has seven degrees of freedom. This additional degree of freedom allows
us to move our arm — specifically, reposition our elbow — while keeping our hand
in the exact same position and orientation. (Prove this to yourself: plant your hand
on the surface of a table and then move your elbow around.)

When a robot is redundant, the columns of its Jacobian are linearly dependent.
(To see why, consider that there cannot be more than six linearly independent vec-
tors in R6, so the seven columns of the Jacobian matrix for a human arm must be
linearly dependent.) It follows that the Jacobian matrix has a nontrivial null space.
Velocities drawn from the null space generate internal joint motions but do not
cause any motion at the end-effector. Thus, when we are solving the inverse kine-
matics problem, we can use the null space of the manipulator Jacobian to optimize
a solution or find an alternate trajectory.

3.9.4 Long-Form Examples

Example 3.8 Forward Velocity Kinematics
Concepts reviewed: forward kinematics, the Jacobian
Problem: Suppose you have a two-link robot arm equipped with a billiards cue,
as shown in Fig. 3.32. When the cue strikes the ball, the joints are instantaneously
moving at θ̇1 = −1 rad/sec and θ̇2 = 1 rad/sec. The instantaneous joint angles are
θ1 = 8π

15 rad and θ2 = −π
2 rad. The cue strikes the ball with a line of force that

passes through its center (i.e. there is no spin, and it goes in a straight line in the
direction the cue tip was moving). The cue ball starts exactly centered on a table of
dimensions 2 m long by 1 m wide, and the robot link lengths are `1 = 0.5 m and
`2 = 0.5 m. Where will the ball strike the rail at the edge of the table?
Solution: During the collision between cue and ball, the impulse instantly imparts
the same velocity on the ball as the cue had at that moment. Therefore, we must
find the linear (Cartesian) velocity of the cue tip at that moment.
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1 m

0.
5 

m

θ2

θ1

ℓ1

ℓ2

Figure 3.32: A pool table equipped with a robot cue stick. The robot always strikes the
ball at its center to avoid spin.

We can use JV from (3.208) since the arm has the same geometry as the one in
Fig. 3.30:[

ẋ2

ẏ2

]
= JV

[
θ̇1

θ̇2

]
(3.225)

=

[
−`1 sin θ1 − `2 sin(θ1 + θ2) −`2 sin(θ1 + θ2)
`1 cos θ2 + `2 cos(θ1 + θ2) `2 cos(θ1 + θ2)

] [
θ̇1

θ̇2

]
(3.226)

=

[
−`1 sin θ1 − (`2θ̇1 − `2θ̇2) sin(θ1 + θ2)

`1 cos θ1 + (`2θ̇1 + `2θ̇2) cos(θ1 + θ2)

]
(3.227)

≈
[
0.497261
0.052264

]
(3.228)

Computing the slope m = ẏ2
ẋ2
≈ 0.10510, we can predict that the cue ball will hit

the side rail about 10.5 cm above the center.

Example 3.9 Inverse Velocity Kinematics
Concepts reviewed: inverse kinematics, the Jacobian
Problem: Again considering the two-link robot arm with the billiards cue in
Fig. 3.32, what arm velocity parameters does the robot need to set in order to
strike the ball in the top-right corner pocket with the cue ball? Assume that the cue
ball will travel at 10 m/s and that the joint angles at the moment of impact remain
θ1 = 8π

15 and θ2 = −π
2 .
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Solution: The desired direction of the ball can be derived from the diagram as
φ = atan2(0.5, 1) ≈ 0.46365. Scaled by the desired magnitude, we have[

ẋ2

ẏ2

]
=

[
10 cos(φ)
10 sin(φ)

]
≈
[
8.9443
4.4721

]
. (3.229)

The values for θ1 = 8π
15 and θ2 = −π

2 are taken from Example 3.8 because they
solve the inverse kinematics problem. Since JV is square and has full rank, we can
compute its inverse, as

J−1
V = 1

`1`2 sin(θ2)

[
`2 cos(θ1+θ2) `2 sin(θ1+θ2)

−`1 cos θ1−`2 cos(θ1+θ2) −`1 sin θ1−`2 sin(θ1+θ2)

]
(3.230)

≈
[
−1.9890 −0.2091
1.7800 2.1981

]
, (3.231)

and then solve for the θ rates, yielding[
θ̇1

θ̇2

]
= J−1

V

[
ẋ2

ẏ2

]
(3.232)

≈
[
−1.9890 −0.2091
1.7800 2.1981

] [
8.9443
4.4721

]
(3.233)

≈
[
−18.725
25.751

]
. (3.234)

3.10 Further Reading

For more discussion of kinematics, see Lynch and Park [2] (available online), Craig
[1], Murray et al. [3] and Spong et al. [4].
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